A note on the cut loci and the first conjugate loci of riemannian manifolds

By
Ryō Takahashi*

(Received October 31, 1979)

1. Introduction

Let M be an n-dimensional complete riemannian manifold and $d(M)$ (resp. K_{M}) its diameter (resp. sectional curvature), C_{p} (resp. Q_{p}^{1}) the cut locus (resp. the first conjugate locus) in the tangent space M_{p} to M at $p \varepsilon M$. It is well known that $K_{M} \geq \boldsymbol{\delta}>0$ implies $\pi / \sqrt{\boldsymbol{\delta}} \geq d(M)$ (Myers [1]). On the other hand, the following is a classical problem concerning the infimum of the diameter $d(M)$ of a riemannian manifold M.

Problem 1. Does $\bar{\delta} \geq K_{M}$ imply $d(M) \geq \pi / \sqrt{\bar{\delta}}$ for a simply connected riemannian manifold?

In this problem, we can not remove the assumption of simple connectivity for M. In fact, an n -dimensional real projective space $\boldsymbol{R} P^{n}$ with the canonical metric of constant curvature δ has the diameter $\pi / 2 \sqrt{\delta}$. Furthermore, if M is non-compact, then the diameter of M is infinite by Hopf-Rinow's theorem. Therefore, in the sequel, we may assume that M is compact. Now it may be easily understood that if the answer to the following problem 2 is affirmative, we have the same answer to the above problem 1 by virtue of Morse-Schoenberg's theorem.

Problem 2. (Weinstein [2]). Is there a point $p \varepsilon M$ such that $C_{p} \cap Q_{p}^{1} \neq \varnothing$ for a compact simply connected riemannian manifold M ?

In this paper, we give some partial answers to problem 2. In §2, we introduce the notion of flaps of a riemannian manifold and prove proposition 1 by making use of the properties of flaps. Here "flap" intuitively means the pasting part in making a cylinder from a rectangle. In $\S 3$ of this note, the following theorem is proved.

Theorem. Let M be a compact simply connected riemannian manifold with a point $p \varepsilon M$ satisfying the condition that if $\Omega(p, q)$ is non-degenerate, there is at most one geodesic of index 1 in $\Omega(p, q)$. Then C_{p} and Q_{p}^{1} have an intersection.

This statement includes a result of Warner [3] that if there are no geodesics of index 1 in a simply connected manifold M, the cut locus and first conjugate locus coincide.

[^0]The author would like to express his hearty thanks to Professor K. Sekigawa for his advice and encouragement, and careful reading of the original manuscript.

2. Definitions of flaps and results

Let M be a compact riemannian manifold and $\exp _{p}: M_{p} \longrightarrow M$ an exponential map.
Definition 1. For $\varepsilon>0$ and $p \varepsilon M$, the ε-flap $F_{s} p$ of p in M_{p} denotes the subset

$$
F_{\iota p}:=\left\{(1+\mathrm{t} \varepsilon /\|v\|) v ; v \varepsilon C_{p}, 0<t<1\right\} .
$$

And moreover, the ε-flap $F_{s}(p)$ of p in M denotes the subset

$$
F_{s}(p):=\exp _{p} F_{s p}
$$

First, we have the following
Lemma 1. $F_{\varepsilon} p$ is homeomorphic to a cylinder $S^{n-1} \times(0,1)$ (cf. [4] Lemma 5. 4, p. 16). From this lemma, we have

Lemma 2. If $C_{p} \cap Q_{p}^{1}=\varnothing$, then there exists a positive number ε such that the map $\exp _{p \mid F_{\epsilon} p}$ is non-singular.

The converse to Lemma 2 is false in general. In fact, an n-dimensional sphere S^{n} with canonical metric of constant curvature has $C_{p}=Q_{p}^{1}=S^{n-1}$.

Definition 2. We say that M has k-fold flaps of p, if for all $\varepsilon>0$, there exist k points $v_{1}, \ldots, v_{k} \varepsilon F_{s p}$ such that $v_{i} \neq v_{j}, \exp _{p} v_{i}=\exp _{p} v_{j}$ for all $i, j(i \neq j)$. Clearly, if $s>h$, then " s-fold" implies " h-fold." If M has 2 -fold flaps of p, then we say that M has double flaps of p. If M has no 2 -fold flaps of p, then we say that M has non-double flaps of p.

We shall prove Proposition 1 which shows that even if $\pi_{1}(M) \neq Z_{2}$, the answer to Problem 1 is affirmative for M with non-double flaps.

Proposition 1. Let M be a compact riemannian manifold with $\pi_{1}(M) \neq Z_{2}$ and have non-double flaps of p. Then there is a point $p \in M$ such that $C_{p} \cap Q_{p}^{1} \neq \varnothing$.

Proof. Assume that $C_{p} \cap Q_{p}^{1}=\varnothing$. Then, by [5, Theorem B], we have distinct vectors $v_{j} \varepsilon C_{p}(j=1,2,3)$ such that $\exp _{p} v_{i}=\exp _{p} v_{j}$ for all i, j. Let $q=\exp _{p} v_{i}$, and ε be an arbitrary positive number. Then there exist mutually disjoint neighbourhoods V_{j} of v_{j} in $M_{p}(j=1,2,3)$ such that for each $j, V_{j} \subset F_{\iota p} \cup B_{p}, \exp _{p \mid V_{j}}$ is a diffeomorphism, and further, C_{p} divides V_{j} into two parts. Here we put $B_{p}=\left\{t v ; v \in C_{p}, 0 \leq t \leq 1\right\}$. Now let $I V_{i}=V_{i} \cap\left(B_{p}-C_{p}\right), E V_{i}=V_{i} \cap\left(M_{p}-B_{p}\right)$, and further, $V_{i}(p)=\exp _{p} V_{i}, I V_{i}(p)=\exp _{p} I V_{i}$, $E V_{i}(p)=\exp _{p} E V_{i}$. Then by the fundamental property of the cut locus (cf. [4] §5.4), we have

$$
\begin{equation*}
I V_{i}(p) \cap I V_{j}(p)=\varnothing \quad \text { for all } i, j(i \neq j) \tag{3.1}
\end{equation*}
$$

Let γ_{i} be a geodesic determined by each v_{i} between p and q. Then there is a positive number δ such that $\gamma_{1}(s-\delta, s) \subset \bigcap_{i=1}^{3} V_{i}(p)$. where γ_{1} is a normal geodesic and s is a distance between p and q. Now we put $\gamma_{1 \delta}=\gamma_{1}(s-\delta, s)$ for simplicity. Then, $\gamma_{1 \delta} \subset I V_{1}(p)$ and
$\gamma_{1 \delta} \subset E V_{j}(p)(j=2,3)$ hold by (3.1). $\quad \tilde{\gamma}_{j}$ denotes the lifting $\left(\exp _{p \mid V}\right)^{-1} \gamma_{1 \delta}$ of $\gamma_{1 \delta}$ to $M_{p}(j$ $=2,3)$. Then $\widetilde{\gamma_{j}}$ is a curve in $E V_{j}$ with a boundary point v_{j}. Hence we have $\widetilde{\gamma_{2} \cap \widetilde{\gamma_{3}}=\varnothing}$ and $\exp _{p} \widetilde{\gamma_{2}}(t)=\exp _{p} \widetilde{\gamma_{3}}(t)=\gamma_{1}(t)$ for $s-\delta<t<s$. Since $E V V_{j} \subset F_{\epsilon p}(j=1,23)$, it follows that the map $\exp _{p \mid F_{\epsilon} p}$ is not injective.

Remark 1. In the following table, we shall give some examples of flaps.

M	$S^{n}(1)$	$K P^{n}$	$T^{n}(0)$	$L(3 ; 1)$
flaps	non-double	non-double	double	double
	$(0<\varepsilon \leq \pi)$	$(0<\varepsilon \leq \pi / 2)$	$\left(2^{n-1 \text { fold })}\right.$	

where $S^{n}(1), L(3 ; 1)$ (resp. $\left.T^{n}(0)\right)$ in this table have the canonical metrics of constant curvature 1 (resp. 0) and projective spaces $\boldsymbol{K} P^{n}$ for $\boldsymbol{K}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ have the canonical structure (cf. [6] 3.30, 3.33).

Remark 2. Concerning the existence of double flaps, the following assertion holds by the main theorem in [2] and Proposition 1.

Let M be a compact differentiable manifold not homeomorphic to S^{2}, and $\pi_{1}(M) \neq Z_{2}$. Then there is a riemannian metric g on M and a point $p \varepsilon M$ such that (M, g) has double flaps of p.

Proposition 2. Let M be a compact riemannian manifold with $\pi_{1}(M) \neq Z_{2}$. If C_{p} is smooth in M_{p}, then there is a point $p \varepsilon M$ such that $C_{p} \cap Q_{p}^{1} \neq \varnothing$.

Proof. Assume that $C_{p} \cap Q_{p}^{1}=\varnothing$. There are $v_{j}, V_{j}(j=1,2,3)$ in the proof of Proposition 1. Hereafter we use the same symbols as Proposition 1. By the assumption concerning the cut locus C_{p}, we have the tangent space $C_{v_{j}}^{n-1}$ to C_{p} at v_{j} in $M_{p}(j=1,2,3)$. Putting $C\left(v_{j}\right)=\operatorname{dexp}_{p}\left(C_{v_{j}}^{n-1}\right)$, we have $\operatorname{dim} C_{v_{j}}^{n-1}=\operatorname{dim} C\left(v_{j}\right)=n-1$. We put $f=\left(\exp _{p \mid V_{1}}\right)^{-1}$, $C_{f}\left(v_{j}\right)=d f\left(C\left(v_{j}\right)\right)$. Then we have easily

$$
\begin{equation*}
C_{f}\left(v_{1}\right)=C_{v_{1}}^{n-1}, \operatorname{dim} C_{f}\left(v_{j}\right)=n-1 \quad \text { for all } j \tag{3.2}
\end{equation*}
$$

Now let $I_{1} V_{j}(p)=I V_{j}(p) \cap V_{1}(p), I_{f} V_{j}=f\left(I_{1} V_{j}(p)\right)(j=1,2,3)$. Then (3.2) implies that there are $i, j(i \neq j)$ such that $I_{f} V_{i} \cap I_{f} V_{j} \neq \varnothing$. Since the map f is an imbedding, we have $I_{1} V_{i}(p) \cap I_{1} V_{j}(p) \neq \varnothing$ for some $i, j(i \neq j)$. Namely this contradicts (3.1) in Proposition 1.

3. A result on index of geodesics

First we shall prove inequalities on type numbers. These are easily obtained by Morse Inequalities (cf. [7], Theorem 4.89, Corollary 2).

Lemma 3. Let M be a compact $k(\geq 1)$-connected riemannian manifold with positive Ricci curvature. Suppose that the path space $\Omega(p, q)$ is non-degenerate.
Then we have $n_{s} \geq \sum_{i=1}^{s+1}(-1)^{i-1} n_{s-i} \quad(0 \leq s \leq k)$, where $n_{-1}=1$, and $n_{i}(i \geq 0)$ is the number of all geodesics of index i in $\Omega(p, q)$.

Proof. We write Ω for $\Omega(p, q)$ to simplify the notation. By [8, Theorem 19.6], there is a positive number a such that each geodesic of energy $>a$ has index $>k$. Since M is k-connected, we have

$$
\begin{aligned}
H_{j}(\Omega a ; \boldsymbol{Z}) & \simeq H_{j}(\Omega ; \boldsymbol{Z}) \\
& \simeq \pi_{j}(\Omega) \simeq \pi_{j+1}(M)=0 \quad \text { for } j=1, \ldots, k-1,
\end{aligned}
$$

where $\Omega a=\{c \varepsilon \Omega ; E(c) \leq a\}$.
We put $\beta=$ the j-dimensional Betti number of Ω
$\beta_{j}^{a}=$ the j-dimensional Betti number of Ωa
$n_{j}^{a}=\#\{$ geodesics of index j in $\Omega a\}$.
Then we have $n_{j}^{a}=n_{j}(j=0,1, \ldots, k)$ and $\beta_{0}^{a}=\beta_{0}=1, \beta_{j}^{a}=\beta_{j}=0(j=1, \ldots, k-1)$. Hence, by [7], we have

$$
\sum_{i=0}^{s}(-1)^{s-i} n_{i} \geq(-1)^{s} \beta_{0}^{a}+\beta_{s}^{a} \geq(-1)^{s} \quad \text { for all integers } s(0 \leq s \leq k)
$$

Lemma 4. Let M be a simply connected riemannian manifold and Ω a non-degenerate path space, and $n_{1}<+\infty$. Then we have $n_{0}<+\infty, n_{1} \geq n_{0}-1$.

Proof. It suffices to show $n_{0}<+\infty$. It is well known that the homology group of Ω is isomorphic to the celluar homology group of a CW-complex Λ, and each \mathfrak{j}-dimensional chain group $C_{j}(\Lambda)$ of Λ is identified with a free module with basis $\left\{e_{\alpha}^{j}\right\}_{\alpha-1}, \ldots, n_{j}$, where $e_{\alpha}^{j} \in \Lambda$ is a cell of dimension j corresponding to each geodesic γ_{α}^{j} of index j from p to q. Hence $C_{j}(\Lambda) \simeq \underset{n_{j}}{\oplus} \boldsymbol{Z}$ holds. Since the \boldsymbol{Z}-module \boldsymbol{Z} is projective, there is a homomorphism $\iota: \boldsymbol{Z} \longrightarrow C_{0}(\Lambda)$ such that the following diagram commutes:

where $\partial_{1}: C_{1}(\Lambda) \longrightarrow C_{0}(\Lambda)$ is a boundary operator.
Then we have $C_{0}(\Lambda) \simeq \operatorname{Ker} \pi \oplus Z=\operatorname{Im} \partial_{1} \oplus Z$ by the characterization of the one-sided direct sum diagram (cf. [9] Proposition 4.2, p. 16). Since $C_{0}(\Lambda)$ is free, $\operatorname{Im} \partial_{1}$ is also free. Hence $n_{1}<+\infty$ implies $\operatorname{Im} \partial_{1} \simeq \underset{f}{\oplus} \boldsymbol{Z}$. Namely $n_{0}<+\infty$ holds.

We shall prove the main result by Lemma 4.
Proof of theorem in $\S 1$. Assume that $C_{p} \cap Q_{p}^{1}=\varnothing$. Lemma 2 implies that there is an $\varepsilon>0$ such that the map $\exp _{p \mid F_{\epsilon} p}$ is non-singular. Then we have $v_{j}, V_{j}(j=1,2,3)$ in Proposition 1. By Sard's theorem, there is a point $r \varepsilon \bigcap_{j=1}^{3} V_{j}(p)$ such that $\Omega(p, r)$ is nondegenerate. Let $u_{j}=\left(\exp _{p \mid V}\right)^{-1}(r)(j=1,2,3)$. Then each $0 \leq t \leq 1 \exp _{p} t u_{j}$ is a geodesic of index 0 from p to r. Hence we have $n_{1} \geq n_{0}-1 \geq 2$ by Lemma 4. This contradicts the condition $n_{1} \leq 1$.

References

[1] S. B. Myers, Riemannian manifolds in the large, Duke Math., 1 (1935), 39-49.
[2] A. D. Weinstein, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math., 87 (1968), 29-41.
[3] F. W. Warner, Conjugate loci of constant order, Ann. of Math., 86 (1967), 192-212.
[4] D. Gromoll, W. Klingenberg and W. Mayer, Riemannsche Geometrie im grossen, Springer-Verlag, Berlin. Heidelberg. New York, 1968.
[5] K. Sugahara, On the cut locus and the topology of Riemannian manifolds, J. Math. Kyoto Univ., 14 (1974), 391-411.
[6] Arthur L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin. Heidelberg. New York, 1978.
[7] Jacob T. Schwartz, Nonlinear functional analysis, Gordon and Breach science publishers, New York. London. Paris, 1969.
[8] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton Univ. Press, 1963.
[9] S. Maclane, Homology, Springer-Verlag, Berlin. Göttingen. Heidelberg, 1963.

[^0]: * Niigata University

