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1. Introduction

Recently the mixed problems for hyperbolic equations in domains with corners have
been investigated (see, for example, [61, [7], [101, [121, [13], [141). We also consider
the mixed problems for the wave equation:

(1) $\coprod u=\frac{\partial^{2}u}{\partial t^{2}}-\frac{\partial^{2}u}{\partial x^{2}}-\frac{\partial^{2}u}{\partial y^{2}}=f(t, x, y)$ in $(0, T)\times\Omega$ ,

(2) $\left\{\begin{array}{ll}(a) oe_{1}u=\frac{\partial u}{\partial x}-b\frac{\partial u}{\partial y}-c\frac{\partial u}{\partial t}=0 & on (0, T)\times B_{1},\\(b) G_{2}u=0 & on (0, T)\times B_{2}\end{array}\right.$

where $a_{2}u=u$ or $\frac{\partial u}{\partial y}$ , $\Omega=\{(x, y)\in R^{2};x>0, y>0\},$ $B_{1}=\{(x, y)\in R^{2};x=0, y>0\},$ $B_{2}=\{(x, y)$

$\in R^{2};x>0,$ $y=0$ } and $b,$ $c$ are real constants. Furthermore we assume the following con-
dition:

(3) $|b|\leqq c$.
Here we remark that the condition (3) is the necessary and sufficient condition to be

$L^{2}$-well-posed for the mixed problem: Equation (1) in a domain $0<t<T,$ $0<x<\infty,$ $-\infty$

$<y<\infty$ with boundary condition $(2(a))$ (see $[2-I]$ ).

Ibuki [6] proved the existence and the regularity of the solution for the mixed
problem with boundary conditions Gi $u=\frac{\partial u}{\partial x},$ $G_{2}u=u$ , which is only the available case
when we restrict his methods of considerations to our problems (1) and (2). Taniguchi [14]

showed the energy estimate for (1) with boundary conditions $oe_{1}u=\frac{\partial u}{\partial x}+b\frac{\partial u}{\partial y}-\frac{\partial u}{\partial t}$

$=g_{1}(t, y),$ $G_{2}u=\frac{\partial u}{\partial y}+\overline{b}\frac{\partial u}{\partial x}-\overline{b}\frac{\partial u}{\partial t}=g_{2}(t, x)$, where $b$ is a complex constant with $|b|=1$ ,

$Reb>0$. Kojima and Taniguchi [7] dealed with the existence and the energy estimate
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of the solution for (1) with boundary conditions $oe_{1}u=\frac{\partial u}{\partial x}+b-\partial\frac{u}{y}-c\frac{\partial u}{\partial t}=g_{1}(t, y)\partial oe_{2}u$

$=\frac{\partial u}{\partial y}+\frac{1}{b}\frac{\partial u}{\partial x}-\frac{c}{b}\frac{\partial u}{\partial t}=g_{2}(t, x)$ , where $b$ and $c$ are complex constants such that $(c+1)z^{2}$

$+2bz+(c-1)=0$ has two different roots in the domain $D$ or has the double roots in its
interior, where $D=\{z\in C^{1}; |z|\leqq 1, Rez\leqq 0, z\neq\pm i\}$ . Concerning with the existence of
the solution, it is assumed that $b$ and $c$ are real constants. They also dealed with the
energy estimate for the mixed problems for hyperbolic symmetric systems in a domain
$x,$ $y,$ $t>0,$ $-\infty<z<\infty$ with constant coefficients. Osher [101 considered the energy esti-
mate for the mixed problems for hyperbolic symmetric systems in a domain $x,$ $y,$ $t>0$,
$-\infty<Zj<\infty,$ $i=3,$

$\ldots$ , $n$ with constant coefficients by constructing a symmetrizer under
Kreiss’ condition for two half space problems whose domains are $x,$ $t>0,$ $-\infty<y,$ $ Zj<\infty$

and $y,$ $t>0,$ $-\infty<x,$ $ z;<\infty$ , respectively. Sarason and Smoller [131 proved the necessary
condition for certain a priori estimate for the mixed problems for strictly hyperbolic
systems from the point of view of geometrical optics. And Sarason [12] discussed the
mixed problems for hyperbolic symmetrizable systems in a corner domain.

In this paper we give the sufficient condition to obtain the energy inequalities for
the mixed problem (1) and (2), that is, for the solution $u(t, x, y)$ of the mixed problem (1)

and (2) which belongs to $H^{2}((0, T)\times\Omega)$ , there exists a positive constant $K$ such that the
following energy inequality holds: for any $t(0<t<T)$

(4) $|||u(t, )|\Vert_{1}^{2}\leqq K\{\int_{0}^{t}||(\coprod u)(s, )\Vert^{2}ds+|\Vert u(0, )|\Vert_{1}^{2}\}$ ,

where $\Vert u(\cdot)\Vert^{2}=\Vert u(\cdot)\Vert_{L^{2}(\Omega)}^{2},$ $|||u(t, )\Vert|_{1}^{2}=\Vert u(t, )\Vert^{2}+\Vert\frac{\partial u}{\partial t}(t, \cdot)\Vert^{2}+\Vert\frac{\partial u}{\partial x}(t, )\Vert^{2}$

$+\Vert\frac{\partial u}{\partial y}(t, \cdot)\Vert^{2}$ and $K$ is independent of $u$ .

We set

$Q_{1}=\{(b, c)\in R^{2};|b|\leqq c, b\geqq-1\}-(-1,1)$

and
$Q_{2}=\{(b, c)\in R^{2};|b|\leqq c, |b|\leqq 1\}-\{(-1,1)\cup(1,1)\}$ .

Then we have the following

THEOREM.
(i) Let $(b, c)\in Q_{1}$ . Then the solution $u(t, x, y)(\in H^{2}((0, T)\times\Omega))$ of the mixed problem

(1) and (2) with $\oplus_{2}u=u$ has the energy inequality (4).

(ii) Let $(b, c)\in Q_{2}$ . Then the solutionu(t, $x,$ $y$) $(\in H^{2}((0, T)\times\Omega))ofthemixedproblem$

(1) and (2) with $oe_{2}u=\frac{\partial u}{\partial y}$ has also the energy inequality (4).

To show Theorem we apply the methods of the consideration used by Agemi [1].

It is easily seen by the proof of (4) that we have the same results even if we add
(lower order $terms$)$u$ in the left hand sides in (1) and $(2(a))$ , here all coefficients in (lower
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order terms) are sufficiently smooth and constant except a compact set.

2. Proof of Theorem

By $(u(t, ),$ $v(t, )),$ $<u(t, 0, y),$ $v(t, 0, y)>B_{1}$ and $<u(t, x, 0),$ $v(t, x, 0)>B_{2}$ we denote

$\int_{0}^{\infty}\int_{0}^{\infty}u(t, x, y)\overline{v(t,x,y})dxdy,$ $\int_{0}^{\infty}u(t, 0, y)\overline{v(t,0,y})dy$ and $\int_{0}^{\infty}u(t, x, 0)\overline{v(t,x,O})dx$, respectively.

We set

$G_{1}(t)=(A_{0}\frac{\partial u}{\partial t}(t, ),$ $\frac{\partial u}{\partial t}(t, ))+2Re(\frac{\partial u}{\partial t}(t, ),$ $A_{1}\frac{\partial u}{\partial x}(t, )$

$+A_{2}\frac{\partial u}{\partial y}(t, ))+(A_{0}\frac{\partial u}{\partial x}(t, ),$ $\frac{\partial u}{\partial x}(t, ))+(A_{0}\frac{\partial u}{\partial y}(t, ),$ $\frac{\partial u}{\partial y}(t, ))$ ,

$G_{2}(t)=Re\{2\langle\frac{\partial u}{\partial x}(t, 0, y),$ $A_{0}\frac{\partial u}{\partial t}(t, 0, y)\rangle_{B_{1}}+\langle\frac{\partial u}{\partial t}(t, 0, y)$ ,

$A_{1}\frac{\partial u}{\partial t}(t, 0, y)\rangle_{B_{1}}+\langle\frac{\partial u}{\partial x}(t, 0, y),$ $A_{1}\frac{\partial u}{\partial x}(t, 0, y)\rangle_{B_{1}}$

$-\langle\frac{\partial u}{\partial y}(t, 0, y),$ $A_{1}\frac{\partial u}{\partial x}(t, 0, y)\rangle_{B_{1}}+2\langle\frac{\partial u}{\partial y}(t, 0, y),$ $A_{2}\frac{\partial u}{\partial x}(t, 0, y)\rangle_{B_{1}}\}$

and $G_{3}(t)=Re\{2\langle\frac{\partial u}{\partial y}(t, x, 0),$ $A_{0}\frac{\partial u}{\partial t}(t, x, 0)\rangle_{B_{2}}+\langle\frac{\partial u}{\partial t}(t, x, 0)$ ,

$A_{2}\frac{\partial u}{\partial t}(t, x, 0)\rangle_{B_{2}}+\langle\frac{\partial u}{\partial y}(t, x, 0),$ $A_{2}\frac{\partial u}{\partial y}(t, x, 0)\rangle_{B_{2}}$

$-\langle\frac{\partial u}{\partial x}(t, x, 0),$ $A_{2}\frac{\partial u}{\partial x}(t, x, 0)\rangle_{B_{2}}+2\langle\frac{\partial u}{\partial x}(t, x, 0),$ $A_{1}\frac{\partial u}{\partial y}(t, x, 0)\rangle_{B_{2}}\}$ ,

here $Aj(j=0,1,2)$ are real constants.

LEMMA 1. Let $u(t, x, y)\in H^{2}((0, T)\times\Omega)$ . Then we have the following equality.

2 $Re\int_{0}^{t}((\coprod u)(s, ),$ $A_{0}\frac{\partial u}{\partial t}(s, )+A_{1}\frac{\partial u}{\partial x}(s, )+A_{2}\frac{\partial u}{\partial y}(s, ))ds$

$=G_{1}(s)|_{0}^{t}+\int_{0}^{t}G_{2}(s)ds+\int_{0}^{t}G_{3}(s)ds$

for any $t(0<t<T)$ .
PROOF. Using the integration by parts we obtain that for any $t(0<t<T)$

2 $Re\int_{0}^{t}((\coprod u)(s, ),$ $\frac{\partial u}{\partial t}(s, ))ds$

$=[||\frac{\partial u}{\partial t}(s, )||^{2}+||\frac{\partial u}{\partial x}(s, )||^{2}+||\frac{\partial u}{\partial y}(s, )||^{2}]|_{0}^{t}$

$+\int_{0}^{t}Re\{2\langle\frac{\partial u}{\partial x}(s, 0, y),$ $\frac{\partial u}{\partial t}(s, 0, y)\rangle_{B_{1}}+2\langle\frac{\partial u}{\partial y}(s, x, 0)$,
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$\frac{\partial u}{\partial t}(s, x, 0)\rangle_{B_{2}}\}ds$,

2 $Re\int_{0}^{t}((\coprod u)(s, ),$ $\frac{\partial u}{\partial x}(s, ))ds=2Re(-\partial\overline{t}(s\partial u ),-\partial\frac{u}{x}(s\partial ))|_{0}^{!}$

$+\int_{0}^{t}\{\langle\frac{\partial u}{\partial t}(s, 0, y),$ $\frac{\partial u}{\partial t}(s, 0, y)\rangle_{B_{1}}+\langle\frac{\partial u}{\partial x}(s, 0, y),$ $\frac{\partial u}{\partial x}(s, 0, y)\rangle_{B_{1}}$

$-\langle\frac{\partial u}{\partial y}(s, 0, y),$ $\frac{\partial u}{\partial y}(s, 0, y)\rangle_{B_{1}}+2Re\langle\frac{\partial u}{\partial x}(s, x, 0),$ $\frac{\partial u}{\partial y}(s, x, 0)\rangle_{B_{2}}\}ds$

and 2 $Re\int_{0}^{t}((\coprod u)(s, ),$ $\frac{\partial u}{\partial y}(s, \cdot))ds=2Re(\frac{\partial u}{\partial t}(s, ),$ $\frac{\partial u}{\partial y}(s. .))|_{0}^{t}$

$+\int_{0}^{t}\{2Re\langle\frac{\partial u}{\partial y}(s, 0, y),$ $\frac{\partial u}{\partial x}(s, 0, y)\rangle_{B_{1}}$

$+\langle\frac{\partial u}{\partial t}(s, x, 0),$ $\frac{\partial u}{\partial t}(s, x, 0)\rangle_{B_{2}}+\langle\frac{\partial u}{\partial y}(s, x, 0),$ $\frac{\partial u}{\partial y}(s, x, 0)\rangle_{B_{2}}$

$-\langle\frac{\partial u}{\partial x}(s, x, 0),$ $\frac{\partial u}{\partial x}(s, x, 0)\rangle_{B_{2}}\}ds$ .

From these equalities we get this lemma.
LEMMA2. Using $oe_{1}u=0onB_{1}$ and $oe_{2}u=0onB_{2}inG_{2}(t)andG_{3}(t)$ , we suppose that, for

some $Aj(\dot{g}=0,1,2)$ in Lemma 1, the quadmtic form corresponding to $G_{1}$ is positive definite
and those corresponding to $G_{2}$ and $G_{3}$ are both positive semi-definite. Then $lhe$ energy in-
equality (4) holds for $u(t, x, y)\in H^{2}((0, T)\times\Omega)$ with $oe_{1}u=0$ on $B_{1}$ and $oe_{2}u=0$ on $B_{2}$ .

PROOF. From Lemma 1, for any $t(0<t<T)$ we have

(5) $K_{1}(||\frac{\partial u}{\partial t}(t, )\Vert^{2}+||\frac{\partial u}{\partial x}(t, )||^{2}+||\frac{\partial u}{\partial y}(t, )||^{2})$

$-K_{2}(\Vert\frac{\partial u}{\partial t}(0, )\Vert^{2}+||\frac{\partial u}{\partial x}(0, )||^{2}+||\frac{\partial u}{\partial y}(0, )\Vert^{2})$

$\leqq|\int_{0}^{t}((\coprod u)(s, ),$ $A_{0}\frac{\partial u}{\partial t}(s, )+A_{1}\frac{\partial u}{\partial x}(s, )+A_{2}\frac{\partial u}{\partial y}(s, ))ds|$ ,

where $Aj(j=0,1,2)$ are chosen such that the hypotheses of this lemma are satisfied and
the constants $K_{1}$ and $K_{2}$ are independent of $u$ . From (5) and the inequality

$(\Vert u(s, )||^{2})|_{0}^{t}\leqq\int_{0}^{t}||u(s, )||^{2}ds+\int_{0}^{t}||\frac{\partial u}{\partial t}(s, )||^{2}ds$,

we get that for any $t$

$\Vert|u(t, )|\Vert_{1}^{2}\leqq K_{3}(\int_{0}^{t}\Vert|u(s, )\Vert|_{1}^{2}dt+\int_{0}^{t}||(\coprod u)(s, )\Vert^{2}ds+\Vert|u(0, )\Vert|_{1}^{2})$ .
From this it follows

$\Vert|u(t, )\Vert|_{1}^{2}\leqq K_{3}e^{K_{3}t}(\int_{0}^{t}\Vert(\coprod u)(s, )||^{2}ds+|||u(0, )\Vert|_{1}^{2})$ . $q$. $e$ . $d$.
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Now we consider the case when the boundary condition on $B_{2}$ is Dirichlet one, that is,
$oe_{2}u=u=0$ on $B_{2}$ .

LEMMA 3(a). The necessary and sufficient condition that the hypotheses in Lemma 2 are
fulfilled is that all of the following relations hold:

$A_{0}>0$,

$A_{1}^{2}+A_{2}^{2}<A_{0}^{2}$ ,

$2cA_{0}+(c^{2}+1)A_{1}\geqq 0$ .
$(b^{2}-c^{2}-1)A_{1}^{2}-b^{2}A_{0}^{2}+2bA_{0}A_{2}-c^{2}A_{2}^{2}-2cA_{0}A_{1}+2bA_{1}A_{2}\geqq 0$

and $A_{2}\geqq 0$ .

PROOF. Let $\frac{\partial u}{\partial x}(t, 0, y)=b\frac{\partial u}{\partial y}(t, 0, y)+c\frac{\partial u}{\partial t}(t, 0, y)andu(t, x, O)=0inLemmal$ .

Then

$Q(t)=Re\{\langle(2cA_{0}+(c^{2}+1)A_{1})\frac{\partial u}{\partial t}(t, 0, y),$ $\frac{\partial u}{\partial t}(t, 0, y)\rangle_{B_{1}}$

$+2\langle\frac{\partial u}{\partial t}(t, 0, y),$ $(bA_{0}+bcA_{1}+cA_{2})\frac{\partial u}{\partial y}(t, 0, y)\rangle_{B_{1}}$

$+\langle((b^{2}-1)A_{1}+2bA_{2})\frac{\partial u}{\partial y}(t, 0, y),$ $\frac{\partial u}{\partial y}(t, 0, y)\rangle_{B_{1}}\}$ ,

$G_{3}(t)=\langle A_{2}\frac{\partial u}{\partial y}(t, x, 0),$ $\frac{\partial u}{\partial y}(t, x, 0)\rangle_{B_{2}}$

From these expressions and the expression of $G_{1}(t)$ , it is easily shown this lemma.
Next we consider the case when the boundary condition on $B_{2}$ is Neumann one, that

is, $oe_{2}u=\frac{\partial u}{\partial y}=0$ on $B_{2}$ .
LEMMA 3(b). The necessary and sufficient condition that the hypotheses in Lemma 2 are

fulfilled is that all of the following relations hold:

$|A_{1}|<A_{0}$ ,

$2cA_{0}+(c^{2}+1)A_{1}\geqq 0$ ,

$(b^{2}-c^{2}-1)A_{1}^{2}-b^{2}A_{0}^{2}-2cA_{0}A_{1}\geqq 0$

and $A_{2}=0$ .

PROOF. $Let-\partial\frac{u}{X}(l, 0, y)\partial=b_{\partial\partial}^{\partial\underline{\partial}}-\frac{u}{y}(t, 0, y)+c\frac{u}{t}(t, 0, y)$ and $\frac{\partial u}{\partial y}(t, x, 0)=0$ in Lemma 1.

Then $oe(t)$ is the same that in Lemma 3(a). $G_{3}(t)=\langle A_{2}\frac{\partial u}{\partial t}(t, x, 0),$ $\frac{\partial u}{\partial t}(t, x, 0)\rangle_{B_{l}}$
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$-\langle A_{2}\frac{\partial u}{\partial x}(t, x, 0),$ $\frac{\partial u}{\partial x}(t, x, 0)\rangle_{B_{2}}$ From these expressions and the expression of $G_{1}(t)$ ,

we can prove this lemma.

Let us prove Theorem by using Lemmas 1-3. At first we consider the case (i). We
set

$Q_{11}=\{(b, c)\in Q_{1}, b>0\}$ ,

$Q_{12}=\{(b, c)\in Q_{1}, b\leqq 0\}$ .
Then we see that $Q_{1}=Q_{11}\cup Q_{12}$ .

Let $(b, c)\in Q_{11}$ . We set $A_{0}=(c^{2}+1),$ $A_{1}=-c,$ $A_{2}=bc$. Then all of the relations in
Lemma 3(a) are satisfied. From Lemma 2 we have proved Theorem in this case.

Let $(b, c)\in Q_{12}$. Then we may set $A_{0}=1+c^{2}-b^{2},$ $A_{1}=-c,$ $A_{2}=0$.
Next we consider the case (ii). Let $(b, c)\in Q_{2}$ . We set $A_{0}=1+c^{2}-b^{2},$ $A_{1}=-c,$ $A_{2}=0$ .

Then we can prove Theorem in this case by the same method as above.
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