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0. Introduction

In the previous paper, [1], we have given a list of Lie algebras of Lie groups of full
isometries acting transitively and effectively on 3-dimensional connected homogeneous
Riemannian manifolds. In this paper, we shall give a list of all 3-dimensional connected
homogeneous Riemannian manifolds. The arguments in this paper is the continuation of
the ones in [1]. To avoid repitition, we shall adopt the same notations and terminologies
as [1]. In our arguments, the following result plays an important role.

THEOREM A (J. A. Wolf [3]) Let $\tilde{M}$ and $M$ be Riemannian manifolds and let $\tilde{M}=M$

$/\Gamma$ , where $\Gamma$ is a group of isometries of $\tilde{M}$ acting freely and properly discountinously. Let
$G$ be the centralizer of $\Gamma$ in the group $I(\tilde{M})$ of all isometries on M. Then, $M$ is homogene-
ously if and only if $G$ is transitive on M. And if $M$ is homogeneous, then every element of
$\Gamma$ is a Clifford translation.

Let $M$ be a 3-dimensional connected homogeneous Riemannian manifold and $\tilde{M}$ be
its Riemannian universal covering manifold.

1. Cases I, II, III

First, we consider the case I. In this case, $M$ is isometric with a 3-dimensional
sphere with a Riemannian metric of a positive constant curvature. Then, according to
J. A. Wolf, [3], $M$ is of the form, $ S^{3}/\Gamma$ , where $\Gamma$ is any one of the following groups:

(1) {1}, (2) $Z_{m}$ , (3) $D_{m}^{*}$ , (4) $T^{*}$ , (5) $O^{*}$ , (6) $I^{*}$ ,

here $D_{m}^{*},$ $T^{*},$ $O^{*}$ , and $I^{*}$ denote the binary dihedral, binary tetrahedral, binary $\propto ta$.
hedral and binary icosahedral groups as usual, and $m$ is any positive integer.

Secondary, we consider the case II. In this case, $\tilde{M}$ is isometric with a 3-dimensional
Euclidean space $E^{3}$. Then, according to J. A. Wolf, [3], $M$ is of the form, $ E^{3}/\Gamma$ , where
$\Gamma$ is any one of the following groups:

(1) {1}, (2) $Z$, (3) $Z\times Z$, (4) $Z\times Z\times Z$.
Lastly, we consider the’ case III. In this case, $\tilde{M}$ is isometric with a 3-dimensional

Hyperbolic space $H^{3}$. Then, according to J. A. Wolf, [3], $M$ is $H^{3}$ alone.
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2. Case

First, we consider the case $IV\cdot(i)$ . Then, $\tilde{M}$ is isometric with $S^{2}\times E^{1}$ . And $I_{0}(\tilde{M})$ is
isomorphic with $SO(3)\times R^{1}$ . In this case, by the result of H. Takagi (cf. [2]), $M$ is of the
the form $ S^{2}\times E^{1}/\Gamma$ , where $\Gamma$ is any one of the following group:

(1) {1}, (2) $Z_{2}\times\{0\}$ , (3) $\{1\}\times\{\beta\}$

(4) a group which is semi-direct product of the infinite cyclic group
$<(-1, \beta)>generated$ by $(-1, \beta)$ and $z_{2}\times\{0\}$ ,

here, $\beta\neq 0$.
Secondary, we consider the case IV-(ii). Then, $\tilde{M}$ is isometric with $H^{2}\times E^{1}$ . And

$I_{0}(\tilde{M})$ is isomorphic with $s\alpha 2,1$) $\times R^{1}$ . In this case, by the result of H. Takagi, [2], $M$ is
of the form $ H^{2}\times E^{1}/\Gamma$ , where $\Gamma$ is any one of the following groups:

(1) {1}, (2) $\{1\}\times\{\beta\}$

here $\beta\neq 0$ .

3. Cases V-(i)

In this case, $\tilde{M}$ is isometric with a certain group space.
First, we consider the case $(i)\cdot(2)$ (or (1), or $(i)-(3)$ ). Then, we can easily see that

$I(\tilde{M})$ is isomorphic with

$\theta=\{[e_{0}^{u}0e_{0}^{-u}0$ $w1v)\in GL(3, R);u,$ $v,$ $w\in R\}$

or

$\theta^{\prime}=\{\{e^{\beta w}e_{0}^{\sqrt{}\overline{D_{0}}w\sqrt{-1}}0$ $e^{\beta w}e_{0}^{-\sqrt{D_{o}}w\sqrt{}\overline{-1}}0$ $u-v_{1}\sqrt{}-1u+v\sqrt{}-1)\in GL(3, C);u,$ $v,$ $w\in R\}$ ,

where $\beta=-(c+d)/2$, (cf. [1]).
Thus, $I(\tilde{M})$ and hence, $\tilde{M}$ is diffeomorphic with $R^{3}$. In this case, $M$ is isometric with the
group space $I(\tilde{M})$ with the $left\cdot invariant$ Riemannian metric as in [1].

Secondary, we consider the cases, $(i)-(4)_{1},$ $(i)-(4)_{2}$. Then, $\tilde{M}$ is isometric with the
group space $SU(2)$ (or Spin (3), or $Sp(1)$) with a certain left-invariant Riemannian metric
given by [1].

We put $e_{1}^{0}=\left(\begin{array}{ll}0 & l\\-l & 0\end{array}\right)$ , $e_{2}^{0}=(\sqrt{}\frac{0}{-1}$ $\sqrt{}\overline{-10}$), $e_{3}^{0}=(^{\sqrt{}\overline{-1}}0$ $-\sqrt{}\overline{-1}0)$ .
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Then, we have

(3. 1) $Ad(e_{1}^{0})e_{2}^{0}=e_{1}^{0}e_{2}^{0}(e_{1}^{0})^{-1}=-e_{2}^{0}$ , $Ad(e_{1}^{0})e_{3}^{0}=-e_{3}^{0}$ ,

$Ad(e_{1}^{0})e_{1}^{0}=-e_{1}^{0}$ ,

$Ad(e_{2}^{0})e_{1}^{0}=-e_{1}^{0}$ , $Ad(e_{2}^{0})e_{2}^{0}=-e_{2}^{0}$ , $Ad(e\mathfrak{Y}e_{3}^{0}=-e_{3}^{0}$ ,

$Ad(e_{3}^{0})e_{1}^{0}=-e_{1}^{0}$ , $Ad(e_{3}^{0})e_{2}^{0}=-e_{2}^{0}$ , $Ad(e_{3}^{0})e_{3}^{0}=e_{3}^{0}$

We see that the subgroup of $SU(2)$ which is generated by the elements, $\{e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\}$ , is iso-
morphic with $D_{2}^{*}$ . From (3. 1), we see that

$I(\tilde{M})=\frac{SU(2)\times D_{2}^{*}}{Z_{2}}$ .

Here $SU(2)\times D_{2}^{*}$ acts on $S^{3}=SU(2)$ by the following way.

(3.2) $\phi(g, k)(g_{0})=gg_{0}k^{-1}$ ,

Therefore, by making use of Theorem $A$, we can see that $M$ is of the form $ S^{3}/\Gamma$ , where
$\Gamma$ is any one of the followings:

(1) {1}, (2) $Z_{2}$ , (3) $D_{2}^{*}$ .
Remark. More precisely, in this case, $M$ is one of the followings:

(1) $S^{3}/\{1\}=S^{3}$ , (2) $S^{3}/Z_{2}=SO(3)$ ,

(3) $S^{3}/D_{2}^{*}=SO(3)/Z_{2}\times Z_{2}$ .
Thirdly, we consider the cases, $(i)-(4)_{5},$ $(i)\cdot(4)_{6},$ $(i)-(4)_{7}$. Then, $M$ is isometric with the

group space $\Sigma$ with certain left-invariant Riemanian metric (cf. [1]), where $\Sigma$ denotes
the universal covering group of $SL(2, R)$ . Then, for example, $\Sigma$ can be constructed as
follows. For any $g\in SL(2, R)$ , let $u$ be any continous curve in $SL(2, R)$ such that $u(O)=1$ ,
$u(1)=g$, and $[u]$ be the equivalence class of all continuous curves $v$ such that $v$ is homo-
topic with $u$ and $v(O)=u(0)=1,$ $v(1)=u(1)=g$. For two continous curves, $u,$ $ w:[0,1]\rightarrow$

$SL(2, R)$ , we put $(u\cdot w)(t)=u(t)w(t),$ $t\in[0,1]$ . Furthermore, we shall define a multi-
plication on $\Sigma$ by $[u]\cdot[w]=[u\cdot w]$ , for any $[u],$ $[w]\in\Sigma$ . Then, by this multiplication, $\Sigma$

gives rise to a 3-dimensional Lie group wich is the universal covering group of $SL(2, R)$

with the covering projection $p$ : $[u]\in\Sigma\rightarrow u(1)\in SL(2, R)$ . The Riemannian structure on
2 corresponds to certain positive definite inner product on SI $(2, R)(cf. [1])$ . Now, we put

$e_{1}^{0}=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $e_{2}^{0}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ , $e_{3}^{0}=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ .
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Then, we have

(3.3) $Ad(e_{1}^{0})e_{1}^{0}=e_{1}^{0}$ , $Ad(e_{1}^{0})e_{2}^{0}=-e_{2}^{0}$ , $Ad(e_{1}^{0})e_{3}^{0}=-e_{3}^{0}$ .
The subgroup of $SL(2, R)$ which is generated by $\{e_{1}^{0}\}$ is isomorphic with $Z_{4}$ . The center
of $SL(2, R)$ is $Z_{2}=\{-1,1\}$ and hence, the center of $\Sigma$ which is generated by $\{[u_{0}]\}$ where

$u_{0}(t)=\left(\begin{array}{ll}cos\pi t & -sin\pi t\\sin\pi t & cos\pi t\end{array}\right)$ , $t\in[0,1]$ .

Thus, the center of $\Sigma$ is isomorphic with $Z$. In this case, we can see that $I\tilde{(M}$) is iso-
morphic with $\Sigma\times L$, where $L=p^{-1}(Z_{4})=p^{-1}(\{1, e_{1}^{0} ,-1$ . $-e_{0^{1}}\})(\equiv Z)$ . Here, $\Sigma\times L$ acts on
$\Sigma$ by the following way.

(3.4) $\phi(g, k)g_{0}=gg_{0}k^{-1}$ , for any $(g, k)\in\Sigma\times L,$ $ g_{0}\in\Sigma$ .
Therefore, by considering Theorem $A$, we can see that $M$ is of the form $\Sigma/\Gamma$ , where $\Gamma$ is
any one of the following groups:

(1) {1}, (2) $Z$.
Lastly, consider the case $(i)-(4)_{8}$. Then, $M$ is isometric with the group space with certain
left-invariant Riemannian metric (cf. [1]). In this case, we can see that $M$ is the above
group space alone by the sake of Theorem A.

4. Cases $V-(\ddagger i)-(1)_{1}\sim V-(ii)-(1)_{5}$

First, consider the cases, $(ii)-(1)_{1},$ $(ii)-(1)_{2}$ . Then, $\tilde{M}$ is isometric with the group space
$SU(2)$ with certain left-invariant Riemannian metric (cf. [1]). In this case, we may ap-
ply the similar arguments as the cases, $(i)-(4)_{1}\sim(i)-(4)_{4}$ .

$I(\tilde{M})=\frac{SU(2)\times D_{2}^{*}}{Z_{2}}$ , and furthermore,

$M$ is of the form $ S^{3}/\Gamma$ , where $\Gamma$ is any one of the following groups:

(1) {1}, (2) $Z_{2}$, (3) $D_{2}^{*}$ .
Secondary, consider the cases, $(ii)-(1)_{3},$ $(ii)-(1)_{4}$ . Then, $\tilde{M}$ is isometric with the group

space with certain left-invariant Riemannin metric (cf. [1]). In this case, we may apply
the similar arguments as the cases, $(i)-(4)_{5}\sim(i)-(4)_{7}$ .
Thus, we see that $M$ is of the form $ R^{3}/\Gamma$ , where $\Gamma$ is any one of the following groups:

(1) {1}, (2) $Z$.
Lastly, consider the case $(ii)-(1)_{5}$ . Then, $\tilde{M}$ is isometric with group space $\theta$ with cer-

tain left-invariant Riemannian metric (cf. [1]). In this case, we may apply the similar
arguments as the case $(i)-(4)_{8}$ . Thus, we see that $M$ is the above group space alone.



$3\cdot dimensionaI$ homogeneous Riemannian manifolds II 75

5. Cases $V-(ii)-(2)_{1}\sim V-(Ii)-(2)_{3}$

First, consider the case $(ii)-(2)$ . Let $G^{*}$ be the connected, simply connected Lie group
with the Lie algebra $i(\tilde{M})$ and $K^{*}$ be the subgroup of $G^{*}$ with the Lie algebra $f$ . Then,

we see that

$G^{*}=SU(2)\times R_{+}=$ { $(g,$ $e^{\beta t})\in SU(2)\times R_{+};$ $t\in R$, for some $\beta\neq 0$ }

and

$K^{*}=\{(\left(\begin{array}{ll}e^{-t\sqrt{}\overline{-1}/2} & 0\\e^{t\sqrt{}\overline{-1}/2}0 & \end{array}\right)$ $e^{\beta t});t\in R\}$ ,

and furthermore, $\tilde{M}=G^{*}/K^{*}$ , which is diffeomorphic with $S^{3}$ (cf. [1]).

Then, we can easily see that $\tilde{M}=G^{*}/K^{*}=(G^{*}/Z)/(K^{*}/Z)=G/K$,

where $G=SU(2)\times U(1)$

$=\{(g,$ $\left(\begin{array}{ll}e^{-u\sqrt{}\overline{-1}} & 0\\e^{u\sqrt{}\overline{-1}}0 & \end{array}\right))\in SU(2)\times U(1);u=t/2,$ $t\in R\}$ ,

and $K=$ $(\left(\begin{array}{ll}e^{-u\wedge-1} & 0\\e^{u\sqrt{}\overline{-1}}0 & \end{array}\right),$ $\left(\begin{array}{ll}e^{-u\wedge-1} & 0\\e^{u\sqrt{}\overline{-1}}0 & \end{array}\right))\in SU(2)\times U(1);u\in R$

Then, by making use of (3. 1), we can easily see that

$I(\tilde{M})=\frac{SU(2)\times D_{2}^{*}U(1)}{Z_{2}}$ , and the group $SU(2)\times D_{2}^{*}U(1)$ acts on $SU(2)$

by the following way;

(5. 1) $\phi(g, k)g_{0}=gg_{0}k^{-1}$ , for any $(g, k)\in SU(2)\times D_{2}^{*}U(1),$ $g_{0}\in SU(2)$ .
Thus, considering Theorem $A$ , we can show that $M$ is of the form $ SU(2)/\Gamma=S^{3}/\Gamma$ , where
$\Gamma$ is any one of the following groups:

(1) {1}, (2) $Z_{2m}$ , (3) $D_{2m}^{*}$ ,

for any positive interger $m$ .
Secondary, consider the case $(ii)-(2)_{2}-$ . Let $G^{*}$ be the connected, simply connected Lie

group with the Lie algebra $i(\tilde{M})$ and $K^{*}$ be the subgroup of $G^{*}$ with the Lie algebra $f$ .
Then, we see that $G^{*}=\Sigma\times L$,

where $L=p^{-1}(SO(2))=p^{-1}\{(\left(\begin{array}{ll}cosu & -sinu\\sinu & cosu\end{array}\right);u\in R)\}$

$=\{[\hat{u}]\in\Sigma;\hat{u}(t)=\left(\begin{array}{ll}costu & -sintu\\sintu & costu\end{array}\right),$ $t\in[0,1]\}$ ,



76 K. Sekigawa

and $K^{*}=\{([\hat{u}], [\hat{u}])\in\Sigma\times L;u\not\in R\}$ .
And $\tilde{M}=G^{*}/K^{*}$ . In this case, $\Sigma\times L$ acts on $\Sigma$ by the following way.

(5. 2) $\phi(g, k)g_{0}=gg_{0}k^{-1}$ , for any $(g, k)\in\Sigma\times L,$ $ g_{0}\in\Sigma$ .
Therefore, by considering Theorem $A$, we can see that $M$ is of the form $ R^{3}/\Gamma$ , where $\Gamma$

is any one of the following groups:

(1) {1}, (2) $Z$ .
Lastly, consider the case $(ii)\cdot(2)_{3}$ . Then, $\tilde{M}$ is isometric with the group of upper tri-

angular matrices of degree 3, $\Psi$

$=\{\left(\begin{array}{lll}1 & u & v\\0 & 1 & w\\0 & 0 & l\end{array}\right)\in GL(3, R);u,$ $v,$ $w\in R\}$ , with certain $left\cdot invariant$ Riemannian metric

(cf. [1]). In this case, from the arguments in [1], we see that

$G=I(\tilde{M})$

$=\{[0001$ $b\cos t-a\sin t-\sin tc_{0}ost$ $b\sin t+a\cos t\cos t\sin t0$ $-a_{1}bc)\in GL(4, R);t,$ $a,$ $b,$ $c\in R|$ ,

and

$K$($the$ subgroup of $G=I(\tilde{M})$ with the Lie algebra f)

$=|[0001$ $-\sin tc_{0}ost0$ $co_{0}st\sin t0$ $0001|\in GL(4, R);t\in R\}$ .

Then, $G=I(\tilde{M})$ acts on $\tilde{M}$ by the following way.

(5. 3) $\phi(g)(x_{1}, x_{2}, x_{3})$

$=(x_{1}\cos t-x_{2}\sin t+a,$ $x_{1}\sin t+x_{2}\cos t+a$,

$-x_{1}(b\cos t-a\sin t)+x_{2}(b\sin t+a\cos t)+x_{3}+c)$ ,

where

$g=\{0001$ $b\cos t-a\sin t-\sin tco_{0}st$ $b\sin t+a\cos t\cos t\sin t0$ $-1bca|$ .
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Let $\Gamma$ be a discrete subgroup of $G$ which acts freely and properly discontinuously on $\tilde{M}$

$=G/K$. Then, by (5. 3), we see that

$\Gamma=(\left(\begin{array}{llll}1 & 0 & 0 & nc\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{array}\right)\in G;n\in Z)$ , for some fixed $c\neq 0$ .

Therefore, by Theorem $A$, we can see that $M$ is of the form $ R^{3}/\Gamma$ , where $\Gamma$ is any one of
the following groups:

(1) {1}, (2) $z$.
Remark. Let $\Pi$ be the product set of $\Psi$ and $SO(2)$ , say, $\Pi=\Psi\times SO(2)$ . Now, we

define a multiplication on $\Pi$ by the following way.

$[|001$ $0a1$ $cb1)$ $(_{-\sin t}\cos tcont\sin t))$ . $(\left(\begin{array}{lll}1 & a^{\prime} & b^{\prime}\\0 & 1 & c^{\prime}\\0 & 0 & 1\end{array}\right)$ $\left(\begin{array}{ll}cost^{\prime} & sint^{\prime}\\-sint’ & cost^{\prime}\end{array}\right))$

$=\{$ ( $001$ $a^{\prime}\cos t-b^{\prime}01$

sin
$t+ac+c^{\prime}-a^{\prime}(bca^{\prime}osstin-ta+sib^{\prime}n1tc)0+sbt(b\sin t+a\cos t)$),

$(_{-\sin(t+t’)}\cos(t+t^{\prime})$ $\cos(t\sin(fI_{t^{\prime})}^{t^{\prime})}))$ .

Then, $\Pi$ is a connected $4\cdot dimensinoal$ Lie group, and furthermore, isomorphic with $G$ by

$[[001$ $a01$ $cb1|,$ $\left(\begin{array}{ll}cost & sint\\-sint & cost\end{array}\right)|\leftarrow\rightarrow(0001$ $b\cos t-a\sin t-\sin t\cos t0$ $b\sin t+a\cos 1\cos t\sin t0$ $-cb1a|$

As a group of isometries of $M=\Psi,$ $\Pi$ acts on $ M=\Psi$ by the following way.

$\phi(\left(\begin{array}{lll}1 & a & b\\0 & 1 & c\\0 & 0 & 1\end{array}\right)’\left(\begin{array}{ll}cost & sint\\-sint & cost\end{array}\right))[001$ $0u1$ $w1v)$

$=[001$ $u\cos t-v\sin t+a01$ $w+c-u(b\cos t-a\sin t)+v(b\sin t+a\cos t)u\sin t+v_{1}\cos t+b\backslash |$
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