3-dimensional homogeneous Riemannian manifolds

By
Kouei Sekigawa*

(Received November 30, 1977)

0. Introduction

In the previous paper, [1], we have given a list of Lie algebras of Lie groups of full isometries acting transitively and effectively on 3-dimensional connected homogeneous Riemannian manifolds. In this paper, we shall give a list of all 3 -dimensional connected homogeneous Riemannian manifolds. The arguments in this paper is the continuation of the ones in [1]. To avoid repitition, we shall adopt the same notations and terminologies as [1]. In our arguments, the following result plays an important role.

Theorem A (J. A. Wolf [3]) Let \widetilde{M} and M be Riemannian manifolds and let $\widetilde{M}=M$ $\mid \Gamma$, where Γ is a group of isometries of \widetilde{M} acting freely and properly discountinously. Let G be the centralizer of Γ in the group $I(\widetilde{M})$ of all isometries on \widetilde{M}. Then, M is homogeneously if and only if G is transitive on \widetilde{M}. And if M is homogeneous, then every element of Γ is a Clifford translation.

Let M be a 3-dimensional connected homogeneous Riemannian manifold and \widetilde{M} be its Riemannian universal covering manifold.

1. Cases I, II, III

First, we consider the case I. In this case, M is isometric with a 3 -dimensional sphere with a Riemannian metric of a positive constant curvature. Then, according to J. A. Wolf, [3], M is of the form, S^{3} / Γ, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) \boldsymbol{Z}_{m},
(3) \boldsymbol{D}_{m}^{*},
(4) T^{*},
(5) O^{*},
(6) I^{*},
here $\boldsymbol{D}_{\boldsymbol{m}}^{*}, \boldsymbol{T}^{*}, \boldsymbol{O}^{*}$, and \boldsymbol{I}^{*} denote the binary dihedral, binary tetrahedral, binary octahedral and binary icosahedral groups as usual, and m is any positive integer.

Secondary, we consider the case II. In this case, \widetilde{M} is isometric with a 3-dimensional Euclidean space \boldsymbol{E}^{3}. Then, according to J. A. Wolf, [3], M is of the form, $\boldsymbol{E}^{3} / \Gamma$, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) \boldsymbol{Z},
(3) $\boldsymbol{Z} \times \boldsymbol{Z}$,
(4) $\boldsymbol{Z} \times \boldsymbol{Z} \times \boldsymbol{Z}$.

Lastly, we consider the case III. In this case, \widetilde{M} is isometric with a 3 -dimensional Hyperbolic space \boldsymbol{H}^{3}. Then, according to J. A. Wolf, [3], M is \boldsymbol{H}^{3} alone.

[^0]
2. Case

First, we consider the case IV-(i). Then, \widetilde{M} is isometric with $\boldsymbol{S}^{2} \times \boldsymbol{E}^{1}$. And $I_{0}(\widetilde{M})$ is isomorphic with $S O(3) \times \boldsymbol{R}^{1}$. In this case, by the result of H. Takagi (cf. [2]), M is of the the form $\boldsymbol{S}^{2} \times \boldsymbol{E}^{1} / \Gamma$, where Γ is any one of the following group:
(1) $\{1\}$,
(2) $\boldsymbol{Z}_{2} \times\{0\}$,
(3) $\{1\} \times\{\beta\}$
(4) a group which is semi-direct product of the infinite cyclic group $<(-1, \beta)>$ generated by $(-1, \beta)$ and $Z_{2} \times\{0\}$,
here, $\beta \neq 0$.
Secondary, we consider the case IV-(ii). Then, \widetilde{M} is isometric with $\boldsymbol{H}^{2} \times \boldsymbol{E}^{1}$. And $I_{0}(\widetilde{M})$ is isomorphic with $S O(2,1) \times \boldsymbol{R}^{1}$. In this case, by the result of H. Takagi, [2], M is of the form $\boldsymbol{H}^{2} \times \boldsymbol{E}^{1} / \Gamma$, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) $\{1\} \times\{\beta\}$
here $\beta \neq 0$.

3. Cases V-(i)

In this case, \widetilde{M} is isometric with a certain group space.
First, we consider the case (i)-(2) (or (1), or (i)-(3)). Then, we can easily see that $I(\widetilde{M})$ is isomorphic with

$$
\Theta=\left\{\left(\begin{array}{ccc}
e^{u} & 0 & v \\
0 & e^{-u} & w \\
0 & 0 & 1
\end{array}\right) \in G L(3, \boldsymbol{R}) ; u, v, w \in \boldsymbol{R}\right\}
$$

or

$$
\boldsymbol{\Theta}^{\prime}=\left\{\left(\begin{array}{ccc}
e^{\beta w} e^{\overline{D_{0}} w \sqrt{ }-1} & 0 & u+v \sqrt{ }-1 \\
0 & e^{\beta w} e^{-\sqrt{D_{0}} w \sqrt{-1}} & u-v \sqrt{ }-1 \\
0 & 0 & 1
\end{array}\right) \in G L(3, C) ; u, v, w \in \boldsymbol{R}\right\}
$$

where $\beta=-(c+d) / 2$, (cf. [1]).
Thus, $I(\widetilde{M})$ and hence, \widetilde{M} is diffeomorphic with \boldsymbol{R}^{3}. In this case, M is isometric with the group space $I(\widetilde{M})$ with the left-invariant Riemannian metric as in [1].

Secondary, we consider the cases, (i)-(4) ${ }_{1}$, (i)-(4) $)_{2}$. Then, \widetilde{M} is isometric with the group space $S U(2)$ (or $S p i n(3)$, or $S p(1)$) with a certain left-invariant Riemannian metric given by [1].

We put $e_{1}^{0}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), \quad e_{2}^{0}=\left(\begin{array}{cc}0 & \sqrt{-1} \\ \sqrt{-1} & 0\end{array}\right), \quad e_{3}^{0}=\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & -\sqrt{-1}\end{array}\right)$.

Then, we have

$$
\begin{align*}
& \operatorname{Ad}\left(e_{1}^{0}\right) e_{2}^{0}=e_{1}^{0} e_{2}^{0}\left(e_{1}^{0}\right)^{-1}=-e_{2}^{0}, \quad \operatorname{Ad}\left(e_{1}^{0}\right) e_{3}^{0}=-e_{3}^{0}, \tag{3.1}\\
& \operatorname{Ad}\left(e_{1}^{0}\right) e_{1}^{0}=-e_{1}^{0}, \\
& \operatorname{Ad}\left(e_{2}^{0}\right) e_{1}^{0}=-e_{1}^{0}, \quad \operatorname{Ad}\left(e_{2}^{0}\right) e_{2}^{0}=-e_{2}^{0}, \quad \operatorname{Ad}\left(e_{2}^{0}\right) e_{3}^{0}=-e_{3}^{0}, \\
& \operatorname{Ad}\left(e_{3}^{0}\right) e_{1}^{0}=-e_{1}^{0}, \quad \operatorname{Ad}\left(e_{3}^{0}\right) e_{2}^{0}=-e_{2}^{0}, \quad A d\left(e_{3}^{0}\right) e_{3}^{0}=e_{3}^{0}
\end{align*}
$$

We see that the subgroup of $S U(2)$ which is generated by the elements, $\left\{e_{1}^{0}, e_{2}^{0}, e_{3}^{0}\right\}$, is isomorphic with \boldsymbol{D}_{2}^{*}. From (3.1), we see that

$$
I(\widetilde{M})=\frac{S U(2) \times \boldsymbol{D}_{2}^{*}}{\boldsymbol{Z}_{2}}
$$

Here $S U(2) \times D_{2}^{*}$ acts on $S^{3}=S U(2)$ by the following way.

$$
\begin{equation*}
\phi(g, k)\left(g_{0}\right)=g g_{0} k^{-1} \tag{3.2}
\end{equation*}
$$

Therefore, by making use of Theorem A, we can see that M is of the form S^{3} / Γ, where Γ is any one of the followings:
(1) $\{1\}$,
(2) \boldsymbol{Z}_{2},
(3) \boldsymbol{D}_{2}^{*}.

Remark. More precisely, in this case, M is one of the followings:

$$
\begin{aligned}
& \text { (1) } \boldsymbol{S}^{3} /\{1\}=\boldsymbol{S}^{3}, \quad \text { (2) } \quad \boldsymbol{S}^{3} / \boldsymbol{Z}_{2}=S O(3), \\
& \text { (3) } \boldsymbol{S}^{3} / \boldsymbol{D}_{2}^{*}=S O(3) / \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} .
\end{aligned}
$$

Thirdly, we consider the cases, (i)-(4) $)_{5}$, (i)-(4) $)_{6}$, (i)-(4) $)_{7}$. Then, M is isometric with the group space Σ with certain left-invariant Riemanian metric (cf. [1]), where Σ denotes the universal covering group of $S L(2, \boldsymbol{R})$. Then, for example, Σ can be constructed as follows. For any $g \in S L(2, \boldsymbol{R})$, let u be any continous curve in $S L(2, \boldsymbol{R})$ such that $u(0)=1$, $u(1)=g$, and $[u]$ be the equivalence class of all continuous curves v such that v is homotopic with u and $v(0)=u(0)=1, v(1)=u(1)=g$. For two continous curves, $u, w:[0,1] \longrightarrow$ $S L(2, \boldsymbol{R})$, we put $(u \cdot w)(t)=u(t) w(t), t \in[0,1]$. Furthermore, we shall define a multiplication on Σ by $[u] \cdot[w]=[u \cdot w]$, for any $[u],[w] \in \Sigma$. Then, by this multiplication, Σ gives rise to a 3 -dimensional Lie group wich is the universal covering group of $\operatorname{SL}(2, \boldsymbol{R})$ with the covering projection $p:[u] \in \Sigma \rightarrow u(1) \in S L(2, \boldsymbol{R})$. The Riemannian structure on Σ corresponds to certain positive definite inner product on $\mathfrak{s l}(2, \boldsymbol{R})$ (cf. [1]). Now, we put

$$
e_{1}^{0}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad e_{2}^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad e_{3}^{0}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then, we have

$$
\begin{equation*}
\operatorname{Ad}\left(e_{1}^{0}\right) e_{1}^{0}=e_{1}^{0}, \quad \operatorname{Ad}\left(e_{1}^{0}\right) e_{2}^{0}=-e_{2}^{0}, \quad \operatorname{Ad}\left(e_{1}^{0}\right) e_{3}^{0}=-e_{3}^{0} . \tag{3.3}
\end{equation*}
$$

The subgroup of $S L(2, \boldsymbol{R})$ which is generated by $\left\{e_{1}^{0}\right\}$ is isomorphic with \boldsymbol{Z}_{4}. The center of $S L(2, \boldsymbol{R})$ is $\boldsymbol{Z}_{2}=\{-1,1\}$ and hence, the center of Σ which is generated by $\left\{\left[u_{0}\right]\right\}$ where

$$
u_{0}(t)=\left(\begin{array}{rr}
\cos \pi t & -\sin \pi t \\
\sin \pi t & \cos \pi t
\end{array}\right), \quad t \in[0,1]
$$

Thus, the center of Σ is isomorphic with \boldsymbol{Z}. In this case, we can see that $I \widetilde{M})$ is isomorphic with $\Sigma \times L$, where $L=p^{-1}\left(\boldsymbol{Z}_{4}\right)=p^{-1}\left(\left\{1, e_{1}^{0},-1,-e_{0}{ }^{1}\right\}\right)(\cong \boldsymbol{Z})$. Here, $\Sigma \times L$ acts on Σ by the following way.

$$
\begin{equation*}
\phi(g, k) g_{0}=g g_{0} k^{-1}, \quad \text { for any }(g, k) \in \Sigma \times L, g_{0} \in \Sigma \tag{3.4}
\end{equation*}
$$

Therefore, by considering Theorem A , we can see that M is of the form Σ / Γ, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) \boldsymbol{Z}.

Lastly, consider the case (i)-(4)8. Then, M is isometric with the group space with certain left-invariant Riemannian metric (cf. [1]). In this case, we can see that M is the above group space alone by the sake of Theorem A.
4. Cases V-(ii)-(1) $\mathbf{1}_{1} \sim \mathbf{V}$-(ii)-(1) $)_{5}$

First, consider the cases, (ii)-(1) $)_{1}$, (ii)-(1) $)_{2}$. Then, \widetilde{M} is isometric with the group space $S U(2)$ with certain left-invariant Riemannian metric (cf. [1]). In this case, we may apply the similar arguments as the cases, (i)-(4) $\sim(\mathbf{i})-(4)_{4}$.

$$
I(\widetilde{M})=\frac{S U(2) \times D_{2}^{*}}{Z_{2}}, \quad \text { and furthermore }
$$

M is of the form S^{3} / Γ, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) \boldsymbol{Z}_{2},
(3) \boldsymbol{D}_{2}^{*}.

Secondary, consider the cases, (ii)-(1) $)_{3}$, (ii)-(1) $)_{4}$. Then, \widetilde{M} is isometric with the group space with certain left-invariant Riemannin metric (cf. [1]). In this case, we may apply the similar arguments as the cases, (i)-(4) $)_{5} \sim(\mathrm{i})-(4)_{7}$.
Thus, we see that M is of the form $\boldsymbol{R}^{3} / \Gamma$, where Γ is any one of the following groups:

$$
\text { (1) }\{1\}, \quad \text { (2) } \boldsymbol{Z} .
$$

Lastly, consider the case (ii)-(1) $)_{5}$. Then, \widetilde{M} is isometric with group space θ with certain left-invariant Riemannian metric (cf. [1]). In this case, we may apply the similar arguments as the case (i)-(4) $)_{8}$. Thus, we see that M is the above group space alone.

5. Cases V-(ii)-(2) \sim V-(ii)-(2) ${ }_{3}$

First, consider the case (ii)-(2). Let G^{*} be the connected, simply connected Lie group with the Lie algebra $\mathfrak{i}(\widetilde{M})$ and K^{*} be the subgroup of G^{*} with the Lie algebra ${ }^{\text {. }}$. Then, we see that

$$
G^{*}=S U(2) \times \boldsymbol{R}_{+}=\left\{\left(g, e^{\beta t}\right) \in S U(2) \times \boldsymbol{R}_{+} ; t \in \boldsymbol{R}, \quad \text { for some } \beta \neq 0\right\}
$$

and

$$
K^{*}=\left\{\left(\left(\begin{array}{cc}
e^{-t \sqrt{-1} / 2} & 0 \\
0 & e^{t \sqrt{-1} / 2}
\end{array}\right), e^{\beta t}\right) ; t \in \boldsymbol{R}\right\},
$$

and furthermore, $\widetilde{M}=G^{*} / K^{*}$, which is diffeomorphic with \boldsymbol{S}^{3} (cf. [1]).
Then, we can easily see that $\widetilde{M}=G^{*} / K^{*}=\left(G^{*} / \boldsymbol{Z}\right) /\left(K^{*} / \boldsymbol{Z}\right)=G / K$,
where $G=S U(2) \times U(1)$

$$
=\left\{\left(g,\left(\begin{array}{lr}
e^{-u \sqrt{-1}} & 0 \\
0 & e^{u \sqrt{-1}}
\end{array}\right)\right) \in S U(2) \times U(1) ; u=t / 2, t \in \boldsymbol{R}\right\},
$$

and $K=\left(\left(\begin{array}{cc}e^{-u \sqrt{-1}} & 0 \\ 0 & e^{u_{\sqrt{ }-1}}\end{array}\right),\left(\begin{array}{cc}e^{-u \sqrt{-1}} & 0 \\ 0 & e^{u \sqrt{-1}}\end{array}\right)\right) \in S U(2) \times U(1) ; u \in \boldsymbol{R}$.
Then, by making use of (3.1), we can easily see that

$$
I(\widetilde{M})=\frac{S U(2) \times \boldsymbol{D}_{2}^{*} U(1)}{\boldsymbol{Z}_{2}}, \text { and the group } S U(2) \times \boldsymbol{D}_{2}^{*} U(1) \text { acts on } S U(2)
$$

by the following way;
(5.1) $\quad \phi(g, k) g_{0}=g g_{0} k^{-1}, \quad$ for any $(g, k) \in S U(2) \times D_{2}^{*} U(1), g_{0} \in S U(2)$.

Thus, considering Theorem A, we can show that M is of the form $S U(2) / \Gamma=\boldsymbol{S}^{3} / \Gamma$, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) $\boldsymbol{Z}_{2 m}$,
(3) $\boldsymbol{D}_{2 m}^{*}$,
for any positive interger m.
Secondary, consider the case (ii)-(2) $)_{2}$. Let G^{*} be the connected, simply connected Lie group with the Lie algebra $\mathfrak{i}(\widetilde{M})$ and K^{*} be the subgroup of G^{*} with the Lie algebra \ddagger.
Then, we see that $G^{*}=\Sigma \times L$,
where $L=p^{-1}(S O(2))=p^{-1}\left\{\left(\left(\begin{array}{rr}\cos u & -\sin u \\ \sin u & \cos u\end{array}\right) ; u \in \boldsymbol{R}\right)\right\}$

$$
=\left\{[\hat{u}] \in \Sigma ; \hat{u}(t)=\left(\begin{array}{rr}
\cos t u & -\sin t u \\
\sin t u & \cos t u
\end{array}\right), t \in[0,1]\right\},
$$

and $K^{*}=\{([\hat{u}],[\hat{u}]) \in \Sigma \times L ; u \notin \boldsymbol{R}\}$.
And $\widetilde{M}=G^{*} / K^{*}$. In this case, $\Sigma \times L$ acts on Σ by the following way.
(5.2) $\quad \phi(g, k) g_{0}=g g_{0} k^{-1}, \quad$ for any $(g, k) \in \Sigma \times L, g_{0} \in \Sigma$.

Therefore, by considering Theorem A, we can see that M is of the form $\boldsymbol{R}^{3} / \Gamma$, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) Z.

Lastly, consider the case (ii)-(2) ${ }_{3}$. Then, \widetilde{M} is isometric with the group of upper triangular matrices of degree $3, \Psi$
$=\left\{\left(\begin{array}{ccc}1 & u & v \\ 0 & 1 & w \\ 0 & 0 & 1\end{array}\right) \in G L(3, \boldsymbol{R}) ; u, v, w \in \boldsymbol{R}\right\}$, with certain left-invariant Riemannian metric
(cf. [1]). In this case, from the arguments in [1], we see that

$$
\begin{aligned}
& G=I(\widetilde{M}) \\
& =\left\{\left(\begin{array}{cccr}
1 & b \cos t-a \sin t & b \sin t+a \cos t & c \\
0 & \cos t & \sin t & -a \\
0 & -\sin t & \cos t & b \\
0 & 0 & 0 & 1
\end{array}\right) \in G L(4, \boldsymbol{R}) ; t, a, b, c \in \boldsymbol{R}\right\},
\end{aligned}
$$

and
K (the subgroup of $G=I(\widetilde{M})$ with the Lie algebra ${ }^{f}$)

$$
=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos t & \sin t & 0 \\
0 & -\sin t & \cos t & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in G L(4, \boldsymbol{R}) ; t \in \boldsymbol{R}\right\}
$$

Then, $G=I(\widetilde{M})$ acts on \widetilde{M} by the following way.
(5.3) $\quad \phi(g)\left(x_{1}, x_{2}, x_{3}\right)$
$=\left(x_{1} \cos t-x_{2} \sin t+a, x_{1} \sin t+x_{2} \cos t+a\right.$,
$\left.-x_{1}(b \cos t-a \sin t)+x_{2}(b \sin t+a \cos t)+x_{3}+c\right)$,
where

$$
g=\left(\begin{array}{cccc}
1 & b \cos t-a \sin t & b \sin t+a \cos t & c \\
0 & \cos t & \sin t & -a \\
0 & -\sin t & \cos t & b \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Let Γ be a discrete subgroup of G which acts freely and properly discontinuously on \widetilde{M} $=G / K$. Then, by (5.3), we see that

$$
\left.\Gamma=\left(\begin{array}{cccc}
1 & 0 & 0 & n c \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in G ; n \in \boldsymbol{Z}\right) \text {, for some fixed } c \neq 0
$$

Therefore, by Theorem A, we can see that M is of the form $\boldsymbol{R}^{3} / \Gamma$, where Γ is any one of the following groups:
(1) $\{1\}$,
(2) \boldsymbol{Z}.

Remark. Let Π be the product set of Ψ and $S O(2)$, say, $\Pi=\Psi \times S O(2)$. Now, we define a multiplication on Π by the following way.

$$
\left.\begin{array}{l}
\left(\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \operatorname{con} t
\end{array}\right)\right) \cdot\left(\left(\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{cc}
\cos t^{\prime} & \sin t^{\prime} \\
-\sin t^{\prime} & \cos t^{\prime}
\end{array}\right)\right) \\
=\left(\left(\begin{array}{cc}
1 & a^{\prime} \cos t-b^{\prime} \sin t+a \\
0 & 1 \\
0 & a^{\prime} \sin t+b^{\prime} \cos t+b \\
0 & 0
\end{array}\right)\right. \\
\left(\begin{array}{r}
\cos \left(t+t^{\prime}\right) \\
-\sin \left(t+t^{\prime}\right) \\
-\sin \left(t+t^{\prime}\right)
\end{array}\right) \cos \left(t+t^{\prime}\right)
\end{array}\right) . .
$$

Then, Π is a connected 4 -dimensinoal Lie group, and furthermore, isomorphic with G by

$$
\left(\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{rc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\right) \leftrightarrow\left(\begin{array}{cccc}
1 & b \cos t-a \sin t & b \sin t+a \cos t & c \\
0 & \cos t & \sin t & -a \\
0 & -\sin t & \cos t & b \\
0 & 0 & 0 & 1
\end{array}\right)
$$

As a group of isometries of $M=\Psi, \Pi$ acts on $M=\Psi$ by the following way.

$$
\begin{aligned}
& \phi\left(\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{rr}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\left(\begin{array}{lll}
1 & u & v \\
0 & 1 & w \\
0 & 0 & 1
\end{array}\right)\right. \\
& =\left(\begin{array}{ccc}
1 & u \cos t-v \sin t+a & u \sin t+v \cos t+b \\
0 & 1 & w+c-u(b \cos t-a \sin t)+v(b \sin t+a \cos t) \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

References

[1] K. Sekigawa. 3-dimensional homogeneous Riemannian manifolds I. Sci. Rep. Niigata Univ., 14 (1977), 5-14.
[2] H. Takagi. Conformally flat Riemannian manifolds admitting a transitive group of isometries, II Tôhoku Math. J., 27 (1975), 445-451.
[3] J. A. Wolf. Spaces of constant curvature. McGraw-Hill, New York, 1967.

[^0]: * Niigata University

