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1. Introduction

Let $(\tilde{M}, J, <, >)$ (or briefly $\tilde{M}$) be an almost Hermitian manifold with the almost
Hermitian structure $(J, <, >)$ and $M$ be a Riemannian submanifold of $\tilde{M}$. If $JT_{x}(M)$

$=T_{x}(M)$ at each point $x$ of $M,$ $T_{x}(M)$ being the tangent space over $M$ in $\tilde{M}$, then $M$ is
called a holomorphic submanifold of $\tilde{M}$. If $JT_{x}(M)\subset T_{x}^{\perp}(M)$ at each point $x$ of $M,$ $T_{x}^{\perp}(M)$

being the normal space over $M$ in $\tilde{M}$, then $M$ is called a totally real submanifold of $\tilde{M.}$

If $JT_{x}^{\perp}(M)\subset T_{x}(M)$ for all point $x$ of $M$, then $M$ is called an anti-holomorphic (also known

as a generic) submanifold of $\tilde{M.}$ If, in particular, $JT_{x}^{\perp}(M)=T_{x}(M)$ , then an anti-holo-
morphic submanifold $M$ is a totally real submanifold such that $\dim M=1/2\dim\tilde{M}$. In
this case, $M$ is called an anti-invariant submanifold of M. $M$ is called a CR-submanifold
of $\tilde{M}$ if there exists a $C^{\infty}$ -holomorphic distribution $\mathfrak{D}$ (i.e., $J\mathfrak{D}=\mathfrak{D}$) on $M$ such that its
orthogonal complement $\mathfrak{D}^{1}$ is totally real (i.e., $J\mathfrak{D}^{1}\subset T_{x}^{\perp}(M)$ ). Especially, if $\dim \mathfrak{D}_{x}^{\perp}$

$=0$ (resp. $\dim \mathfrak{D}_{x}=0$) for any $x\in M$, a CR-submanifold $M$ is a holomorphic (resp. totally
real) submanifold of liill. A proper CR-submanifold (resp. anti-holomorphic submanifold)

of an almost Hermitian manifold is a CR-submanifold (resp. anti-holomorphic submani-
fold) with non-trivial holomorphic distribution and totally real distribution. If $\dim \mathfrak{D}^{1}$

$\tilde{M}.ACR- submanifold(oranti- holomorphicsubmanifold)ofanalmostHermitianmani-=co\dim M(=\dim\tilde{M}-\dim M),aCR- submanifoldisananti- holomorphicsubmanifoldof$

fold is called a CR-product if it is locally the Riemannian product of a holomorphic sub-
manifold and a totally real submanifold. We remark that every hypersurface of an al-
most Hermitian manifold is an anti-holomorphic submanifold. In this paper, we study
the integrability conditions on anti-holomorphic submanifolds of nearly Kaehlerian mani-
folds (see [5]) and give some results with respect to CR-products of nearly Kaehlerian
manifolds (see [4]). In particular, we study anti-holomorphic submanifolds in a 6-dimen-
sional sphere $S^{6}$ and obtain that if a proper anti-holomorphic submanifold is mixed-totally
geodesic in $S^{6}$ and the leaf of the totally real distribution is totally geodesic in $S^{6}$ , then the
holomorphc distribution is not integrable (THEOREM 4.2).
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2. Preliminaries

Let $f$ be an isometric immersion of a Riemannian m-manifold $M^{m}$ into a Riemannian
n-manifold $\tilde{M^{n}}$ . For all local formulae we may consider as an imbedding and thus iden-
tify $x\in M$ with $f(x)\in\tilde{M}$. The tangent space $T_{x}(M)$ is identified with a subspace of the
tangent space $T_{x}\tilde{(M}$). The normal space $T_{x}^{\perp}(M)$ is the subspace of $T_{x}\tilde{(M}$) consisting of
all $X\in T_{x}(M)$ which are orthogonal to $T_{x}(M)$ with respect to the Riemannian metric $<$ ,
$>$ . Let $\nabla\sim$ (resp. $\nabla$) be the Riemannian connection on $\tilde{M}$ (resp. $M$) and $\sim R$ be the Rieman-
nian curvature for $\nabla\sim$. Moreover, we denote by $\sigma$ the second fundamental form of $M$ in
$\tilde{M}$. Then the Gauss formula and the Weingarten formula are given by

(2. 1) $\sigma(X,Y)=\nabla xY-\nabla xY\sim$, for $X,$ $Y\in T_{x}(M)$ ,

and

(2. 2) $\nabla x\xi=-A_{\xi}X+\nabla_{X}^{\perp}\xi\sim$ , for $\xi\in T_{X}^{\perp}(M)$ ,

respectively, $where-A\xi X$ (resp. $\nabla_{X}^{1}\xi$) denotes the tangential (resp. normal) component
$of\nabla_{X}\xi\sim$ . The tangential component $A_{\xi}X$ is related to the second fundamental form $\sigma$ as
follows:

$\langle\sigma(X, Y), \xi\rangle=\langle A_{\xi}X, Y\rangle$ , for $X,$ $Y\in T_{x}(M)$ .

The Codazzi equation is given by

(2.3) $\{R\sim(X, Y)Z\}^{1}=(\nabla^{\prime}x\sigma)(Y, Z)-(\nabla^{\prime}Y\sigma)(X, Z)$ ,

where $(\nabla^{\prime}x\sigma)(Y, Z)=\nabla^{1}x(\sigma(Y, Z))-\sigma(\nabla xY, Z)-\sigma(Y, \nabla xZ)$ ,
$\{R(X\sim, Y)Z\}\perp is$ the normal component of $\sim R(X, Y)Z$, for $X,$ $Y,$ $Z\in T_{x}(M)$ .

We now recall some fundamental notions of an almost Hermitian manifold. Let $\tilde{M}$

be a $2n$-dimensional manifold endowed with an almost Hermitian structure $(J, <, >)$ .
Let $NJ$ be the Nijenhuis’ tensor of $J$. Then by the definition, $NJ$ is given by

$N_{J}(U, V)=[JU, JV]-[U, V]-J[JU, V]-J[U, JV]$ ,

for vector fields $U,$ $V$ on $\tilde{M}$. It is well known that the almost complex structure $J$ is a
complex structure on $\tilde{M}$ if and only if $NJ$ vanishes on $\tilde{M}$. An almost Hermitian mani-
fold $\tilde{M}=(\tilde{M}, J, <, >)$ is called a nearly Kaehlerian manifold (also known as K-space or
almost Tachibana space) provided that its almost Hermitian structure $(J, <, >)$ satisfies
the condition $(\nabla xJ)X=0\sim$ for all tangent vectors $X$ on $\tilde{M}$. Easily we get

LEMMA 2.1. Let $(\tilde{M}, J, <, >)$ be a nearly Kaehlerian manifold, then the Nijenhuis’

tensor $NJ$ takes the following form:
$ NJ(U, V)=-4J(\nabla UJ)V\sim$, for vector fields $U,$ $V$ on $\tilde{M}$.

Let $\tau$ and $\tau^{\prime}$ be two J-invariant planes in $T_{x}(\tilde{M})$ . Then the holomorphic bisectional
curvature $\tilde{H}B(X, Y)$ is given by
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(2.4) HB (X, $Y$) $=\overline{R}(X, JX, Y, JY)$ ,

where $\langle R(X\sim, Y)Z, W\rangle=R\sim(X, Y, W, Z)$ , and $X$ and $Y$ are unit vectors in $\tau$ and $\tau^{\prime}$ respec-
tively.

3. Integrability conditions on an anti-holomorphic submaifold

Lat $\tilde{M}$ be a $2n$-dimensional nearly Kaehlerian manifold endowed with an almost Her-
mitian structure $(J, <, >)$ and $M$ be an m-dimensional Riemannian manifold immersed

in $\tilde{M}$. For any vector field $X$ tangent to $M$, we put

(3. 1) $JX=FX+\omega X$,

where $FX$ and $\omega X$ are the tangential and normal components of JX, respectively. If $M$ is
a holomorphic (resp. totally real) submanifold of $\tilde{M}$, then $\omega$ (resp. F) in (3. 1) vanishes
identically. Let $M$ be an anti-holomorphic submanifold of $\tilde{M}$. The tangent space $T_{x}(M)$

of $M$ is decomposed in the following way:

$T_{x}(M)=H_{x}(M)\oplus JT_{x}^{\perp}(M)$ at each point $x$ of $M$,

where $H_{x}(M)$ denotes the orthogonal complement of $JT_{x}^{\perp}(M)$ in $T_{x}(M)$ . Thus we see that

$JH_{x}(M)=H_{x}(M)=T_{x}(M)\cap JT_{X}(M)$ .

That is, $H_{x}(M)$ is a holomorphic subspace of $T_{x}(M)$ . From now on, we assume that
$N_{J(X},$ $Y$) $\in T_{X}(M)$ for $X,$ $Y\in T_{x}(M)$ .
From (2. 1), (2. 2) and LEMMA 2. 1 we get

(3.2) $J\sigma(X, Y)=(\nabla xF)Y+(\overline{\nabla}x\omega)Y-A\omega YX+\sigma(X, FT)-(1/4)F(NJ(X, Y))$

$-(1/4)\omega(N_{J}(X, Y))$ ,

where we have put $\overline{(\nabla}x\omega$) $Y=\nabla_{X}^{\perp}(\omega T)-\omega\nabla xY$.
Since $\sigma$ is symmetric and Nijenhuis’ tensor is skew-symmetric, from (3. 2)

we get

(3. 3) $(\nabla xF)Y-A_{\omega^{Y}}X+\sigma(X, FY)+(\overline{\nabla}x\omega)Y-(1/4)F(NJ(X, Y))$

$-(1/4)\omega(N_{J}(X, Y))$

$=(\nabla_{Y}F)X-A\omega xY+\sigma(Y, FX)+(\overline{\nabla}Y\omega)X+(1/4)F(NJ(X, Y))$

$+(1/4)\omega(N_{J}(X, Y))$

Comparing the tangential and normal parts of the boht sides of (3. 3), we have respec-
tively

(3. 4) $(\nabla xF)Y-(\nabla_{Y}F)X=A_{\omega}YX-A_{\omega}xY+(1/2)F(NJ(X, Y))$ ,

and
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(3.5) $(\overline{\nabla}x\omega)Y-(\overline{\nabla}Y\omega)X=\sigma(FX, Y)-\sigma(X, FY)+(1/2)\omega(N_{J}(X, Y))$ .
Applying $J$ to the both sides of (3. 1), we get

$-X=JFX+J\omega X=F^{2}X+\omega FX+J\omega X$.
$SinceJT_{x}^{\perp}(M)\subset T_{x}(M),$ $weseethatJ\omega X\in T_{x}(M)$ . Thus we have

(3.6) $\omega FX=0$ .
(3.7) $F^{2}X=-X-J\omega X$.

Similarly, from (3.2) we have

(3.8) $J\sigma(X, Y)=(\nabla xF)Y-A_{\omega}YX-(1/4)F(N_{J}(X, Y))$ ,

and

(3.9) $\sigma(X, FY)=-(\overline{\nabla}x\omega)Y+(1/4)\omega(NJ(X, Y))$ .
LEMMA 3. 1. Let $M$ be an anti-holomorphic submanifold of a nearly Kaehlerian mani-

fold M. If $M$ satisfies
(3. 10) $NJ(X, Y)\in JT_{x}^{\perp}(M)$, for $X\in T_{x}(M)$ and $Y\in JT_{x}^{\perp}(M)$,

then we have

(3. 11) $A_{\omega}YZ=A_{\omega}zY$, for $Z\in JT_{x}^{\perp}(M)$.
The proof is similar to [5], LEMMA 2. 1.
Applying $F$ to the both sides of (3. 7), we have

$F^{3}X=-FX$, for $X\in T_{x}(M)$.
Thus we have $F^{3}+F=0$ .

On the other hand, the rank of $F$ is equal to $\dim M$-codim $M=m-(2n-m)=2(m-n)$
everywhere on $M$ . Consequently, $F$ defines an f-structure of rank $2(m-n)$ ([5]). We
now put

$L=-F^{2}$ and $T=F^{2}+l$ .

We can easily see that $L$ and $T$ are complementary projective operators. Thus there
exist complementary distributions $\mathfrak{L}$ and $\mathfrak{T}$ corresponding to the projection operators $L$

and $T$ respectively. Since the rank of $P$ is 2 $(m-n),$ $\mathfrak{L}$ is 2 $(m-n)$-dimensional and $\mathfrak{T}$ is
$(2n-m)$-dimensional. The distributions $\mathfrak{L}$ and $\mathfrak{T}$ are defined also by

$\mathfrak{L}_{x}=\{X\in T_{x}(M);\omega X=0\}$ ,

and

$\mathfrak{T}_{x}=\{X\in T_{x}(M):FX=0\}$ .
Hence the distribution $\mathfrak{L}$ (resp. $\mathfrak{T}$) is holomorphic (resp. totally real).
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In [4], we showed the following

THEOREM A. Let $M$ be a CR-submanifold of a nearly Kaehlerian manifold $(\tilde{M},$ $J,$ $<$ ,
$>)$ . Then a necessary and sufficient condition for the holomorphic distribution $\mathfrak{D}$ to be
integrable is that the following conditions are satisfied:

$\sigma(X, JY)=\sigma(JX, Y)$

and

$NJ(X, Y)\in \mathfrak{D}$ , for all $X,$ $Y\in \mathfrak{D}$ .
THEOREM B. Let $M$ be a CR-submanifold of an early Kaehlerian manifold $(\tilde{M},J, <, >)$ .

Then a necessary and sufficient condition for the totally real distribution $\mathfrak{D}^{1}$ to be integrable
is that the following condition is satisfied:

$\langle NJ(X, Z), W\rangle=\langle NJ(X, Z), JW\rangle=0$ , for all $X\in \mathfrak{D},$ $Z,$ $W\in \mathfrak{D}^{1}$ .
Hence, as the integrability conditions of $\mathfrak{L}$ and $\mathfrak{T}$ , we obtain

THEOREM 3. 1. Let $M$ be an anti-holomorphic submanifold of a nearly Kaehlerian mani-
fold $ M.\sim$ If $M$ satisfies

(3. 12) $\sigma(X, FY)=\sigma(FY, Y)$

and

(3. 13) $NJ(X, Y)\in \mathfrak{L}$ , for all $X,$ $Y\in \mathfrak{L}$ ,

then the holomorphic distribution $\mathfrak{L}$ is integrable.

PROOF. From (3. 5), we get

$\omega[X, Y]=\omega\nabla xY-\omega\nabla_{Y}X=-(\nabla x\omega)Y+(\nabla Y\omega)X$

$=-\sigma(FX, Y)+\sigma(X, FY)-1/2\omega(N_{J}(X, Y))$ ,

for all $X,$ $Y\in \mathfrak{L}$ . Thus the assertion is showed by (3. 12) and (3. 13).

Q.E.D.

Therefore the maximal integral submanifold $M_{1}$ of $\mathfrak{L}$ through a point of $\tilde{M}$ is a 2 $(m-n)-$

dimensional neary Kaehlerian submanifold of $\tilde{M}$.
With respect to the totally real distributions $\mathfrak{T}$ , we have

THEOREM 3. 2. Let $M$ be an anti-holomorphic submanifold of a nearly Kaehlerian
manifold M. If $M$ satisfies

(3. 14) $N_{J}(X, Y)\in JT_{x}^{\perp}(M)$ , for all $X,$ $Y\in \mathfrak{T}$ ,

then the totally real distribution $\mathfrak{T}$ is integrable.

PROOF. From (3. 4) we get

$F[Y, Y]=F\nabla xY-F\nabla_{Y}X=-(\nabla xF)Y+(\nabla YF)X$
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$=A\omega xY-A\omega YX-(1/2)F(NJ(X, Y))$,

for all $X,$ $Y\in \mathfrak{T}$ . From LEMMA 3.1 and (3. 14), we have $F[X, Y]=0$ , for all $X,$ $Y\in \mathfrak{T}$ .
Q.E.D.

Hence the maximal integral submanifold $M_{2}$ of $\mathfrak{T}$ through a point of $\tilde{M}$ is a $(2n-m)-$

dimensional totally real submanifold of $\tilde{M}$.
REMARK Let $M$ be an anti-holomorphic submanifold of a nearly Kaehlerian manifold

$\tilde{M}$. If $JT_{x}^{\perp}(M)=T_{x}(M)$, EJIRI obtained the following identity ( $(2.10)$ in [3]):

$[(\nabla xJ)Y]^{T}=0\sim$ , for all $X,$ $Y\in T_{x}(M)$,

where $[$ $]^{T}$ is a tangential component of $(\nabla xJ)Y\sim$. Thus from LEMMA 2. 1 we have

$N_{J}(X, Y)=-4J(\nabla xJ)Y\sim\in JT_{x}^{\perp}J(M)$ , for all $X,$ $Y\in Tx(M)$ .

4. CR-products

Let $M$ be a CR-submanifold ofa nearly Kaehlerian manifold $\tilde{M}$. We denote by $\nu$ the
complementary orthogonal subbundle of $J\mathfrak{D}^{1}$ in $T^{1}M$ Hence we have

$T\perp M=J\mathfrak{D}^{1}\oplus\nu,$ $ J\mathfrak{D}\perp\nu$ .
In [4], we showed that if $M$ satisfies $(*)\sigma(X, Y)\in\nu,$ $(**)\sigma(X, Z)\in\nu$ and $(|*k)NJ(X, Y)$

$\in \mathfrak{D}\oplus\tau\perp M$, for all $X,$ $Y\in \mathfrak{D},$ $Z\in \mathfrak{D}^{1}$ , then $M$ is a CR-product in $M$. Hence we immediate-
ly see that if, in particular, $M$ is atotally geodesic CR-submanifold of a Kaehlerian manifold
$\tilde{M}$, then $M$ is a CR-product in $\tilde{M}$. Let $M$ be an anti-holomorphic submanifold of a nearly
Kaehlerian manifold $\tilde{M}$. Thus we remark the following

THEOREM 4. 1. Let $M$ be a totally geodesic anti-holomorphic submanifold of a Kaehlerian
manifold M. If $M$ satisfies

$(1*k)$ $N_{J}(X, Y)\in \mathfrak{L}\oplus T^{1}M$, for all $X,$ $Y\in \mathfrak{L}$ ,

then $M$ is a CR-product in $\tilde{M}$.
COROLLARY 4. 1. Let $M$ be a totally geodesic real hypersurface of a nearly Kaehlerian

manifold M. If $M$ satisfies the condition $(^{3I*k})$ , then $M$ is a CR-product in $\tilde{M}$.
It is well known that a -dimensional unit sphere $S^{6}$ admits an almost complex struc-

ture. We see that a unit sphere $S^{5}$ is a totally geodesic real hypersurface in $S^{6}$ but $S^{5}$ is
not a CR-product in $S^{6}$ . We thus remark that we can not omit the condition $(^{3I*k})$ .

We now consider an anti-holomorphic submanifold in a 6-dimensional sphere $S^{6}$. Let
$M_{2}$ be the maximal integral submanifold of $\mathfrak{T}$ through a point of $\tilde{M}$. Let $\sigma^{\prime\prime}$ (resp. $\sigma_{2}$) be
the second fundamental form of $M_{2}$ in $\tilde{M}$ (resp. $M$). Then we have

(4. 1) $\sigma^{\prime\prime}(Z, W)=\sigma_{2}(Z, W)+\sigma(Z, W)$ , for $Z,$ $W\in \mathfrak{T}$.
A CR-submanifold is said to be mixed-totally geodesic if $\sigma(X, Z)=0$ , for all $X\in \mathfrak{D},$ $Z$

$\in \mathfrak{D}\perp$ . A CR-submanifold $M$ of an almost Hermitian manifold $\tilde{M}$ is said to be mixed-
Joliate if it is mixed-totally geodesic and if its holomorphic distribution is integrable.
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From PROPOSITION 6. 2 in [4], we have
LEMMA 4. 1. Let $M$ be an anti-holomorphic submanifold of a nearly Kaehlerian mani-

fold $(\tilde{M}, J, <, >)$ . Then a necessary and sufficient condition for the totally real submanifold
$M_{2}$ to be totally geodesic in $M$ is that $M$ is mixed-totally geodesic in $\tilde{M}$.
From LEMMA 4. 1 and (4. 1) we get

LEMMA 4. 2 Let $M$ be an anti-holomorphic submanifold of a nearly Kaehlerian manifold
$(\tilde{M}, J, <, >)$ . If $M$ is mixed-totally geodesic in $\overline{M}$ and $M_{2}$ is totally geodesic in $\tilde{M}$, then we
have

$\sigma(Z, W)=0$ , for all $Z,$ $W\in \mathfrak{T}$ .

In this paper we shall show the following THEOREM.
THEOREM 4.2. Let $M$ be a proper anti-holomorphic submanifold in $S^{6}$ . If $M$ is mixed-

totally geodesic in $S^{6}$ and $M_{2}$ is totally geodesic in $S^{6}$ , then the holomorphic distribution is not
integrable.

COROLLARY 42. Under the assumption of THEOREM 4. 2, $S^{6}$ has no mixed-foliate proper
anti-holomorphic submanifolds,

COROLLARY 4. 3. Under the assumption of THEOREM 4. 2, $S^{6}$ has no proper CR-products.
PROOF of THEOREM 4.2. The Codazzi equation (2. 3) implies

(4. 2) $\{R(X, JX)Z\}\perp=\nabla_{X}^{\perp}\sim(\sigma(JX, Z))-\sigma(\nabla_{X}(JX), Z)-\sigma(JX, \nabla xZ)$

$-\nabla^{\perp}(\sigma(X, Z)JX)+\sigma(\nabla_{J}xX, Z)+\sigma(X, \nabla_{J}xZ)$ ,

for all $X\in \mathfrak{L},$ $Z\in \mathfrak{T}$ . From (4. 2) we get

(4. 3) $\langle R(X, JX)Z, JZ\rangle\sim=\langle\nabla_{X}^{\perp}(\sigma(JX, Z))-\nabla^{\perp}(\sigma(X, Z)fX),JZ\rangle$

$-\langle\sigma(\nabla x(JX), Z)-\sigma(\nabla_{J}xX, Z), JZ\rangle$

$-\langle\sigma(JX, \nabla xZ), JZ\rangle+\langle\sigma(X, \nabla_{J}xZ), JZ\rangle$ ,

for all $X\in \mathfrak{L},$ $Z\in \mathfrak{T}$ .
By the assumption of THEOREM, LEMMA 4. 2 and (4. 3) we have

(4. 4) $\langle R(X, JX)Z, JZ\rangle=-\langle\sigma\sim(JX, \nabla xZ), JZ\rangle+\langle\sigma(X, \nabla_{JX}Z), JZ\rangle$

$=-\langle A_{J}z(JX), \nabla xZ\rangle+\langle A_{J}zX, \nabla_{J}xZ\rangle$ .
By LEMMA 2. 1 we get

(4. 5) $-\langle Afz(JX), \nabla xZ\rangle=-\langle A_{J}z(JX), \nabla xZ\rangle\sim$

$=-\langle JA_{J}z(JX),J\nabla xZ\rangle\sim$

$=-\langle JA_{J}z(JX),$ $-A_{J}zX+\nabla_{X}^{\perp}(JZ)$

$-(1/4)JN_{J}(X, Z)\rangle$ ,

for all $X\in \mathfrak{L},$ $Z\in \mathfrak{T}$ . From the assumption we get
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\langle A $JzX,$ $ W\rangle$ $=\langle\sigma(X, W), JZ\rangle=0$ , for all $X\in \mathfrak{L},$ $Z,$ $W\in \mathfrak{T}$.
Thus we get

(4. 6) $A_{fZ}X\in \mathfrak{L}$ for all $X\in \mathfrak{L},$ $Z\in \mathfrak{T}$ .

From (4. 5) and (4. 6) we have

(4.7) $-\langle AJz(JX), \nabla xZ\rangle=-\langle JAJz(JX), -AJzX-(1/4)JNJ(X, Z)\rangle$

$=(1/4)\langle AJz(JX), NJ(X, Z)\rangle-\langle AJz(JX), JAJzX)\rangle$ .
Similarly we get

(4.8) $\langle AfzX, \nabla_{J}xZ\rangle=-(1/4)\langle AX, NJf\rangle$ .
From (4. 4), (4.7) and (4. 8) we get

(4.9) $\langle R(X, JX)Z, JZ\rangle\sim$

$=-2\langle AJz(JX), JAJzX\rangle+(1/4)\langle AfZ(JX), NJ(X, Z)\rangle$

$-(1/4)\langle AfzX, N_{J}(JX,Z)\rangle$ , for all $X\in \mathfrak{L},$ $Z\in \mathfrak{T}$.
A Nijenhuis’ tensor of $\tilde{M}$ satisfies the following identity:

(4. 10) $\langle NJ(U, V), W\rangle=\langle NJ(V, W), U\rangle$ , for all $U,$ $V,$ $W\in T_{x}(\tilde{M})$.
From (4. 6), (4. 9) and (4. 10) we have

(4. 11) $\tilde{H}B(X, Z)=2\langle AJz(JX), JAJzX\rangle+(1/4)\langle N_{J}(X, A_{J}z(JX)), Z\rangle$

$-(1/4)\langle NJ(JX, AJzX), Z\rangle$ .
For an orthonormal basis $\{Ei\}$ ($i=1,$ $\ldots$ , m) at $T_{x}(M)$, we get

(4. 12) 2 $\langle A_{J}z(JX), JA_{J}zX\rangle=2\sum_{i=1}^{m}\langle A_{J}z(JX), Ei\rangle\langle JA_{J}zX, E_{i}\rangle$

$=-2\sum_{i=1}^{m}\langle\sigma(JX, Ei), JZ\rangle\langle\sigma(X, JEi), JZ\rangle$ .

If the holomorphic distribution is integrable, then THEOREM 3. 2, (4. 6), (4. 11) and
(4. 12) we have

$\tilde{H}_{B}(X, Z)=-2\sum_{i=1}^{m}\langle\sigma(JX, Ei), JZ\rangle^{2}\leqq 0$ .

This is a contradiction since $S^{6}$ has positive holomorphic bisectional curvature.
Q.E.D.

Finally we give some remarks with respect to an anti-holomorphic submanifold of a
complex projective space $CP^{n}$ .

LEMMA ([1]). Let $M$ be an anti-holomorphic submanifold of a Kaehlerian manifold
M. Then a necessary and sufficient condition for totally real submanifold $M_{2}$ to be totally
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geodesic in $\tilde{M}$ is $M$ is mixed-totally geodesic in $\tilde{M}$.
Thus from LEMMA we get as THEOREM 4. 2

THEOREM ([2]). Let $M$ be a $p\gamma 0per$ anti-holomorphic submanifold in $CP^{n}$ . $JfM_{2}$ is
totally geodesic in $CP^{n}$ , then the holomorphic distribution is not integrable.
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