A Theorem of Schur Type for Locally Symmetric Spaces

By
Nobuhiro Innami

(Received October 31, 1988)

Abstract

By showing hidden hypotheses in Schur's lemma on spaces of constant curvature we get a new version for locally symmetric spaces.

0. Statement

Let \boldsymbol{M} be a connected Riemannian manifold with dimension $n \geq 3$. Schur proved in 1886 that \boldsymbol{M} is a space of constant curvature if the sectional curvature depends only on the points (see [2], [3]). In the present note we improve the theorem and have a theorem of the same type for locally symmetric spaces.

Let ∇ be the Riemannian connection and let \boldsymbol{R} be the Riemannian curvature tensor given by

$$
\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{\lceil X, Y]} Z=R(X, Y) Z
$$

where $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ are vector fields and $[\cdot, \cdot]$ is the Lie bracket. We say that the eigenspaces of \boldsymbol{R} are parallel if the following condition is satisfied: For any geodesic ν and for any unit parallel vector field \boldsymbol{v} along ν the eigenspaces of $\boldsymbol{R}(\cdot, \boldsymbol{v}) \boldsymbol{v}: \boldsymbol{T}_{p} \boldsymbol{M} \longrightarrow \boldsymbol{T}_{p} \boldsymbol{M}$ are parallel along ν where \boldsymbol{p} is the foot point of \boldsymbol{v}. The locally symmetric spaces have this property. If the sectional curvature depends only on the points, then the condition is automatically satisfied, since the eigenspaces of $\boldsymbol{R}(\cdot, \boldsymbol{v}) \boldsymbol{v}: \boldsymbol{T}_{p} \boldsymbol{M} \longrightarrow \boldsymbol{T}_{p} \boldsymbol{M}$ is either \boldsymbol{v}^{\perp} or $\boldsymbol{T}_{p} \boldsymbol{M}$ which are parallel along ν, where $\boldsymbol{v} \perp$ is the space orthogonal to \boldsymbol{v}.

Theorem. Let M be a connected Riemannian manifold with dimension $n \geq 3$. Suppose there exist functions c_{1}, \ldots, c_{i} on M such that (1) the distinct eigenvalues of $R(\cdot, v) v: T_{p} M$ $\longrightarrow T_{p} M$ are $c_{1}(p), \ldots, c_{i}(p)$ for any point $p \in M$ and any unit vector $v \in T_{p} M$ with c_{i} (p) $=0$ and (2) if $c_{j}=\lambda_{j} c_{1}$ then λ_{j} are constants on M for $j=1, \ldots, i-1$ (always $\lambda_{1}=1$ and $\lambda_{i}=0$). If the eigenspaces of R are parallel and $\operatorname{dim} \operatorname{Ker} R(\cdot, v) v \leq n-2$ for any unit vector v, then M is a locally symmetric space.

Here, $\operatorname{Ker} \boldsymbol{R}(\cdot, \boldsymbol{v}) \boldsymbol{v}$ is by definition the kernel of $\boldsymbol{R}(\cdot, \boldsymbol{v}) \boldsymbol{v}: \quad \boldsymbol{T}_{p} \boldsymbol{M} \longrightarrow \boldsymbol{T}_{p} \boldsymbol{M}$. The

Schur theorem covers two cases, namely, $i=1$, or $i=2$ and $\operatorname{dim} \operatorname{Ker} \boldsymbol{R}(\cdot, \boldsymbol{v}) \boldsymbol{v}=1$. In those cases it is not necessary to assume the condition (2) for \boldsymbol{c}_{j} 's and the parallel property of \boldsymbol{R}, because they are automatically satisfied.

1. Preliminaries

Let \boldsymbol{M} be a Riemannian manifold. We say that \boldsymbol{M} is a locally symmetric space if the geodesic symmetry is isometry in some neighborhood of each point of \boldsymbol{M}. The condition is equivalent to that the Riemannian curvature tensor is parallel.

A tensor field \boldsymbol{K} of type $(1,3)$ is called a curvature tensor if it satisfies the following condition:
(1) $K(x, y) z=-K(y, x) z$.
(2) $K(x, y) z+K(y, z) x+K(z, x) y=0$.
(2) $\langle K(x, y) z, w\rangle=-\langle K(x, y) w, z\rangle$.
(4) $\langle K(x, y) z, w\rangle=\langle K(z, w) x, y\rangle$.

The curvature tensor \boldsymbol{K} is said to satisfy the second Bianchi identity if

$$
\left(\nabla_{W} K\right)(X, Y) Z+\left(\nabla_{x} K\right)(Y, W) Z+\left(\nabla_{Y} K\right)(W, X) Z=0
$$

for any vector fields $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ and \boldsymbol{W} on \boldsymbol{M}. The Riemannian curvature tensor satisfies the second Bianchi identity.

For the proof of Theorem we provide a lemma. We write $\boldsymbol{F}=\boldsymbol{F} \circ \pi$.
Lemma. Let M be a connected Riemannian manifold with dimension $n \geq 3$. Suppose there exist a function F on M and a curvature tensor K such that $R=F K$. If K satisfies the second Bianchi identity and dim Ker $K(\cdot, v) v \leq n-2$ fnr any unit vector v, then F is constant. In particular, if K is in addition parallel, then M is locally symmetric.

Proof. From the assumption we have

$$
\left(\left(\nabla_{W} R\right)(X, Y)\right) Z=(W F) K(X, Y) Z+\left(\left(\nabla_{W} K\right)(X, Y)\right) Z
$$

where $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{W}$ are vector fields. By the second Bianchi identity we find

$$
\begin{equation*}
(W F) K(X, Y) Z+(X F) K(Y, W) Z+(Y F) K(W \quad X) Z=0 . \tag{1.1}
\end{equation*}
$$

Let \boldsymbol{p} be a point of \boldsymbol{M}. Put

$$
c=\max \left\{|\langle K(u, v) v, u\rangle| ; u, v \in T_{p} M,|v|=|u|=1, u \perp v\right\} .
$$

Let $\boldsymbol{x}, \boldsymbol{z}$ be orthonormal vectors in $\boldsymbol{T}_{p} \boldsymbol{M}$ such that $|\langle\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{z}) \boldsymbol{z}, \boldsymbol{x}\rangle|=\boldsymbol{c}$. Then \boldsymbol{x} is an eigenvector of $\boldsymbol{K}(\cdot, \boldsymbol{z}) \boldsymbol{z}$ with eigenvalue $\boldsymbol{b} \neq \boldsymbol{0}(\boldsymbol{b}=\boldsymbol{c}$ or $-\boldsymbol{c})$. Since $\langle\boldsymbol{K}(\boldsymbol{z}, \boldsymbol{x}) \boldsymbol{x}, \boldsymbol{z}\rangle=\langle\boldsymbol{K}(\boldsymbol{x}$, $\boldsymbol{z}) \boldsymbol{z}, \boldsymbol{x}\rangle=\boldsymbol{b}$, we find also that \boldsymbol{z} is an eigenvector of $\boldsymbol{K}(\cdot, \boldsymbol{x}) \boldsymbol{x}$ with eigenvalue \boldsymbol{b}. Let \boldsymbol{y} be a unit eigenvector of $\boldsymbol{K}(\cdot, \boldsymbol{z}) \boldsymbol{z}$ with eigenvalue \boldsymbol{d} such that $\boldsymbol{y} \perp \boldsymbol{z}, \boldsymbol{y} \perp \boldsymbol{x}$. Then, putting
$\boldsymbol{Z}=\boldsymbol{W}=\boldsymbol{z}, \boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y}$ in (1.1), we have

$$
(z F) K(x, y) z+(x F) d y-(y F) b x=0
$$

Hence,

$$
(z F)\langle K(x, y) z, x\rangle+(x F) d\langle y, x\rangle-(y F) b\langle x, x\rangle=0 .
$$

Therefore,

$$
y F=0,
$$

since

$$
\langle K(x, y) z, x\rangle=\langle K(z, x) x, y\rangle=b\langle z, y\rangle=0 .
$$

Let $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ be orthonormal eigenvectors of $\boldsymbol{K}(\cdot, \boldsymbol{y}) \boldsymbol{y}$ with $\boldsymbol{e}_{1} \perp \boldsymbol{y}, \boldsymbol{e}_{2} \perp \boldsymbol{y}$. Again, putting $\boldsymbol{W}=\boldsymbol{Z}=\boldsymbol{y}, \boldsymbol{X}=\boldsymbol{e}_{1}, \boldsymbol{Y}=\boldsymbol{e}_{2}$ in (1.1), we have

$$
\left(e_{1} F\right) b_{2} e_{2}-\left(e_{2} F\right) b_{1} e_{1}=0
$$

where $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ are eigenvalues of $\boldsymbol{K}(\cdot, \boldsymbol{y}) \boldsymbol{y}$ for \boldsymbol{e}_{1} and \boldsymbol{e}_{2}, resp. Since we may assume that $\boldsymbol{b}_{1} \neq \mathbf{0}$ because of $\operatorname{dim} \operatorname{Ker}(\cdot, \boldsymbol{y}) \boldsymbol{y} \leq \boldsymbol{n}-2$, we see that $\boldsymbol{e}_{2} \boldsymbol{F}=\mathbf{0}$. Further, by the same reasoning, we can find a unit vector $\boldsymbol{e}_{1}{ }^{\prime} \perp \boldsymbol{e}_{1}$ which is an eigenvector of $\boldsymbol{K}(\cdot, \boldsymbol{y}) \boldsymbol{y}$ with eigenvalue $\boldsymbol{b}_{1}{ }^{\prime} \neq \mathbf{0}$. Hence, $\boldsymbol{e}_{1} \boldsymbol{F}=\mathbf{0}$ also. Since \boldsymbol{y} and the eigenvectors of $\boldsymbol{R}(\cdot, \boldsymbol{y}) \boldsymbol{y}$ span $\boldsymbol{T}_{p} \boldsymbol{M}$, the derivative of \boldsymbol{F} is zero. This implies that \boldsymbol{F} is constant on \boldsymbol{M}.

We can get the same result even if \boldsymbol{R} is not the Riemannian curvature tensor but any curvature tensor satisfying the second Bianchi identity.

2. Proof of Theorem

We prove the theorem here. Let ν be a geodesic in \boldsymbol{M} with $\nu(\boldsymbol{0})=\boldsymbol{v},|\boldsymbol{v}|=1$ and let \boldsymbol{w} be a unit parallel vector field along ν. Let $\boldsymbol{E}_{j} \subset \boldsymbol{w} \perp$ be the eigenspace of $\boldsymbol{R}(\cdot, \boldsymbol{w}) \boldsymbol{w}$ with eigenvalue $\boldsymbol{c}_{\boldsymbol{j}}$ for each $\boldsymbol{j}=\mathbf{1}, \ldots, \boldsymbol{i}$. If a parallel vector field \boldsymbol{e} along ν is given by $\boldsymbol{e}=\boldsymbol{e}_{1}+\ldots+\boldsymbol{e}_{\boldsymbol{i}}, \boldsymbol{e}_{\boldsymbol{j}} \in \boldsymbol{E}_{j}$, then \boldsymbol{e}_{j} is parallel along ν, since so is $\boldsymbol{E}_{\boldsymbol{j}}$ for all \boldsymbol{j}. Let \boldsymbol{K} be a tensor field on \boldsymbol{M} of type $(1,3)$ given by $\boldsymbol{K}=\left(1 / \boldsymbol{c}_{1}\right) \boldsymbol{R}$. Then, we have

$$
K(e, w) w=\sum_{j=1}^{i} \frac{1}{c_{1}} R(e, w) w=\sum_{j=1}^{i} \lambda_{j} e_{j}
$$

Hence,

$$
(\nabla v K)(e, w) w=0
$$

Therefore, it follows that

$$
\langle(\nabla v K)(x, y) x, \mathrm{y}\rangle=0
$$

for any point $\boldsymbol{p} \in \boldsymbol{M}$ and any vectors $\boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{T}_{p} \boldsymbol{M}$. By the identity (1.10) in [1] and the definition of \boldsymbol{K}, we know that $\langle\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{z}, \boldsymbol{w}\rangle$ is a sum of terms of the form $\pm\langle\boldsymbol{K}(*, \cdot)$ $*, \cdot\rangle$. From this we have that \boldsymbol{K} is parallel on \boldsymbol{M}. Lemma implies that \boldsymbol{c}_{1} is constant on \boldsymbol{M} and therefore the Riemannian curvature tensor is parallel on \boldsymbol{M}. This completes the proof.

References

[1] J. Cheeger and D. Ebin: Comparison Theorems in Riemannian Geometry. North-Holland, Amsterdam, 1975.
[2] B.-y. Chen: Geometry of Submanifolds. Marcel Dekker, New York, 1973.
[3] F.Schur: Ueber den Zusammenhang der Räume constanten Riemann'schen Krümmungsmasses mit den projectiven Räumen. Math. Ann., 27 (1886), 537-567.

Nobuhiro Innami
Department of Mathematics
Faculty of Science
Niigata University
Niigata, 950-21
JAPAN

