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1. Introduction

Let $M$ be a differentiable manifold, and $f$ a differentiable map of $M$ in a euclidean space
$R^{m}$ . We say $f$ an immersion if the differential df has a maximal rank at each point of
$M$ and homeomorphic immersion an imbedding. We shall write {

$M\subset R^{m}$ or $M\subseteq R^{m}$ when
there exists an imbedding of $M$ in $R^{m}$ or an immersion of $M$ in f\S m $resp\vee\circ ctively$ . Let $Fbe$

one of three basic fields $B,$ $C$ or $Q$ and $FP_{n}$ the $n$ -dimensional projective space over $F$.
I. M. James has obtained an imbedding: $FP_{n}\subset fl^{2dn-d\dashv 1}$ for every integer $!n\geqq 1$ , where

$d$ is the dimension of $F$ over R. [7].

In this paper we shall prove the following
THEOREM 1. Let $n$ be any integer which is not power of 2, $th^{\circ},nFP_{n}\subset fP^{dn-d}$ .
This result overlaps with that of (6), (8) and (9].

For the case $F=C$ or $Q$ , we can also prove the following theorems which give us an
information on the existence of imbedding of $FP_{n}$ in lower dimensional euclidean space,

THEOREM 2. $CP_{n}\subset fi^{4t-3}$ if $CP_{n}-i\lambda i\subseteq fl^{4n-5}$ end $n\geqq 5$ .
Moreover if $CP_{n}-x\subseteq I3^{4n-5}$ and $n$ is odd, $th^{\circ}\llcorner nCP_{n}\subset 1l^{4n-4}$ .

THEOREM 3. $QP_{n}cR^{8n-k}$ if $ QP_{n}-x\subseteq R^{8n-k-1}\zeta$”$ndk\leq n,$ $wher^{a}k$ is 5, 6, or 8.
The authour wishes to express his thanks to Prof. K. Aoki, Mr. T. Hirose and Mr.

T. Kobayashi for their many valuable suggestions and several discussions.

2. Imbeddings

Let $ V=F^{n1}\perp$ be the right $F$-module and $FP_{n}$ the associated right projective space.
Thus we have a principal $p*$-bundle $\pi:V-0\rightarrow FP_{n}$ , where $F^{*}$ is the multiplicative group
of non zero elements of $F$, and the associated right line bundle (fibre$F$, group $F^{*}$

operating on $F$ on the left), which we denote by $L$ . We may also consider the left line
bundle $L^{*}=Hom(L,F)$ . This defines a real vector bundle $\xi$ of dimension $d$, where $d$ is
the dimension of $F$ over $R$ . It is well known that the total space of this bundle is $FP_{n+1}$

$-g_{\dot{}}$, where $\lambda$ is a point of $Fli_{n}$ . We denote this bundle by $\dot{\sigma}$. The following lemma is
well known.

(2. 1) LEMMA. $ L_{\vee}^{\rho}i\tau$ be the tangent bundle of $FP_{n}$ . $Th^{\circ,}\vee n$ we hxve

$\tau\oplus\eta=(n+1)\xi$
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where $\eta$ is the bundle with $ fibr^{\circ}.th^{\circ}\vee\cdot$ Lie algebril $F$ of $F^{*}e\backslash \backslash 9oci:\iota ted$ to the $1$)$rincipal$ bundle
$\pi:V-0\rightarrow FP_{n}$ by $th^{\circ}$. adjoint $repre8^{\sigma}ntxtion$ . $Mor_{c}^{\circ}over$ if $F$ is $ commutativ_{c}\circ$

$\eta$ is a tiivial
bundle.

Let rc and $\mu$ be the bundles over $FP_{n}$ whose total space are denoted by $E$ (rc), $E(\rho\ell)$ ,
respectively. We call a map $g:E(\kappa)\rightarrow E(\mu)$ a homeomorphism when it satisfies the
following properties

(1) $g$ maps each fibre linearly into a fibre,

(2) $g$ induces the identity map over $FP_{n}$ .
We call $g$ an imbedding if it is one-one. It is clear that an imbedding $g:\kappa\rightarrow\mu$ induces an
imbedding of $E(K)$ into $E(\mu)$ .

We have the following
(2. 2) PROPOSITION. Let $FP_{n}$ be imbedded in $R^{m}$ with normal vector bundle $\nu$ .

If there exists an, $imb_{c}^{\circ}.ddiug$ of $\xi$ into $\nu$, then $FP_{n+1}-xcxn$ be imbgdded in $R^{m}$ .
PROOF. The assumption implies that $FP_{n+1}-x$ can be imbedded in a tubular neighbo-

urhood of $FP_{n}$ in $R^{m}$. Thus $FP_{n+1}-x$ is imbedded in $R^{m}$ .
(2. 3) PROPOSITION. Under $tnesz$me assumption as (2. 2) $FP_{n+1}cxn$ be imbedded in

$fl^{m+1}topologi_{CX}u_{y}$ .
Proof. In view of (2.2), we have an imbedding of $FP_{n+1}-x$ in $R^{m}$. Let $S^{dn+d-l}c$

$FP_{n+1}-x$ be a sphere which is the boundary of ball in $FP_{n+1}$ containing,x. The propo-
sition follows by placing a cone on this spheie.

By a result of A. Haeflieger (3), we have
(2. 4) $CoROLLARY$ . If the a.ssumption of (2.3) is sitisfied, and if $2m>3(dn+d)$ ,

thgn $FP_{n+1}c$in be imbedded in $R^{m+1}$ differentiably.
Now we shall study veotor bundle over $FP_{n}$ more closely.
Let $\kappa$ and $\mu$ be $k$-vector bundle and m-bundle over $FP_{n}$ , resp. and $Hom$ (rc, $\mu$ ) the

bundle defined bv $Hom(\kappa, \mu)_{x}=Hom(\kappa_{x}, \mu_{x})$ -group of linear transformations of
$\kappa=R^{k}$ into $\mu=R^{m}$ . We suppose $k<m$. We denote the sub-bundle of $Hom(\kappa,\mu)$ with
fibre $L_{m.k}$ -group of linear transformations of $R^{k}$ into $R^{m}$ of rank $k$-by $L(\kappa,\mu)$ . It is
necessary and sufficient for the existence of an imbedding of $\kappa$ into $\mu$ that $L(\kappa,\mu)$ has
a cross section. Since $L_{m.k}$ has the Stiefel manifold $V_{n,k}$ as its deformation retract, the
primary obstruction for the existence of a cross section of $L$ (rc, $\mu$) is an element of
$H^{m-k+1}$ $(FP_{n} : \{\pi_{m-k}(V_{m.k})\})$ , where $\{\pi_{m-k}(V_{m.k})\}$ denotes the bundle of coefficients
with fibre $\pi_{m-k}(V_{m,k})$ which is a product bundle when $F$ is $C$ or $Q$. We notice that if
$k=1$ then $L$ (rc, $\mu$) ia an(m-l)-sphere bundle.

The following example shows clearly how we apply (2.3). Consider the imbedding
$FP_{n-1}cR$, which exists by a result of H. Whitney. Let $\nu$ be the normal bundle, whose
dimension is dn. Since $\pi_{j}$ $(L_{dn,d})=\pi$ $(Vdn.d)=0$ for $i<d(n-1)$ . $L(\xi.\nu)$ has a cross
section over $FP_{n-1}$ . Thus by (2.3), $FP_{n}$ is imbedded topologically in $fP^{d(n-1)+d+1}$ . By
(2.4), if $dn>2(d-l),$ $i$ . $e$ . $n\geqq 2$ , this imbedding is approximated by a differentiable one.
The exceptional case $d\geqq 2$ and $n=I$ is slso true because $FP=S^{d}$ is imbedded in $R^{d+1}$ .
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Thus we have an imbedding of $FP_{n}$ in $fi^{2dn-d+1}$ fore every integer $n$ and $d$ . This result
coincides with that of James’ mentioned in Introduction.

3. Immersions

We begin, in this section, with some general theorems about the bundle along the
fibres.

Let $\eta=(E, \pi, B)$ be a fibre bundle and $\hat{\eta}$ the bundle along the fibres.
As is well known,

$\tau(E)=\pi^{*}\{\tau(B)\}\oplus\hat{\eta}$

We consider the case $\hat{\eta}$ is a vector bundle, which we shall need in the sequel.
We can prove that the sequence

$0\rightarrow\pi^{*}(\eta)\rightarrow\tau(E)\rightarrow\pi^{*}\tau(B)\rightarrow 0$

is exact, in other words, $\eta$ is equivalent with $\pi^{*}(\eta)$ .
For each point $\lambda\in B$, we have an inclusion

$E_{x}$ (fibre of $\eta atx$) $\rightarrow E$

and hence a natural inclusion

$\tau(E_{x})\rightarrow\tau(E)$

It follows from the definition that the total space of $\pi^{*}\eta$ consists of pair of vectors
$(v, w)$ lying over the same base point $\lambda$ \ddagger in other words, the fibre of $x$ is $E_{X}\times E_{x}$.
Since $E_{x}$ is a euclidean space, $E_{x}\times E_{x}$ is naturally identified with $\tau(E)$ . Hence

we have a bijection

$(\pi^{*}\eta)_{\lambda}\rightarrow\tau(E)$

for each $x$ . It follows from this that $\pi^{*}\eta$ and $\hat{\eta}$ are equivalent, or (3. 1) is exact.

The exactness of (3. 1) implies

(3. 2) $\tau(E)=\pi^{*}\{\tau(B)\oplus\eta\}$

We recall some results on $r^{3}.gular$ homotopy classes of immersions of a manifold in a

euclidean space $R^{m}$.
Th2 following results have been proved by M. W. Hirsch in (5)

(3. 3) $M$ be an n-manifold. Then $ th^{\rho}\vee\cdot regulil\gamma$ homotopy classes of immersions of $M$ in

$R^{m}(m>n)$ corresponds injectively with $th^{a}$ homotopy classes of cross sections of the bundle

associated to the tangent $b^{}undle$ of $M$ with fibre $V_{m,k}$ .
(3. 4) Two immersions of $M$ in $R^{2n+1}dre$ reguldrly homotopic.

(3. 5) Let $M$ be a manifold of even dimension $n$ . Then two immersions of $M$ in $fi^{2n}$

are regularly homotopic if and only if they $hwe$ the sxme normal class.
From (3. 3), we have the following
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(3. 6) LEMMA. If $n$ is even, two immersions of $CP_{n}$ in $ fi^{4n-1}a\gamma\circ$ regularly homotopic.
PROOF. The regular homotopy classes of immerisions of $CP_{n}$ in $ft^{4n-1}$ are in one-one

correspondence with the homotopy classes of cross sections of the bundle associated
to the tangent bundle of $CP_{n}$ with fibre $V_{4n-1,2n}$ . The obstructions to make two cross
sections homotopic lie in the group $H^{2n-1}(CR_{n^{;\pi}2n-1(V))}4n-1,2n=0$ . and $H^{2n}(CP_{n}$ ;
$\pi_{2n}(V4n-1,2n))$ , which is zero for even $n$ since $\pi zn(V4n-1,2n)=0$ , if $n$ is even (11].

Similarly we can prove
(3. 7) LEMMA. Two immersions of $QP_{n}$ in $R^{8n-1}a\gamma e$ regutirly nomotopic.

4. The proof of Theorcm 1

We first recall some results on binomial ccefficients. Let $a(n)$ be the number of
non-zero terms in the dyadic expansion of $n;n=\Sigma n_{i}2!$ with $n;=0$, or 1, then $a(n)=$
\Sigma ni.

We have a well known
(4. 1) LEMMA. $(kn)$ is not zero mod 2 if and only if $a(k)+a(n-k)-a(n)=0$ .
PROOF. Recall $(kn)=n!/(k!(n-k) !)$ . Since $n$ ] $=2^{n-a(n)}o(n)$ , where $o(n)$ is an odd

number. We see that

$(kn)=2^{a(k)+a(n-k)-a(n)x}\times$ ($an$ odd number)

Hence $(kn)$ is not zero $mod 2\leftarrow\rightarrow(kn)$ is $odd-\rightarrow a(k)+a(n-k)=a(n)$

(4. 2) $(^{2n+1}n)\neq 0$ mod $2\leftarrow\rightarrow n_{\alpha}=2^{r}-1$ for some integer $r$ .
(4. 3) $(_{n-1})2n\neq 0$ mod $2\leftarrow\rightarrow n=2^{\gamma}-1$ for some integer $r$ .

PROOF. Let $n=i=1\underline{\rangle^{\urcorner}}2^{r}s\gamma_{1}>\gamma_{2}>\cdots>r_{S}\geqq 0$ . Then $a(n)=s,$ $a(2n+1)=s+1$ . $Hence(2nn+1)$

$\neq 0mod 2\leftarrow\rightarrow a(n)+a(n+1)=a(2n+1)\leftarrow\rightarrow a(2\}?+1)=1\leftarrow\rightarrow n=2^{\gamma}-1$ . This implies (4.2).
The proof of. (4. 3) is similar.

We consider first the case $F=C,$ $Q$ .
Let $FP_{n}$ be imbedded in $fP^{dn+d-1}$ with normal vector bundle $\nu$. We can show the
following;

(4. 4) $\xi Cjl$ be imbedded in $\nu\oplus\epsilon^{k},wh_{-}^{\circ}rek$ is lirge $eno\prime u9h$ , in other words, there exists
$a(dn+k-1)$ vector bundle fi such thzt $\nu\oplus\epsilon^{k}=\xi\oplus\sim\kappa$ .

PROOF. We consider the bundle $L(\xi,\nu\oplus\epsilon^{k})$ . Since the fibre of this bundle is
$L_{dn+d-1+k,d}$ , there is no obstruction for the existence of a cross section of $L(\xi, \nu\oplus\epsilon)$ .
Hence $\xi$ can be imbedded in $\nu\oplus\epsilon\cdot$ .
Next we prove

(4. 5) If $n\neq 2^{\gamma}-1,$ $th_{-}^{\circ,}n\sim K=\mathcal{K}\oplus gk$ for some $(dn -- 1)$ vector bundle $\kappa$.
PROOF. To prove this, it is sufficient to show that the bundle associated to $\overline{\kappa}$

with fibre $ V_{dn-1k,k}\perp$ has a cross section over $FP_{n}$ . The only obstruction is an element



15

$Cdn\in H^{dn}(FP_{ndn-1}:\pi(V_{dn-1k,k}\perp))$ . It is known that $Gdn$ is
$\backslash $

the dn th Stiefel-Whitney

class $wdn(^{-}K)$ of $\tilde{K}$ . By (4.4) we have $\backslash $

$.\backslash $

$w_{dn}(K\sim 2n+1)\equiv(n)a^{n}$ mod 2

where $a$ is a generator of $H^{*}(FP, : Z_{2})$ . By (4.2), $wdn(\tilde{\kappa})$ is zero if and only if $n\neq 2$ ‘

$-1$ .
Combining (4.4) and (4.5), we have
(4. 6) $\nu\oplus S^{k}=\xi\oplus\kappa\oplus S^{k}$ if $n\neq 2^{\gamma}-1$

Hence there is an immersion of $FP_{n}$ in $ft^{2dn+d-1}$ with normal vector bundle $\xi\oplus\kappa$ .
By (3. 4), two immersions of $FP_{n}$ in $R^{2dn+d-1}$ are regularly homotopic, hence $\nu\Rightarrow\xi\oplus K$ .
Thus we have

(4. 7) $\nu=\xi\oplus\kappa$ if $n\neq 2_{n}-1$

From (2.3), (2.4) and (4.7), there exists an imbedding of $FP_{n+1}$ into $R^{2dn+d}$ This

completes the proof of Theorem 1.
For the case $F=R$ , see (4).

5. The proof of Theorem 2 and Theorem 3

We recall that the total space of the canonical d-vector bundle $\xi$ over $FP_{n-1}$ is $FP_{n}$

$-\theta i$ . Let $\tau^{\prime}$ be the tangent bundle of $FP$. $-x$, and $\tau$ be the tangent bundle of $FP,$ $-1$ .
Then we have $th\underline{\Leftrightarrow}$ following

(5. 1) LEMMA. $\tau^{\prime}|FP_{n-1}=\tau\oplus\xi$

RROOF. Let $i$ be the inclusion of $FP_{n-1}$ in $FP_{n}-x$. Since $\pi i=1$ $\dot{n}^{*}\pi^{*}=1$ .
By (3.2), we have $\tau^{\prime}=\pi^{*}(\tau\oplus\xi)$

Hence we have $\tau^{\prime}|FP_{n-1}=i^{*}\tau^{\prime}=\tau\oplus\xi$

Now let $ FP_{n}-.ljb\circ$. immersed in $R^{m}$ with normal bundle $\nu^{\prime}$ and $FP_{n\leftrightarrow 1}$ imbedded in $R^{m}$

with normal bundle $\nu$.
Then we have
(5. 2) LEMMA. $\nu\equiv\nu^{\prime}lFP_{n-1}\oplus\xi$

where the notation” $\in$ ’means stably equivalent.

PROOF. We have

$\tau\oplus\nu=\epsilon^{m}=(\tau^{\prime}\oplus\nu^{\prime})|FP_{n-1}=\nu^{\prime}|FP_{n\neg 1}\oplus\tau\oplus\xi$

Hence $\nu\equiv\nu^{\prime}|FP_{n-1}\oplus\xi$

Now we shall prove Theorem 2. Let $CP_{n}-x\subseteq f8^{4n\neg 5}$ with normal bundle $\nu^{\prime}$ and $CP^{n-1}$

$\subset f8^{4n-4}$ with nonmal bundle $\nu$. Then (5.2) implies

$\nu\equiv(\nu^{\prime}\oplus\epsilon^{\prime})|CP_{n-1}\oplus\xi=\nu^{\prime}|CP_{n-1}\oplus\xi\oplus\epsilon^{1}$

Since $X(\nu)=X(\nu^{\prime}|CP_{n-1}\oplus\xi\oplus 81)=0$ . (3.5) implies

$\nu=\nu^{\prime}|CP_{n-1}\oplus\xi\oplus\epsilon^{1}$
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Hence $\xi$ is imbedded in $\nu$ as a sub-bundle. By (2.3) and (2.4) we have Theorem 2
The proof of Theorem 3 is completely similar.
As corollary of Theorem 3, we have
(5. 3) $CoROLLARY$ . If $n$ is integer $g\gamma exter$ thil 9 such $thi\iota t$ a $(n)=4$ , then $QP_{n}$ is ,not

immersible in $R^{8n-9}$ .
PROOF. By a result of Atiyah-Hirzebruch, we have

$QP_{n}\neq fi^{8n-8}$ for $n$ such that $a(n)=4$ .
Theorem 3 implies that if $QP_{n}\subseteq R^{8n-9}$, then $QP_{n}cfi^{8n-8}$ . This completes the proof.
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