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1. Introduction

Let $M$ be an n-dimensional complete riemannian manifold and $d(M)$ (resp. KM) its
diameter (resp. sectional curvature), $C_{p}$ (resp. $Q_{p}^{1}$) the cut locus (resp. the first conjugate
locus) in the tangent space $M_{p}$ to $M$ at $p\epsilon M$. It is well known that $K_{M}\geq\delta>0$ implies
$\pi/\sqrt{\delta}\geq d(M)$ (Myers [1]). On the other hand, the following is a classical problem con-
cerning the infimum of the diameter $d(M)$ of a riemannian manifold $M$.

PROBLEM 1. Does $\delta\geq K_{M}$ imply $d(M)\geq\pi/\sqrt{\delta}$ for a simply connected riemannian
manifold ?

In this problem, we can not remove the assumption of simple connectivity for $M$. In
fact, an n-dimensional real projective space $RP^{n}$ with the canonical metric of constant
curvature $\delta$ has the diameter $\pi/2\sqrt{\delta}$. Furthermore, if $M$ is non-compact, then the diame $\cdot$

ter of $M$ is infinite by Hopf-Rinow’s theorem. Therefore, in the sequel, we may assume
that $M$ is compact. Now it may be easily understood that if the answer to the following
problem 2 is affirmative, we have the same answer to the above problem 1 by virtue of
Morse-Schoenberg’s theorem.

PROBLEM 2. (Weinstein [2]). Is there a point $p\epsilon M$ such that $ C_{p}\cap Q_{p}^{1}\neq\beta$ for a
compact simply connected riemannian manifold $M$ ?

In this paper, we give some partial answers to problem 2. In \S 2, we introduce the
notion of flaps of a riemannian manifold and prove proposition 1 by making use of the
properties of flaps. Here “flap” intuitively means the pasting part in making a cylinder
from a rectangle. In \S 3 of this note, the following theorem is proved.

THEOREM. Let $M$ be a compact simply connected riemannian manifold with a point
$p\epsilon M$ satisfying the condition that if $\Omega(p, q)$ is non-degenerate, there is at most one geodesic
of index 1 in $\Omega(p, q)$ . Then $C_{p}$ and $Q_{p}^{1}$ have an intersection.

This statement includes a result of Warner [3] that if there are no geodesics of index
1 in a simply connected manifold $M$, the cut locus and first conjugate locus coincide.

*Niigata University



28 R. Takahashi

The author would like to express his hearty thanks to Professor K. Sekigawa for his
advice and encouragement, and careful reading of the original manuscript.

2. Definitions of flaps and results

Let $M$ be a compact riemannian manifold and $\exp p:M_{p}\rightarrow M$ an exponential map.
DEFINITION 1. For $\epsilon>0$ and $p_{\epsilon M}$, the $\epsilon- flapF_{p}$ of $p$ in $M_{p}$ denotes the subset

$F_{p}*:=\{(1+t\epsilon/\Vert v\Vert)v;v\epsilon C_{p}, 0<t<1\}$ .
And moreover, the $\epsilon\cdot\hslash apF.(p)$ of $p$ in $M$ denotes the subset

$F_{\epsilon}(p):=\exp pF_{p}$ .
First, we have the following
LEMMA 1. $F_{\epsilon}p$ is homeomorphic to a cylinder $S^{n-1}\times(0,1)$ (cf. [4] Lemma 5. 4, p. 16).

From this lemma, we have
LEMMA 2. If $ C_{p}\cap Q_{p}^{1}=\beta$ , then there exists a positive number $\epsilon$ such that the map

$expp|F_{\epsilon}p$ is non-singular.

The converse to Lemma 2 is false in general. In fact, an n-dimensional sphere $S$ “ with
canonical metric of constant curvature has $C_{p}=Q_{p}^{1}=S^{n-1}$ .

DEFINITION 2. We say that $M$ has k-fold flaps of $p$ , if for all $\epsilon>0$, there exist $k$ points
$v_{1},$

$\ldots$ , $vk\epsilon F_{\epsilon}p$ such that $v;\neq vj,$ $\exp v=\exp v$ for all $i,$ $j(i\neq j)$ . Clearly, if $s>h$, then
“s-fold” implies “h-fold.” If $M$ has 2-fold flaps of $p$ , then we say that $M$ has double flaps
of $p$ . If $M$ has no 2-fold flaps of $p$ , then we say that $M$ has $non\cdot double$ flaps of $p$ .

We shall prove Proposition 1 which shows that even if $\pi_{1}(M)\neq Z_{2}$ , the answer to
Problem 1 is affirmative for $M$ with non-double flaps.

PROPOSITION 1. Let $M$ be a compact nemannian manifold with $\pi_{1}(M)\neq Z_{2}$ and have
non-double flaps of $p$ . Then there is a $pointp\epsilon M$ such that $ C_{p}\cap Q_{p}^{1}\neq\beta$.

Proof. Assume that $ C_{\phi}\cap Q_{p}^{1}=\beta$ . Then, by [5, Theorem $B$], we have distinct
vectors $v_{j}\epsilon C_{p}(j=1,2,3)$ such that $\exp pv\iota=\exp pvj$ for all $i,$ $j$. Let $ q=\exp pv\iota$, and $\epsilon$ be an
arbitrary positive number. Then there exist mutually disjoint $neighbourh\infty dsVj$ of $vj$

in $M_{p}(i=1,2,3)$ such that for each $j,$ $V;\subset F_{e}p\cup Bp,$ $\exp p|\gamma_{j}$ is a diffeomorphism, and
further, $C_{p}$ divides $V_{j}$ into two parts. Here we put $B_{p}=\{tv;v\in C_{p}, 0\leq t\leq 1\}$ . Now let
$IV;=V;\cap(B_{p}-C_{p}),$ $EVi=V;\cap(M_{p}-B_{p})$, and further, $V;(p)=\exp_{\phi}V;,$ $IV;(p)=\exp_{p}IV;$ ,
$EV;(p)=\exp pEV;$ . Then by the fundamental property of the cut locus (cf. [4] \S 5. 4), we
have

(3. 1) $ IV\iota(p)\cap IV_{j}(p)=\beta$ for all $i,$ $j(i\neq i)$ .
Let $\gamma\iota$ be a geodesic determined by each $v$; between $p$ and $q$. Then there is a positive

number $\delta$ such that $\gamma_{1}(s-\delta, s)\subset^{3}\bigcap_{i1}V;(p)$ . where $\gamma_{1}$ is a normal geodesic and $s$ is a distance

between $p$ and $q$. Now we put $\gamma_{1\delta}=\gamma_{1}(s-\delta, s)$ for simplicity. Then, $\gamma_{1\delta}\subset IV_{1}(p)$ and
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$\gamma_{1\delta}\subset EVj(p)(j=2,3)$ hold by (3. 1). $\sim\gamma j$ denotes the lifting $(\exp p|V1)^{-1}\gamma_{1\delta}$ of $\gamma_{1\delta}$ to $M_{p}(i$

$=2,3)$ . Then $\gamma j\sim$ is a curve in $EVj$ with a boundary point $vj$ . Hence we $have\gamma_{2}\cap\gamma_{3}=\beta\sim\sim$

and $\exp p\gamma_{2}(t)=\exp_{p}\gamma_{3}(t)=\gamma_{1}(t)\sim\sim$ for $s-\delta<t<s$ . Since $EVj\subset F_{\epsilon}p(j=1,23)$ , it follows that
the map $\exp p|F_{\epsilon}p$ is not injective.

REMARK 1. In the following table, we shall give some examples of flaps.

where $S^{n}(1),$ $L(3;1)$ (resp. $T^{n}(0)$ ) in this table have the canonical metrics of constant $cur$.
vature 1 (resp. $0$) and projective spaces $KP^{n}$ for $K=R,$ $C,$ $H$ have the canonical structure
(cf. [6] 3.30, 3.33).

REMARK 2. Concerning the existence of double flaps, the following assertion holds
by the main theorem in [2] and Proposition 1.

Let $M$ be a compact differentiable manifold not homeomorphic to $S^{2}$ , and $\pi_{1}(M)\neq Z_{2}$.
Then there is a riemannian metric $g$ on $M$ and a point $p\epsilon M$ such that $(M, g)$ has double
flaps of $p$ .

PROPOSITION 2. Let $M$ be a compact riemannian manifold with $\pi_{1}(M)\neq Z_{2}$ . If $c_{p}$ is
smooth in $Mp$ , then there is a point $p\epsilon M$ such that $ C_{p}\cap Q_{p}^{1}\neq\beta$ .

Proof. Assume that $ C_{p}\cap Q_{p}^{1}=\beta$ . There are $vj,$ $Vj(j=1,2,3)$ in the proof of $Pro\Re si$.
tion 1. Hereafter we use the same symbols as Proposition 1. By the assumption con-
cerning the cut locus $C_{p}$, we have the tangent space $C_{v_{j}}^{n-1}$ to $C_{p}$ at $vj$ in $Mp(j=1,2,3)$ .
Putting $C(v_{j})=d\exp p(C_{v_{j}}^{n-1})$ , we have $\dim C_{v_{j}}^{n-1}=\dim C(vj)=n-1$ . We put $f=(\exp p|v_{1})^{-1}$ ,
$C_{f}(vj)=df(C(vJ))$ . Then we have easily

(3. 2) $C_{f}(v_{1})=C_{v_{1}}^{n-1},$ $\dim C_{f}(v_{j})=n-1$ for all $j$.
Now let $I_{1}Vj(p)=IVj(p)\cap V_{1}(p),$ $I_{f}VJ=f(I_{1}Vj(p))(j=1,2,3)$ . Then (3. 2) implies that
there are $i,$ $j(i\neq J)$ such that $ I_{f}Vi\cap I_{f}Vj\neq\emptyset$ . Since the map $f$ is an imbedding, we have
$ I_{1}Vi(p)\cap I_{1}Vj(p)\neq\beta$ for some $i,$ $j(i\neq\int)$ . Namely this contradicts (3. 1) in Proposition 1.

3. A result on index of geodesics

First we shall prove inequalities on type numbers. These are easily obtained by
Morse Inequalities (cf. [7], Theorem 4.89, Corollary 2).

LEMMA 3. Let $M$ be a compact $k(\geq 1)$-connected riemannian manifold with positive
Ricci curvature. Suppose that the path space $\Omega(p, q)$ is $non\cdot degmerate$.

Then we have $n_{S}\geq\sum_{i-1}^{s+1}(-1)^{i-1}n_{S-}$ ; $(0\leq s\leq k)$,

where $n_{-1}=1$ , and $n;(i\geq 0)$ is the number of all geodesics of index $i$ in $\Omega(p, q)$ .
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Proof. We write $\Omega$ for $\Omega(p, q)$ to simplify the notation. By [8, Theorem 19.6], there
is a positive number $a$ such that each geodesic of energy$>a$ has index $>k$ . Since $M$ is
$k\cdot connected$, we have

$H_{j}(\Omega a;Z)\simeq H_{j}(\Omega;Z)$

$\simeq\pi j(\Omega)\simeq\pi j+1(M)=0$ for $j=1,$
$\ldots,$

$k-1$ ,

where $\Omega a=\{c\epsilon\Omega;E(c)\leq a\}$ .
We put $\beta;=the$ j-dimensional Betti number of $\Omega$

$\beta_{j}^{a}=the$ j-dimensional Betti number of $\Omega a$

$ n_{j}^{a}=\#$ { $geodesics$ of index $i$ in $\Omega a$ }.

$Thenwehaven_{j}^{a}=nj$ ($j=0,1,$ $\ldots$ , k) and $\beta_{0}^{a}=\beta_{0}=1,$ $\beta_{j}^{a}=\beta j=0(j=1, \ldots, k-1)$ . Hence, by
[71, we have

$\sum_{i-0}^{s}(-1)^{s-i}n;\geq(-1)^{s}\beta_{0}^{a}+\beta_{s}^{a}\geq(-1)^{s}$ for all integers $s(0\leq s\leq k)$.
LEMMA 4. Let $M$ be a simply connected nemannian manifold and $\Omega$ a $non\cdot degmemte$

path space, and $ n_{1}<+\infty$ . Then we have $n_{0}<+\infty,$ $n_{1}\geq n_{0}-1$ .
Proof. It suffices to show $ n_{0}<+\infty$ . It is well known that the homology group of $\Omega$

is isomorphic to the celluar homology group of a CW-complex $\Lambda$ , and each j-dimensional
chain group $Cj(\Lambda)$ of $\Lambda$ is identified with a free module with basis $\{e_{a}^{j}\}_{\alpha-1}$ , . .. , $nj$’

where $ e_{a}^{j}\in\Lambda$ is a cell of dimension $i$ corresponding to each geodesic $\gamma_{\alpha}^{j}$ of index $j$ from $p$

to $q$. Hence $CJ(\Lambda)\simeq\oplus Z$ holds. Since the Z-module $Z$ is projective, there is a homo-
nj

morphism $t:Z\rightarrow C_{0}(\Lambda)$ such that the following diagram commutes:

$\swarrow_{I^{1_{z}}}^{Z}$

$C_{0}(\Lambda)\rightarrow Z\simeq C_{0}(\Lambda)/{\rm Im}\partial_{1}$ ,
$\pi$

where $\partial_{1};C_{1}(\Lambda)\rightarrow C_{0}(\Lambda)$ is a boundary operator.
Then we have $C_{0}(\Lambda)\simeq Ker\pi\oplus Z={\rm Im}\partial_{1}\oplus Z$ by the characterization of the one-sided direct
sum diagram (cf. [9] Proposition 4.2, p. 16). Since $C_{0}(\Lambda)$ is free, ${\rm Im}\partial_{1}$ is also free. Hence
$ n_{1}<+\infty$ implies ${\rm Im}\partial_{1}\simeq\oplus Z$. Namely $ n_{0}<+\infty$ holds.

finite
We shall prove the main result by Lemma 4.
Proof of theorem in \S 1. Assume that $ C_{p}\cap Q_{p}^{1}=\beta$ . Lemma 2 implies that there is

an $\epsilon>0$ such that the map $\exp p|F_{\epsilon}p$ is non-singular. Then we have $vj,$ $Vj(j=1,2,3)$ in

Proposition 1. By Sard’s theorem, there is a point $r\epsilon\cap Vj13j(p)$ such that $\Omega(p, r)$ is non-

degenerate. Let $uj=(\exp p|v_{j})^{-1}(r)(\dot{j}=1,2,3)$ . Then each
$\cup$

$0\leq t\leq 1\exp ptuj$ is a geodesic

of index $0$ from $p$ to $r$. Hence we have $n_{1}\geq n_{0}-1\geq 2$ by Lemma 4. This contradicts the
condition $n_{1}\leq 1$ .
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