Imbedding and immersion of projective spaces

By

Tsuyoshi WATABE

(Received December 15, 1964)

1. Introduction

Let M be a differentiable manifold, and f a differentiable map of M in a euclidean space R^m . We say f an immersion if the differential df has a maximal rank at each point of M and homeomorphic immersion an imbedding. We shall write $M \subset R^m$ or $M \subseteq R^m$ when there exists an imbedding of M in R^m or an immersion of M in R^m , respectively. Let Fb one of three basic fields R, C or Q and FP_n the *n*-dimensional projective space over F.

I. M. James has obtained an imbedding: $FP_n \subset \mathbb{R}^{2dn-d+1}$ for every integer $n \geq 1$, where d is the dimension of F over R. [7].

In this paper we shall prove the following

THEOREM 1. Let n be any integer which is not power of 2, then $FP_n \subset \mathbb{R}^{2dn-d}$.

This result overlaps with that of [6], [8] and [9].

For the case F=C or Q, we can also prove the following theorems which give us an information on the existence of imbedding of FP_n in lower dimensional euclidean space, THEOREM 2. $CP_n \subset R^{4n-3}$ if $CP_n - x \subseteq R^{4n-5}$ and $n \ge 5$.

Moreover if $CP_n - x \subseteq \mathbb{R}^{4n-5}$ and n is odd, then $CP_n \subset \mathbb{R}^{4n-4}$.

THEOREM 3. $QP_n \subset \mathbb{R}^{8n-k}$ if $QP_n - x \subseteq \mathbb{R}^{8n-k-1}$ and $k \leq n$, where k is 5, 6, or 8.

The authour wishes to express his thanks to Prof. K. Aoki, Mr. T. Hirose and Mr. T. Kobayashi for their many valuable suggestions and several discussions.

2. Imbeddings

Let $V = F^{n+1}$ be the right *F*-module and FP_n the associated right projective space. Thus we have a principal F*-bundle $\pi: V \to \to FP_n$, where F^* is the multiplicative group of non zero elements of *F*, and the associated right line bundle (fibre *F*, group F^* operating on *F* on the left), which we denote by *L*. We may also consider the left line bundle $L^* = Hom(L,F)$. This defines a real vector bundle ξ of dimension *d*, where *d* is the dimension of *F* over *R*. It is well known that the total space of this bundle is FP_{n+1} -*x*, where *x* is a point of FR_n . We denote this bundle by ξ . The following lemma is well known.

(2. 1) LEMMA. Let τ be the tangent bundle of FP_n . Then we have

$$\tau \oplus \eta = (n+1)\xi$$

where η is the bundle with fibre the Lie algebra F of F^* associated to the principal bundle π : V-o \rightarrow FP_n by the adjoint representation. Moreover if F is commutative, η is a tivial bundle.

Let κ and μ be the bundles over FP_n whose total space are denoted by $E(\kappa)$, $E(\mu)$, respectively. We call a map $g: E(\kappa) \to E(\mu)$ a homeomorphism when it satisfies the following properties

(1) g maps each fibre linearly into a fibre,

(2) g induces the identity map over FP_n .

We call g an imbedding if it is one-one. It is clear that an imbedding $g: \kappa \to \mu$ induces an imbedding of $E(\kappa)$ into $E(\mu)$.

We have the following

(2. 2) PROPOSITION. Let FP_n be imbedded in R^m with normal vector bundle ν .

If there exists an imbedding of ξ into ν , then FP_{n+1} -x can be imbedded in R^m .

PROOF. The assumption implies that $FP_{n+1}-x$ can be imbedded in a tubular neighbourhood of FP_n in R^m . Thus $FP_{n+1}-x$ is imbedded in R^m .

(2.3) PROPOSITION. Under the same assumption as (2.2) FP_{n+1} can be imbedded in R^{m+1} topologically.

Proof. In view of (2.2), we have an imbedding of $FP_{n+1}-x$ in \mathbb{R}^m . Let $S^{dn+d-1} \subset FP_{n+1}-x$ be a sphere which is the boundary of ball in FP_{n+1} containing x. The proposition follows by placing a cone on this sphere.

By a result of A. Haeflieger (3), we have

(2. 4) COROLLARY. If the assumption of (2.3) is satisfied, and if 2m>3 (dn+d), then FP_{n+1} can be imbedded in R^{m+1} differentiably.

Now we shall study vector bundle over FP_n more closely.

Let κ and μ be k-vector bundle and m-bundle over FP_n , resp. and Hom (κ, μ) the bundle defined by Hom $(\kappa, \mu)_{\pi} = Hom (\kappa_{\pi}, \mu_{\pi})$ - group of linear transformations of $\kappa = R^k$ into $\mu = R^m$. We suppose k< m. We denote the sub-bundle of Hom (κ, μ) with fibre $L_{m,k}$ -group of linear transformations of R^k into R^m of rank k-by $L(\kappa, \mu)$. It is necessary and sufficient for the existence of an imbedding of κ into μ that $L(\kappa, \mu)$ has a cross section. Since $L_{m,k}$ has the Stiefel manifold $V_{m,k}$ as its deformation retract, the primary obstruction for the existence of a cross section of $L(\kappa, \mu)$ is an element of H^{m-k+1} $(FP_n: \{\pi_{m-k} (V_{m,k})\})$, where $\{\pi_{m-k}(V_{m,k})\}$ denotes the bundle of coefficients with fibre $\pi_{m-k} (V_{m,k})$ which is a product bundle when F is C or Q. We notice that if k=1 then $L(\kappa, \mu)$ is an(m-1)-sphere bundle.

The following example shows clearly how we apply (2.3). Consider the imbedding $FP_{n-1} \subset R$, which exists by a result of H. Whitney. Let ν be the normal bundle, whose dimension is dn. Since π_i $(L_{dn,d}) = \pi$ $(V_{dn,d}) = o$ for i < d(n-1). $L(\xi, \nu)$ has a cross section over FP_{n-1} . Thus by (2.3). FP_n is imbedded topologically in $R^{2d(n-1)+d+1}$. By (2.4), if dn > 2 (d-l), i. e. $n \ge 2$, this imbedding is approximated by a differentiable one. The exceptional case $d \ge 2$ and n=1 is slow true because $FP = S^d$ is imbedded in R^{d+1} .

Thus we have an imbedding of FP_n in $R^{2dn-d+1}$ for every integer n and d. This result coincides with that of James' mentioned in Introduction.

3. Immersions

We begin, in this section, with some general theorems about the bundle along the fibres.

Let $\eta = (E, \pi, B)$ be a fibre bundle and $\hat{\eta}$ the bundle along the fibres. As is well known,

$$\tau(E) = \pi^* \{ \tau(B) \} \oplus \hat{\eta}$$

We consider the case $\hat{\eta}$ is a vector bundle, which we shall need in the sequel. We can prove that the sequence

$$0 \rightarrow \pi^*(\eta) \rightarrow \tau(E) \rightarrow \pi^*\tau(B) \rightarrow 0$$

is exact, in other words, η is equivalent with $\pi^*(\eta)$. For each point $x \in B$, we have an inclusion

$$E_x$$
 (fibre of η atx) $\rightarrow E$

and hence a natural inclusion

$$\tau(E_x) \rightarrow \tau(E)$$

It follows from the definition that the total space of $\pi^* \eta$ consists of pair of vectors (v, w) lying over the same base point x: in other words, the fibre of x is $E_x \times E_x$. Since E_x is a euclidean space, $E_x \times E_x$ is naturally identified with $\tau(E)$. Hence we have a bijection

$$(\pi^*\eta)_{\lambda} \rightarrow \tau(E)$$

for each x. It follows from this that $\pi^*\eta$ and $\hat{\eta}$ are equivalent, or (3.1) is exact. The exactness of (3.1) implies

(3. 2) $\tau(E) = \pi^* \{ \tau(B) \oplus \eta \}$

We recall some results on regular homotopy classes of immersions of a manifold in a euclidean space R^m .

The following results have been proved by M. W. Hirsch in [5]

(3. 3) M be an n-manifold. Then the regular homotopy classes of immersions of M in \mathbb{R}^m (m>n) corresponds injectively with the homotopy classes of cross sections of the bundle associated to the tangent bundle of M with fibre $V_{m,k}$.

(3. 4) Two immersions of M in \mathbb{R}^{2n+1} dre reguldrly homotopic.

(3. 5) Let M be a manifold of even dimension n. Then two immersions of M in \mathbb{R}^{2n} are regularly homotopic if and only if they have the same normal class. From (3.3), we have the following

(±1) • ~ (x ±1)

(3. 6) LEMMA. If n is even, two immersions of CP_n in \mathbb{R}^{4n-1} are regularly homotopic. PROOF. The regular homotopy classes of immerisions of CP_n in \mathbb{R}^{4n-1} are in one-one correspondence with the homotopy classes of cross sections of the bundle associated to the tangent bundle of CP_n with fibre $V_{4n-1,2n}$. The obstructions to make two cross sections homotopic lie in the group H^{2n-1} $(CR_n; \pi_{2n-1}(V_{4n-1,2n}))=0$. and H^{2n} $(CP_n; \pi_{2n}(V_{4n-1,2n}))$, which is zero for even n since π_{2n} $(V_{4n-1,2n})=0$, if n is even [11]. Similarly we can prove

(3. 7) LEMMA. Two immersions of QP_n in \mathbb{R}^{8n-1} are regularly homotopic.

4. The proof of Theorem 1

We first recall some results on binomial coefficients. Let a (n) be the number of non-zero terms in the dyadic expansion of $n; n = \sum n_i 2^i$ with $n_i = 0$, or 1, then a $(n) = \sum n_i$.

We have a well known

(4. 1) LEMMA. $\binom{n}{k}$ is not zero mod 2 if and only if a(k)+a(n-k)-a(n)=0.

PROOF. Recall $\binom{n}{k} = n!/(k!(n-k)!)$. Since $n! = 2^{n-a(n)} o(n)$, where o(n) is an odd number. We see that

 $\binom{n}{k} = 2^{a(k)+a(n-k)-a(n)x} \times (an \ odd \ number)$

Hence $\binom{n}{k}$ is not zero mod $2 \leftarrow \rightarrow \binom{n}{k}$ is odd $\leftarrow \rightarrow a(k) + a(n-k) = a(n)$

(4. 2) $\binom{2n+1}{n} \neq 0 \mod 2 \leftarrow \rightarrow n = 2^r - 1$ for some integer r.

(4. 3) $\binom{2n}{n-1} \neq 0 \mod 2 \leftarrow \rightarrow n = 2^r - 1$ for some integer r.

PROOF. Let $n = \sum_{i=1}^{s} 2^{r}$ $r_1 > r_2 > \dots > r_s \ge 0$. Then a(n) = s, a(2n+1) = s+1. Hence $\binom{2n+1}{n}$

 $\Rightarrow 0 \mod 2 \leftrightarrow a(n) + a(n+1) = a(2n+1) \leftrightarrow a(2n+1) = 1 \leftrightarrow n = 2^{r} - 1$. This implies (4.2). The proof of (4.3) is similar.

We consider first the case F=C, Q.

Let FP_n be imbedded in $R^{2dn+d-1}$ with normal vector bundle ν . We can show the following;

(4. 4) ξ can be imbedded in $\nu \oplus \varepsilon^k$, where k is large enough, in other words, there exists a (dn+k-1) vector bundle $\tilde{\kappa}$ such that $\nu \oplus \varepsilon^k = \xi \oplus \tilde{\kappa}$.

PROOF. We consider the bundle $L(\xi, \nu \oplus \varepsilon^k)$. Since the fibre of this bundle is $L_{dn+d-1+k,d}$, there is no obstruction for the existence of a cross section of $L(\xi, \nu \oplus \varepsilon^{\gamma})$. Hence ξ can be imbedded in $\nu \oplus \varepsilon^{\gamma}$.

Next we prove

(4. 5) If $n \neq 2^r - 1$, then $\tilde{\kappa} = \kappa \oplus \varepsilon^k$ for some (dn-1) vector bundle κ .

PROOF. To prove this, it is sufficient to show that the bundle associated to $\tilde{\kappa}$ with fibre $V_{dn-1+k,k}$ has a cross section over FP_n . The only obstruction is an element

 $c_{dn} \in H^{dn}$ $(FP_n: \pi_{dn-1}(V_{dn-1+k,k}))$. It is known that c_{dn} is the dn th Stiefel-Whitney class w_{dn} $(\hat{\kappa})$ of $\hat{\kappa}$. By (4.4) we have

$$w_{dn}(\widetilde{\kappa}) \equiv \binom{2n+1}{n} a^n \mod 2$$

where a is a generator of $H^*(FP; \mathbb{Z}_2)$. By (4.2), $w_{dn}(\tilde{k})$ is zero if and only if $n \neq 2^r$ -1.

Combining (4.4) and (4.5), we have

(4. 6) $\nu \oplus \varepsilon^k = \xi \oplus \kappa \oplus \varepsilon^k \text{ if } n \neq 2^r - 1$

Hence there is an immersion of FP_n in $R^{2dn+d-1}$ with normal vector bundle $\xi \oplus \kappa$. By (3.4), two immersions of FP_n in $R^{2dn+d-1}$ are regularly homotopic, hence $\nu = \xi \oplus \kappa$. Thus we have

(4.7) $\nu = \xi \oplus \kappa \ if \ n \neq 2_n - 1$

From (2.3), (2.4) and (4.7), there exists an imbedding of FP_{n+1} into \mathbb{R}^{2dn+d} This completes the proof of Theorem 1.

For the case F = R, see [4].

5. The proof of Theorem 2 and Theorem 3

We recall that the total space of the canonical d-vector bundle ξ over FP_{n-1} is FP_n -x. Let τ' be the tangent bundle of FP_n -x, and τ be the tangent bundle of FP_{r-1} . Then we have the following

(5. 1) LEMMA. $\tau'|FP_{n-1}=\tau \oplus \xi$

RROOF. Let *i* be the inclusion of FP_{n-1} in $FP_n - x$. Since π i=1. $i^*\pi^*=1$.

By (3.2), we have $\tau' = \pi^*(\tau \oplus \xi)$

Hence we have $\tau'|FP_{n-1}=i^*\tau'=\tau\oplus\xi$

Now let FP_n-x be immersed in \mathbb{R}^m with normal bundle ν' and FP_{n-1} imbedded in \mathbb{R}^m with normal bundle ν .

Then we have

(5. 2) LEMMA. $\nu \equiv \nu' lFP_{n-1} \oplus \xi$

where the notation" \equiv "means stably equivalent.

PROOF. We have

$$\tau \oplus \nu = \varepsilon^{m} = (\tau' \oplus \nu') |FP_{n-1} = \nu'|FP_{n-1} \oplus \tau \oplus \xi$$

 $\nu \equiv \nu' | FP_{n-1} \oplus \xi$

Hence

Now we shall prove Theorem 2. Let $CP_{a} - x \subseteq \mathbb{R}^{4n-5}$ with normal bundle ν' and $CP^{n-1} \subset \mathbb{R}^{4n-4}$ with normal bundle ν . Then (5.2) implies

$$\nu \equiv (\nu' \oplus \varepsilon') | CP_{n-1} \oplus \xi = \nu' | CP_{n-1} \oplus \xi \oplus \varepsilon^{1}$$

Since

$$\nu = \nu' | CP_{n-1} \oplus \xi \oplus \varepsilon^1$$

 $X(\nu) = X(\nu' | CP_{n-1} \oplus \xi \oplus \varepsilon^1) = 0.$ (3.5) implies

Hence ξ is imbedded in ν as a sub-bundle. By (2.3) and (2.4) we have Theorem 2 The proof of Theorem 3 is completely similar.

As corollary of Theorem 3, we have

(5. 3) COROLLARY. If n is integer greater than 9 such that a (n)=4, then QP_n is not immersible in \mathbb{R}^{8n-9} .

PROOF. By a result of Atiyah-Hirzebruch, we have

 $QP_n \neq R^{8n-8}$ for n such that a(n)=4.

Theorem 3 implies that if $QP_n \subseteq \mathbb{R}^{8n-9}$, then $QP_n \subset \mathbb{R}^{8n-8}$. This completes the proof.

NIIGATA UNIVERSITY

References

- 1. M. F. ATIYAH, Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
- 2. A. BOREL & F. HIRZEBRUCH, Characteristic classes and homogenous spaces I, Amer. J. Math.
- 3. A. HAEFLIEGER, Plongements differentiables de varietes dans varietes, Comm. Math. Helv. 36 (1961), 47-82.
- 4. D. EPSTEIN & R. SCHWARZENBARGER, Imbeddings of real projective spaces, Ann. of Math. vol 76 (1962), 180-184.
- 5. M. W. HIRSCH, Immersions of manifolds, Trans. Amer. Math. Soc, 93 (1959) 242-276.
- 6. A. HAEFLIEGER & M. W. HIRSCH, On the existence and classifications of embeddings, Topology 2, 129-135.
- 7. I. M. JAMES, Some imbeddigs of projective spaces, Proc. Camb. Phil. Soc. 55 (1959), 294-298.
- J. LEVINE, On obstruction in sphere bundles and immersions of manifolds, Trans. Amer. Math. Soc. Dec. 1963, 420-429.
- B. J. SANDERSON, Immersions and imbeddings of projective spaces, Proc. London Math. Soc. (3) 1964, 137-153.
- 10. N. STEENROD, The Topology of Fibre Bundles, Princeton Univ. 1951.
- 11. G. PAECHTER, On the groups $\pi_r(V_m, k)$ 1, Quat. J. Math. 7 (1956), 249-258.