On energy inequalities for the mixed problems for the wave equation in a domain with a corner

By
Kazuo Asano*

(Received October 31, 1979)

1. Introduction

Recently the mixed problems for hyperbolic equations in domains with corners have been investigated (see, for example, [6], [7], [10], [12], [13], [14]). We also consider the mixed problems for the wave equation:

$$
\begin{equation*}
\square u=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(t, x, y) \quad \text { in } \quad(0, T) \times \Omega \text {, } \tag{1}
\end{equation*}
$$

(2) $\left\{\begin{array}{llll}\text { (a) } & \mathbb{B}_{1} u=\frac{\partial u}{\partial x}-b \frac{\partial u}{\partial y}-c \frac{\partial u}{\partial t}=0 & \text { on } & (0, T) \times B_{1}, \\ \text { (b) } \quad \mathbb{B}_{2} u=0 & \text { on } & (0, T) \times B_{2}\end{array}\right.$
where $\mathbb{B}_{2} u=u$ or $\frac{\partial u}{\partial y}, \Omega=\left\{(x, y) \in \boldsymbol{R}^{2} ; x>0, y>0\right\}, B_{1}=\left\{(x, y) \in \boldsymbol{R}^{2} ; x=0, y>0\right\}, B_{2}=\{(x, y)$ $\left.\in \boldsymbol{R}^{2} ; x>0, y=0\right\}$ and b, c are real constants. Furthermore we assume the following condition:
(3)

$$
|b| \leqq c
$$

Here we remark that the condition (3) is the necessary and sufficient condition to be L^{2}-well-posed for the mixed problem: Equation (1) in a domain $0<t<T, 0<x<\infty,-\infty$ $<y<\infty$ with boundary condition (2(a)) (see [2-I]).

Ibuki [6] proved the existence and the regularity of the solution for the mixed problem with boundary conditions $\mathbb{Q}_{1} u=\frac{\partial u}{\partial x}, \mathbb{B}_{2} u=u$, which is only the available case when we restrict his methods of considerations to our problems (1) and (2). Taniguchi [14] showed the energy estimate for (1) with boundary conditions $\mathbb{B}_{1} u=\frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}-\frac{\partial u}{\partial t}$ $=g_{1}(t, y), \bigotimes_{2} u=\frac{\partial u}{\partial y}+\bar{b} \frac{\partial u}{\partial x}-\bar{b} \frac{\partial u}{\partial t}=g_{2}(t, x)$, where b is a complex constant with $|b|=1$, Re $b>0$. Kojima and Taniguchi [7] dealed with the existence and the energy estimate

[^0]of the solution for (1) with boundary conditions $\mathbb{B}_{1} u=\frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}-c \frac{\partial u}{\partial t}=g_{1}(t, y), \mathbb{B}_{2} u$ $=\frac{\partial u}{\partial y}+\frac{1}{b} \frac{\partial u}{\partial x}-\frac{c}{b} \frac{\partial u}{\partial t}=g_{2}(t, x)$, where b and c are complex constants such that $(c+1) z^{2}$ $+2 b z+(c-1)=0$ has two different roots in the domain D or has the double roots in its interior, where $D=\left\{z \in C^{1} ;|z| \leqq 1\right.$, Re $\left.z \leqq 0, z \neq \pm i\right\}$. Concerning with the existence of the solution, it is assumed that b and c are real constants. They also dealed with the energy estimate for the mixed problems for hyperbolic symmetric systems in a domain $x, y, t>0,-\infty<z<\infty$ with constant coefficients. Osher [10] considered the energy estimate for the mixed problems for hyperbolic symmetric systems in a domain $x, y, t>0$, $-\infty<z_{j}<\infty, j=3, \ldots, n$ with constant coefficients by constructing a symmetrizer under Kreiss' condition for two half space problems whose domains are $x, t>0,-\infty<y, z_{j}<\infty$ and $y, t>0,-\infty<x, z_{j}<\infty$, respectively. Sarason and Smoller [13] proved the necessary condition for certain a priori estimate for the mixed problems for strictly hyperbolic systems from the point of view of geometrical optics. And Sarason [12] discussed the mixed problems for hyperbolic symmetrizable systems in a corner domain.

In this paper we give the sufficient condition to obtain the energy inequalities for the mixed problem (1) and (2), that is, for the solution $u(t, x, y)$ of the mixed problem (1) and (2) which belongs to $H^{2}((0, T) \times \Omega)$, there exists a positive constant K such that the following energy inequality holds: for any $t(0<t<T)$

$$
\begin{equation*}
\|u(t, \cdot)\|_{1}^{2} \leqq K\left\{\int_{0}^{t}\|(\square u)(s, \cdot)\|^{2} d s+\|u(0, \cdot)\|_{1}^{2}\right\} \tag{4}
\end{equation*}
$$

where $\|u(\cdot)\|^{2}=\|u(\cdot)\|_{L^{2}(\Omega)}^{2},\|u(t, \cdot)\|\left\|_{1}^{2}=\right\| u(t, \cdot)\left\|^{2}+\right\| \frac{\partial u}{\partial t}(t, \cdot)\left\|^{2}+\right\| \frac{\partial u}{\partial x}(t, \cdot) \|^{2}$ $+\left\|\frac{\partial u}{\partial y}(t, \cdot)\right\|^{2}$ and K is independent of u.

We set

$$
Q_{1}=\left\{(b, c) \in \boldsymbol{R}^{2} ;|b| \leqq c, b \geqq-1\right\}-(-1,1)
$$

and

$$
Q_{2}=\left\{(b, c) \in \boldsymbol{R}^{2} ;|b| \leqq c,|b| \leqq 1\right\}-\{(-1,1) \cup(1,1)\} .
$$

Then we have the following
Theorem.
(i) Let $(b, c) \in Q_{1}$. Then the solution $u(t, x, y)\left(\in H^{2}((0, T) \times \Omega)\right)$ of the mixed problem (1) and (2) with $\mathfrak{@}_{2} u=u$ has the energy inequality (4).
(ii) Let $(b, c) \in Q_{2}$. Then the solution $u(t, x, y)\left(\in H^{2}((0, T) \times \Omega)\right)$ of the mixed problem (1) and (2) with $\circledR_{2} u=\frac{\partial u}{\partial y}$ has also the energy inequality (4).

To show Theorem we apply the methods of the consideration used by Agemi [1].
It is easily seen by the proof of (4) that we have the same results even if we add (lower order terms) u in the left hand sides in (1) and (2(a)), here all coefficients in (lower
order terms) are sufficiently smooth and constant except a compact set.

2. Proof of Theorem

$\mathrm{By}(u(t, \cdot), v(t, \cdot)),<u(t, 0, y), v(t, 0, y)>_{B_{1}}$ and $<u(t, x, 0), v(t, x, 0)>_{B_{2}}$ we denote $\int_{0}^{\infty} \int_{0}^{\infty} u(t, x, y) \overline{v(t, x, y)} d x d y, \int_{0}^{\infty} u(t, 0, y) \overline{v(t, 0, y)} d y$ and $\left.\int_{0}^{\infty} u(t, x, 0) \overline{v(t, x, 0}\right) d x$, respectively. We set

$$
\begin{aligned}
& G_{1}(t)=\left(A_{0} \frac{\partial u}{\partial t}(t, \cdot), \frac{\partial u}{\partial t}(t, \cdot)\right)+2 \operatorname{Re}\left(\frac{\partial u}{\partial t}(t, \cdot), A_{1} \frac{\partial u}{\partial x}(t, \cdot)\right. \\
& \left.\quad+A_{2} \frac{\partial u}{\partial y}(t, \cdot)\right)+\left(A_{0} \frac{\partial u}{\partial x}(t, \cdot), \frac{\partial u}{\partial x}(t, \cdot)\right)+\left(A_{0} \frac{\partial u}{\partial y}(t, \cdot), \frac{\partial u}{\partial y}(t, \cdot)\right), \\
& G_{2}(t)=\operatorname{Re}\left\{2\left\langle\frac{\partial u}{\partial x}(t, 0, y), A_{0} \frac{\partial u}{\partial t}(t, 0, y)\right\rangle_{B_{1}}+\left\langle\frac{\partial u}{\partial t}(t, 0, y),\right.\right. \\
& \left.\quad A_{1} \frac{\partial u}{\partial t}(t, 0, y)\right\rangle_{B_{1}}+\left\langle\frac{\partial u}{\partial x}(t, 0, y), A_{1} \frac{\partial u}{\partial x}(t, 0, y)\right\rangle_{B_{1}} \\
& \left.-\left\langle\frac{\partial u}{\partial y}(t, 0, y), A_{1} \frac{\partial u}{\partial x}(t, 0, y)\right\rangle_{B_{1}}+2\left\langle\frac{\partial u}{\partial y}(t, 0, y), A_{2} \frac{\partial u}{\partial x}(t, 0, y)\right\rangle_{B_{1}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& G_{3}(t)=R e\left\{2\left\langle\frac{\partial u}{\partial y}(t, x, 0), A_{0} \frac{\partial u}{\partial t}(t, x, 0)\right\rangle_{B_{2}}+\left\langle\frac{\partial u}{\partial t}(t, x, 0),\right.\right. \\
& \left.A_{2} \frac{\partial u}{\partial t}(t, x, 0)\right\rangle_{B_{2}}+\left\langle\frac{\partial u}{\partial y}(t, x, 0), A_{2} \frac{\partial u}{\partial y}(t, x, 0)\right\rangle_{B_{2}} \\
& \left.\quad-\left\langle\frac{\partial u}{\partial x}(t, x, 0), A_{2} \frac{\partial u}{\partial x}(t, x, 0)\right\rangle_{B_{2}}+2\left\langle\frac{\partial u}{\partial x}(t, x, 0), A_{1} \frac{\partial u}{\partial y}(t, x, 0)\right\rangle_{B_{2}}\right\},
\end{aligned}
$$

here $A_{j}(j=0,1,2)$ are real constants.
Lemma 1. Let $u(t, x, y) \in H^{2}((0, T) \times \Omega)$. Then we have the following equality.

$$
\begin{aligned}
& 2 \operatorname{Re} \int_{0}^{t}\left((\square u)(s, \cdot), A_{0} \frac{\partial u}{\partial t}(s, \cdot)+A_{1} \frac{\partial u}{\partial x}(s, \cdot)+A_{2} \frac{\partial u}{\partial y}(s, \cdot)\right) d s \\
& \quad=\left.G_{1}(s)\right|_{0} ^{t}+\int_{0}^{t} G_{2}(s) d s+\int_{0}^{t} G_{3}(s) d s
\end{aligned}
$$

for any $t(0<t<T)$.
Proof. Using the integration by parts we obtain that for any $t(0<t<T)$

$$
\begin{aligned}
2 & \operatorname{Re} \int_{0}^{t}\left((\square u)(s, \cdot), \frac{\partial u}{\partial t}(s, \cdot)\right) d s \\
& =\left.\left[\left\|\frac{\partial u}{\partial t}(s, \cdot)\right\|^{2}+\left\|\frac{\partial u}{\partial x}(s, \cdot)\right\|^{2}+\left\|\frac{\partial u}{\partial y}(s, \cdot)\right\|^{2}\right]\right|_{0} ^{t} \\
& +\int_{0}^{t} \operatorname{Re}\left\{2\left\langle\frac{\partial u}{\partial x}(s, 0, y), \frac{\partial u}{\partial t}(s, 0, y)\right\rangle_{B_{1}}+2\left\langle\frac{\partial u}{\partial y}(s, x, 0),\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\quad \frac{\partial u}{\partial t}(s, x, 0)\right\rangle_{B_{2}}\right\} d s, \\
& 2 \operatorname{Re} \int_{0}^{t}\left((\square u)(s, \cdot), \frac{\partial u}{\partial x}(s, \cdot)\right) d s=\left.2 \operatorname{Re}\left(-\frac{\partial u}{\partial t}(s, \cdot),-\frac{\partial u}{\partial x}(s, \cdot)\right)\right|_{0} ^{t} \\
& \quad+\int_{0}^{t}\left\{\left\langle\frac{\partial u}{\partial t}(s, 0, y), \frac{\partial u}{\partial t}(s, 0, y)\right\rangle_{B_{1}}+\left\langle\frac{\partial u}{\partial x}(s, 0, y), \frac{\partial u}{\partial x}(s, 0, y)\right\rangle_{B_{1}}\right. \\
& \left.\quad-\left\langle\frac{\partial u}{\partial y}(s, 0, y), \frac{\partial u}{\partial y}(s, 0, y)\right\rangle_{B_{1}}+2 \operatorname{Re}\left\langle\frac{\partial u}{\partial x}(s, x, 0), \frac{\partial u}{\partial y}(s, x, 0)\right\rangle_{B_{2}}\right\} d s
\end{aligned}
$$

and

$$
\begin{aligned}
& 2 R e \int_{0}^{t}\left((\square u)(s, \cdot), \frac{\partial u}{\partial y}(s, \cdot)\right) d s=\left.2 \operatorname{Re}\left(\frac{\partial u}{\partial t}(s, \cdot), \frac{\partial u}{\partial y}(s, \cdot)\right)\right|_{0} ^{t} \\
& \quad+\int_{0}^{t}\left\{2 \operatorname{Re}\left\langle\frac{\partial u}{\partial y}(s, 0, y), \frac{\partial u}{\partial x}(s, 0, y)\right\rangle_{B_{1}}\right. \\
& \quad+\left\langle\frac{\partial u}{\partial t}(s, x, 0), \frac{\partial u}{\partial t}(s, x, 0)\right\rangle_{B_{2}}+\left\langle\frac{\partial u}{\partial y}(s, x, 0), \frac{\partial u}{\partial y}(s, x, 0)\right\rangle_{B_{2}} \\
& \left.\quad-\left\langle\frac{\partial u}{\partial x}(s, x, 0), \frac{\partial u}{\partial x}(s, x, 0)\right\rangle_{B_{2}}\right\} d s
\end{aligned}
$$

From these equalities we get this lemma.
Lemma 2. Using $\mathbb{Q}_{1} u=0$ on B_{1} and $\mathbb{Q}_{2} u=0$ on B_{2} in $G_{2}(t)$ and $G_{3}(t)$, we suppose that, for some $A_{j}(j=0,1,2)$ in Lemma 1 , the quadratic form corresponding to G_{1} is positive definite and those corresponding to G_{2} and G_{3} are both positive semi-definite. Then the energy inequality (4) holds for $u(t, x, y) \in H^{2}((0, T) \times \Omega)$ with $\circledR_{1} u=0$ on B_{1} and $\circledR_{2} u=0$ on B_{2}.

Proof. From Lemma 1, for any $t(0<t<T)$ we have

$$
\begin{align*}
& K_{1}\left(\left\|\frac{\partial u}{\partial t}(t, \cdot)\right\|^{2}+\left\|\frac{\partial u}{\partial x}(t, \cdot)\right\|^{2}+\left\|\frac{\partial u}{\partial y}(t, \cdot)\right\|^{2}\right) \tag{5}\\
& \quad-K_{2}\left(\left\|\frac{\partial u}{\partial t}(0, \cdot)\right\|^{2}+\left\|\frac{\partial u}{\partial x}(0, \cdot)\right\|^{2}+\left\|\frac{\partial u}{\partial y}(0, \cdot)\right\|^{2}\right) \\
& \quad \leqq\left|\int_{0}^{t}\left((\square u)(s, \cdot), A_{0} \frac{\partial u}{\partial t}(s, \cdot)+A_{1} \frac{\partial u}{\partial x}(s, \cdot)+A_{2} \frac{\partial u}{\partial y}(s, \cdot)\right) d s\right|
\end{align*}
$$

where $A_{j}(j=0,1,2)$ are chosen such that the hypotheses of this lemma are satisfied and the constants K_{1} and K_{2} are independent of u. From (5) and the inequality

$$
\left.\left(\|u(s, \cdot)\|^{2}\right)\right|_{0} ^{t} \leqq \int_{0}^{t}\|u(s, \cdot)\|^{2} d s+\int_{0}^{t}\left\|\frac{\partial u}{\partial t}(s, \cdot)\right\|^{2} d s
$$

we get that for any t

$$
\|u(t, \cdot)\|_{1}^{2} \leqq K_{3}\left(\int_{0}^{t}\| \| u(s, \cdot)\left\|_{1}^{2} d t+\int_{0}^{t}\right\|(\square u)(s, \cdot)\left\|^{2} d s+\mid\right\| u(0, \cdot) \|_{1}^{2}\right) .
$$

From this it follows

$$
\|u(t, \cdot)\|_{1}^{2} \leqq K_{3} e^{K_{3} t}\left(\int_{0}^{t}\|(\square u)(s, \cdot)\|^{2} d s+\|u(0, \cdot)\|_{1}^{2}\right) . \quad \text { q. e. d. }
$$

Now we consider the case when the boundary condition on B_{2} is Dirichlet one, that is, $\mathbb{G}_{2} u=u=0$ on B_{2}.

Lemma 3(a). The necessary and sufficient condition that the hypotheses in Lemma 2 are fulfilled is that all of the following relations hold:

$$
\begin{aligned}
& A_{0}>0, \\
& A_{1}^{2}+A_{2}^{2}<A_{0}^{2}, \\
& 2 c A_{0}+\left(c^{2}+1\right) A_{1} \geqq 0 . \\
& \left(b^{2}-c^{2}-1\right) A_{1}^{2}-b^{2} A_{0}^{2}+2 b A_{0} A_{2}-c^{2} A_{2}^{2}-2 c A_{0} A_{1}+2 b A_{1} A_{2} \geqq 0
\end{aligned}
$$

and

$$
A_{2} \geqq 0 .
$$

Proof. Let $\frac{\partial u}{\partial x}(t, 0, y)=b \frac{\partial u}{\partial y}(t, 0, y)+c \frac{\partial u}{\partial t}(t, 0, y)$ and $u(t, x, 0)=0$ in Lemma 1. Then

$$
\begin{aligned}
& G_{2}(t)=R e\left\{\left\langle\left(2 c A_{0}+\left(c^{2}+1\right) A_{1}\right) \frac{\partial u}{\partial t}(t, 0, y), \frac{\partial u}{\partial t}(t, 0, y)\right\rangle_{B_{1}}\right. \\
& \quad+2\left\langle\frac{\partial u}{\partial t}(t, 0, y),\left(b A_{0}+b c A_{1}+c A_{2}\right) \frac{\partial u}{\partial y}(t, 0, y)\right\rangle_{B_{1}} \\
& \left.\quad+\left\langle\left(\left(b^{2}-1\right) A_{1}+2 b A_{2}\right) \frac{\partial u}{\partial y}(t, 0, y), \frac{\partial u}{\partial y}(t, 0, y)\right\rangle_{B_{1}}\right\}, \\
& G_{3}(t)=\left\langle A_{2} \frac{\partial u}{\partial y}(t, x, 0), \frac{\partial u}{\partial y}(t, x, 0)\right\rangle_{B_{2}} .
\end{aligned}
$$

From these expressions and the expression of $G_{1}(t)$, it is easily shown this lemma.
Next we consider the case when the boundary condition on B_{2} is Neumann one, that is, $\mathbb{C}_{2} u=\frac{\partial u}{\partial y}=0$ on B_{2}.

Lemma 3(b). The necessary and sufficient condition that the hypotheses in Lemma 2 are fulfilled is that all of the following relations hold:

$$
\begin{aligned}
& \left|A_{1}\right|<A_{0}, \\
& 2 c A_{0}+\left(c^{2}+1\right) A_{1} \geqq 0, \\
& \left(b^{2}-c^{2}-1\right) A_{1}^{2}-b^{2} A_{0}^{2}-2 c A_{0} A_{1} \geqq 0
\end{aligned}
$$

and

$$
A_{2}=0 .
$$

Proof. Let $\frac{\partial u}{\partial x}(t, 0, y)=b-\frac{\partial u}{\partial y}(t, 0, y)+c \frac{\partial u}{\partial t}(t, 0, y)$ and $\frac{\partial u}{\partial y}(t, x, 0)=0$ in Lemma 1. Then $G_{2}(t)$ is the same that in Lemma 3(a). $G_{3}(t)=\left\langle A_{2} \frac{\partial u}{\partial t}(t, x, 0), \frac{\partial u}{\partial t}(t, x, 0)\right\rangle_{B_{2}}$
$-\left\langle A_{2} \frac{\partial u}{\partial x}(t, x, 0), \frac{\partial u}{\partial x}(t, x, 0)\right\rangle_{B_{2}}$. From these expressions and the expression of $G_{1}(t)$, we can prove this lemma.

Let us prove Theorem by using Lemmas 1-3. At first we consider the case (i). We set

$$
\begin{aligned}
& Q_{11}=\left\{(b, c) \in Q_{1}, \mathrm{~b}>0\right\}, \\
& Q_{12}=\left\{(b, c) \in Q_{1}, b \leqq 0\right\}
\end{aligned}
$$

Then we see that $Q_{1}=Q_{11} \cup Q_{12}$.
Let $(b, c) \in Q_{11}$. We set $A_{0}=\left(c^{2}+1\right), A_{1}=-c, A_{2}=b c$. Then all of the relations in Lemma 3(a) are satisfied. From Lemma 2 we have proved Theorem in this case.

Let $(b, c) \in Q_{12}$. Then we may set $A_{0}=1+c^{2}-b^{2}, A_{1}=-c, A_{2}=0$.
Next we consider the case (ii). Let $(b, c) \in Q_{2}$. We set $A_{0}=1+c^{2}-b^{2}, A_{1}=-c, A_{2}=0$. Then we can prove Theorem in this case by the same method as above.

References

[1] Agemi, R. On energy inequalities of mixed problems for hyperbolic equations of second order, J. Fac. Sci. Hokkaido Univ., Ser. I, Vol 21, 221-236 (1971).
[2] Agemi, R. and T. Shirota On necessary and sufficient conditions for L^{2}-well-posedness of mixed problems for hyperbolic equations I and II, J. Fac. Sci. Hokkaido Univ., Ser. I, Vol. 21, 133-151 (1970) and Vol. 22, 137-149 (1972).
[3] Friedrichs, K. O. Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., Vol. 7, 345-392 (1954).
[4] -. Symmetric positive linear differential equations, Comm. Pure Appl. Math., Vol. 11, 333418 (1958).
[5] Hayashida, K. On a mixed problem for hyperbolic equations with discontinuous boundary conditions, Publ. RIMS, Kyoto Univ., Vol. 7, 57-67 (1971/1972).
[6] Ibuкi, K. On the regularity of solutions of a mixed problem for hyperbolic equations of second order in a domain with corners, J. Math., Kyoto Univ., Vol. 16, 167-183 (1976).
[7] Kojima, K. and M. Taniguchi Mixed problem for hyperbolic equations in a domain with a corner, (to appear).
[8] Kondrat'ev, V. A. Boundary problems for elliptic equations in domains with conical or angular points, Trudy Moscov. Mat. Obsc., Vol. 16, 209-292 (1967)=Trans. Moscow Math. Soc., Vol. 16, 227-313 (1967).
[9] Kreiss, H. O. Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., Vol. 23, 277-298 (1970).
[10] Osher, S. Initial-boundary value problems for hyperbolic systems in regions with corners I and II., Trans. Amer. Math. Soc., Vol. 176, 141-164 (1973) and Vol. 198, 155-175 (1974).
[11] Sakamoto, R. Mixed problems for hyperbolic equations I and II, J. Math., Kyoto Univ., Vol. 10, 349-373 and 375-401 (1970).
[12] Sarason, L. Hyperbolic and other symmetrizable systems in regions with corners and edges, Indiana Univ. Math. J., Vol. 26, 1-39 (1977).
[13] Sarason, L. and J. A. Smoller Geometrical optics and the corner problem, Arch. Rat. Mech. Anal., Vol. 56, 34-69 (1974).
[14] Taniguchi, M. Mixed problem for wave equation in the domain with a corner, Funkcialaj Ekvacioj, Vol. 21, 249-259 (1978).

[^0]: * Niigata University

