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Abstract. We obtain the geometrical conditions for weakly compact sets to be normal.

1. Introduction

A subset $C$ of a Banach space $E$ is said to be normal if there exists $x$ in $C$ such that
$\sup\{\Vert x-y\Vert:y\in C\}<diamC$ ,

and a convex set $D\subset E$ is said to have normal structure if every nontrivial convex subset
of $D$ is normal. A Banach space $E$ is said to have weak normal structure if every weakly
compact convex subset of it has the normal structure.

The concept ”normal structure” has relations with existence of fixed points of non-
expansive maps. Browder [1] proved that a nonexpansive self-map on a bounded closed
convex subset of a uniformly convex Banach space has a fixed point. Bounded closed
convex subsets of a uniformly convex Banach space are weakly compact, and uniformly
convex Banach spaces have the normal structure. It is known that if a Banach space $E$

has the weak normal structure, then every nonexpansive self-map on a weakly compact
convex subset of $E$ has a fixed point ([4]).

A Banach space is said to be uniformly convex (UC) if for each $\epsilon>0$ there exists
$\delta>0$ such that

$\Vert x\Vert\leqq 1,$ $\Vert y\Vert\leqq 1,$ $\Vert x-y\Vert>\epsilon\Rightarrow(\Vert x+y\Vert)/2<1-\delta$ .
$B_{r}(x)$ denotes the closed ball of radius $r$ with center $x$ .
Sufficient conditions of a Banach space to have the weak nermal structure were

obtained successively as follows:
(1) nearly uniformly convex (NUC): for each $\epsilon>0$ there exists $\delta>0$ such that

$\Vert x_{n}\Vert\leqq 1,$ $\inf\{\Vert x_{n}-x_{m}\Vert : n\neq m\}\geqq\epsilon\Rightarrow$ co $\{x_{n}\}\cap B_{1-\delta}(0)\neq\phi$ ,

where co $\{x_{n}\}$ denotes the covex hull of $\{x_{1}, x_{2)}\ldots\}$ ([3]),
(2) uniformly Kadec-Klee (UKK): for each $\epsilon>0$ there exists $\delta>0$ such that
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$\Vert x_{n}\Vert\leqq 1,$ $x_{n}\rightarrow x$ (weakly), $\inf\{\Vert x_{n}-x_{m}\Vert:n\neq m\}\geqq\epsilon\Rightarrow\Vert x\Vert<1-\delta([3])$ ,

(3) weakly uniformly Kadec-Klee (WUKK): there exist $\epsilon<land\delta>0suchthat$

$\Vert x_{n}\Vert\leqq 1,$ $x_{n}\rightarrow x(weakly),$ $\inf\{\Vert x_{n}-x_{m}\Vert : n\neq m\}$ llli; $\epsilon\Leftrightarrow\Vert x\Vert<1-\delta([2])$ .
It is seen that UC- $NUC\Rightarrow UKK\Rightarrow$ WUKK.

In this paper we concern with the conditions for weakly compact (not necessarily
convex) sets to be normal. Our results have not inclusion relation with the preceding
results.

2. Statements of theorems

LetEbea Banach space. Bdenotes the closed unit ball in E, $(x, y)$ denotes the open
line segment joining $x$ and $y$ for two points $x,$ $y$ in $E$ .

THEOREM 1. Let $E$ be a real Banach space which satisfies the following condition:
for each continuous linear functional $f$ and $a>0$ ,

diam $(B\cap\{x:f(x)\geqq a\})<2$ .
Let $S$ be aweakly compact subset of E. If there exist $x_{1},$ $x_{2}$ and $y_{1},$ $y_{2}$ in $S$ such that $(x_{1}$ ,
$x_{2})\cap(y_{1}, y_{2})$ consists of one point and this point is in S, thenS is normal.

PROOF. We suppose that there exists a weakly compact set $S$ satisfying the condi-
tion of the theorem which is not normal. We may assume that

diam $S=1,$ $\{0\}=(x_{1}, x_{2})\cap(y_{1}, y_{2})(O\in S)$ and $\Vert x_{1}\Vert\leqq\Vert x_{2}\Vert,$ $\Vert y_{1}\Vert\leqq\Vert y_{2}\Vert$ .
Since $S$ is not normal, there exists a sequence $\{z_{n}\}$ in $S$ such that 1 $z_{n}\Vert\rightarrow 1(n\rightarrow\infty)$ . By
the assumption of the theorem we have $Zn\in B_{1}(x_{1})$ for all $n$ . We have also $\Vert z_{n}\Vert\leqq 1$ and
$\Vert x_{2}-z_{n}\Vert\leqq 1$ , hence 1 $x-z_{n}\Vert\leqq 1$ for any point $x\in(O, x_{2})$ . Thus we have $\Vert-x_{1}-z_{n}\Vert\leqq 1$

as $-x_{1}\in(0, x_{2}$], and $-z_{n}\in B_{1}(x_{1})$ for all $n$ . In a similar way we can see that $Zn$ and
$-z_{n}$ belong to $B_{1}(y_{1})$ for all $n$ . Since $S$ is weakly compact, the sequence $\{z_{n}\}$ has a weak
accumulating point $z_{0}$ in $S$ . At first, we assume that $z_{0}$ does not belong to the line join-
ing $x_{1}$ and $x_{2}$. Then by the Hahn-Banach theorem, there exist a continuous linear fwrc-
tional $f$ and $a>0$ such that

$[z_{0}, -z_{0}]\subset\{x:f(x)<a\}$ and $x_{1}\in\{x:f(x)>\alpha\}$ .
Since for infinitely many integer $n$ , both of $Zn$ and $-z_{n}$ belong to $\{x:f(x)<a\}\cap B_{1}(x_{1})$ ,
we obtain that

diam $(\{x;f(x)<a\}\cap B_{1}(x_{1}))=2$ ,

i.e., diam $(\{x:-f(x)>f(x_{1})-\alpha\}\cap B)=2$ . This contradicts to the assumption of the
theorem.
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Next, we assume that $z_{0}$ belongs to the line joining $x_{1}$ and $x_{2}$ . If $z_{0}\in(-x_{1}, x_{1})$ , then by
the same way, the contradiction is deduced. In the other case, there exist a continuous
linear functional $g$ and $\beta>0$ such that

diam $(\{x:g(x)<\beta\}\cap B_{1}(y_{1}))=2$ ,

and this is a contradiction. Thus we obtain the theorem.
The condition on $E$ mentioned in the above theorem is equivalent to that

$\Vert x_{n}\Vert\leqq 1,$ $\Vert y_{n}\Vert\leqq 1,$ $\Vert x_{n}-y_{n}\Vert\rightarrow 2(n\rightarrow\infty)\Rightarrow 0\in\overline{co}(\{x_{n}\}\cup\{y_{n}\})$ ,

where $\overline{co}$ $A$ denotes the closed convex hull of $A$ .
Under the stronger condition, weakly compact sets of wider class are normal.

THEOREM 2. Let $E$ be a real Banach space which satisfies that if I $x_{n}\Vert\leqq 1,$ $\Vert y_{n}\Vert\leqq 1$ ,
$\Vert x_{n}-y_{n}\Vert\rightarrow 2$ then the set $\overline{co}(\{(x_{n}+y_{n})/2\})$ contains $0$ . Let $S$ be a weakly compact sub-
set of E. If there existx andy inS such that $(x, y)\cap S\neq\phi$ , thenS is normal.

PROOF. Let $S$ be a weakly compact set satisfying the condition of the theorem which
is not normal. In the same way as the proof of theorem 1, we may assume that $0\in(x$ ,
$y)\cap S,$ $\Vert x\Vert\leqq\Vert y\Vert$ and diam $S=1$ . Let $\{z_{n}\}$ be a sequence in $S$ such that $\Vert z_{n}\Vert\rightarrow 1(n\rightarrow\infty)$ .
Since $0\in(x, y)$ , we have $\Vert z_{n}\Vert\leqq\frac{1}{2}(\Vert z_{n}-x\Vert+\Vert z_{n}-y\Vert)\leqq 1$ , hence $\Vert x-z_{n}\Vert\rightarrow 1(n\rightarrow\infty)$ ,

$\Vert z_{n}-y\Vert\rightarrow 1(n\rightarrow\infty)$ . Then, since $\frac{x}{2}\in(x, y)$ , we have $\Vert z_{n}-\frac{x}{2}\Vert\rightarrow 1(n\rightarrow\infty)$ , thus we
have $\Vert z_{n}-(x-z_{n})\Vert\rightarrow 2(n\rightarrow\infty)$ . $But\overline{co}(\{(z_{n}+(x-z_{n}))/2\})$ cannot contain $0$ contradict-
ing to the assumption on E. Thus we completed the proof.

The condition for $E$ statsd in theorem 2 is weaker than the following condition;
(a) $\Vert x_{n}\Vert\leqq 1,$ $\Vert y_{n}\Vert\leqq 1,$ $\Vert x_{n}-y_{n}\Vert\rightarrow 2\Rightarrow(x_{n}+y_{n})/2\rightarrow 0$ (weakly).

Consider the additional condition;
(b) $\Vert x_{n}\Vert\leqq 1,$ $\Vert x\Vert=1,$ $x_{n}\rightarrow x$ (weakly); $Xn\rightarrow x$ (strongly).

Then it is easily seen that (a) and (b) is equivalent to UC.
Of course, convex sets are in conformity with the conditions for weakly compact set

mentioned in theorem 1 and 2.

THEOREM 3. Let $E$ be a real Banach space which satisfies the condition in theorem
1. Then, every weakly compact convex subset of $E$ has the normal structure.

PROOF. Note that a line segment is a normal convex set. If there exists a convex
subset of a weakly compact convex set which is not normal, then we can deduce a con-
tradiction as the same way to the proof of theorem 1.
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