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Introduction

In this note we shall consider the torus degree of symmetry of simple Lie groups
$SU(3)$ and $G_{2}$ , where the torus degree of symmetry of a manifold $M$, denoted by $T(M)$, is
by definition the maximal dimension of torus which can act on the manifold $M$ effective-
ly (eee [3]).

We shall prove the following.

THEOREM A. $T(SU(3))=4$ .
THEOREM B. $T(G_{2})=4$ .
This work is motivated by the following conjecture of W. Y. Hsiang ([3]);

The torus degree of symmetry of compact semi-simple Lie group $Gis$ equal to 2 $rkG$ .
In the following we shall consider only differentiable actions and use the notations:

(1) $X\sim Y$ means $H^{*}(X:A)\cong H^{*}(Y:A)$

$A$

as algebras, where $A$ is a commutative ring.
(2) $Q$ denotes the field of rational numbers and $Z_{n}$ a cyclic group of order $n$ .

1. Statement of results

In this section we shall prove Theorems A and $B$ modulo some propositions, which
are proved in the subsequent sections.

In the first place we shall consider the case of $SU(3)$ and put $X=SU(3)$ .
Suppose $T(X)\geqq 5$ . Let a 5-dimensional torus $T^{\prime\prime}$ act on $X$ by $\Phi:T^{\prime}\times X\rightarrow X$. From a

result in [11, it follows that rk $\Phi\leqq 2$ , where rk $\Phi=\min\{\dim T^{\prime\prime}/T_{x^{\prime\prime}} : x\in X\}$ . If rk $\Phi$

$=0$ (respectively 1.), some $5\cdot dimensional$ (respectively 4-dimensional) subtorus of $T^{\prime\prime}$ has
a fixed point. Since $X\sim S^{3}\times S^{5}$ , the fixed point set of any torus action has Q-cohomology

ring of product of $twooddQ$ dimensional spheres ([2]), and hence it is connected and at
least 2-dimensional. It follows from the consideration of local representation at fixed
point that this is impossible. Thus rk $\Phi=2$ , and hence some 3-dimensional subtorus $T^{\prime}$
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has a fixed point. It can be shown that there is a one-dimensional subtorus $T$ of $T$ which
has 6-dimensional fixed point set. Consider the subgroup $Z_{2}$ of $T$. Since the restricted
action of $Z_{2}$ on $X$ preserves orientation and $T$ acts effectively on $X,$ $\dim F(Z_{2}, X)$ must be
6, which implies that $F(T, X)$ is a component of $F(Z_{2}, X)$ . In section 2, we shall prove
the following

PROPOSITION 1. There is no orientation preserving involution on $X$ with fixed point set
one of whose components has $Q\cdot cohomology$ ring of $S^{3}\times S^{5}$ or $S^{1}\times S^{5}$.

It is clear that Proposition 1 implies Theorem A.
REMARK. In the proof of Proposition 1 we use only the fact that $X$ has Q-cohomogy

ring of $S^{3}\times S^{5}$ and $Z_{2}$-cohomology ring of $SU(3)$ . Hence we have the following
$THEOREMA^{\prime}$ $LetMbeamanifoldsuchthatM\sim S^{3}\times S^{5}andM\sim SU(3)$ . Then there is

$Q$ $Z_{2}$

no one-dimensional torus action on $M$ whose fixed point set is $6\cdot dimensional$.
Next we shall consider the case of $G_{2}$. Put $X=G_{2}$. Suppose a 5-dimensional torus

$T^{\prime}$ act onXby $\Phi$ : $T^{\prime}\times X\rightarrow X$ As in the case of SU(3), we have rk $\Phi\leqq 2$.

Case 1. rk $\Phi=0$.
Case 2. rk $\Phi\leqq 1$ .
In these cases there is a subtorus $T^{\prime}$ of dimension 4 whose fixed point set $F(T^{\prime}, X)$ is

not empty. It follows from the Borel formula that there is a corank one subtorus $T_{1}$ of
$T$ such that $\dim F(T_{1}, X)>\dim F(T^{\prime}, X)$. Consider the action of $T_{1}$ obtained by the
restriction. Since the action of $T^{\prime\prime}$ is effective, the same argument as above shows that
there is a corank one subtorus $T_{2}$ of $T_{1}$ such that $\dim F(T_{2}, X)>\dim F(T_{1}, X)$ . Thus we
obtain a sequence of fixed point sets:

$F(T^{\prime}, X)\subset F(T_{1}, X)\subset F(T_{2}, X)\subset\cdots\cdots\subset F(Tk, X)\subset X$

Cleary $k=4$ . It is easy to see that there is a one dimensional subtorus $T$ of $T^{\prime\prime}$ such that
$F(T, X)$ is 6-dimensional or 10-dimensional.

Subcase 1. $\dim F(T, X)=6$.
Take the subgroup $Z_{2}$ of $T$. Then $F(Z_{2}, X)$ is 6-dimensional, $8\cdot dimensionalor$ at least

10-dimensional. Let $F_{0}$ be a component of $F(Z_{2}, X)$ containing $F(Z_{2}, X)$. Assumedim
$F_{0}=8$. Then in section 3, we shall prove the following

PROPOSITION 2.
$F_{0}\sim SU(3)Z_{2}$

and
$F_{0}\sim S^{3}\times S^{5}Q$

Thus $T$ acts on $F_{0}$ with 6-dimensional fixed point set, which is impossible by Theorem
$A^{\prime}$ .

The case in which $F_{0}$ is 6-dimensional or at least 10-dimensional does not occure by
the following

PROPOSITION 3. In the above situation, there is no involution on $X$ whose fixed point set
is 6-dimensional and has Q-cohomology ring ofproduct of two odd dimensional spheres.
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PROPOSITION 4. In the above situation there is no involution on $X$ whose fixed point set
is at least 10-dimensional.

Sucase 2. $DimF(T, X)=10$ .

This case is clearly impossible by Proposition 4.

Case 2. rk $\Phi=2$ .
In this case there is a 3-dimensional torus $T^{\prime}$ of $T^{\prime\prime}$ such that $ F(T^{\prime}, X)\neq\Phi$ .

Consider a sequence of fixed point sets:

$F(T^{\prime}, X)\subset F_{1}\subset F_{2}\subset X$.
If $\dim F_{1}=6$ , there is a one dimensional subtorus $T$ of $T^{\prime}$ such that $\dim F(T, X)=6$ . The
same arguments as in subcase 1 of case 1 show that this is impossible. If $\dim F_{1}>8$ .
then there is a one-dimensional subtorus $T$ of $T^{\prime\prime}$ such that $\dim F(T, X)\geqq 10$, which is
impossible by Proposition 4. Thus it is sufficient to consider only the case in which every
2-dimensional subtorus of $T^{\prime}$ has at most 4-dimensional fixed point set and every one
dimensional subtorus of $T^{\prime}$ has 8-dimensional fixed point set. Consider the action of a 2-
dimensional subtorus $T^{2}$ obtained by restriction and apply the Borel formula at $x\in F(T^{2}$ ,
$X)$ . We have

$\dim X-\dim F(T^{2}, X)$

$=\sum_{K}\{\dim F(K, X)-\dim(F(T^{2}, X))\}$ ,

where $K$ denotes subtorus of $T^{2}$ of codimension 1, our assumptin shows that $10=a(8-4)$ ,

where $a$ is the number of $K$ This is clearly impossible. Thus we have proved Theorem B.

2. Proof of Proposition 1

In this section we shall consider an orientation preserving involution on $X=SU(3)$

with 6-dimensional fixed point set and prove Proposition 1 in section 1. Put $G=Z_{2}$ and
recall $H^{*}(X;Z_{2})=Z_{2}[a]/(a)\otimes\Lambda z_{2}(S_{q}^{2}a),$ $\deg a=3$ .

In this section we ccnsider only $Z_{2}$-cohomology group unless otherwise stated.
LEMMA 1. $X$ is totally non-homologous to zero in the fibre bundle $Xc=X\times EG\rightarrow Bc$

$G$

PROOF. Consider the spectral sequence of the fibration $Xc\rightarrow Bc$ . Since $ffl_{2’}^{3}=E_{4}^{0,3}$ ,
every element of $H^{3}(X)$ is transgressive and hence $Sq^{2}a$ is also transgressive. Since the
action of $G$ on $X$ has fixed point, the homomorphism $H^{*}(B)\rightarrow H^{*}(Xc)$ is injective.
Then the transgression is trivial. In fact consider the following commutative diagram;

$\delta$ $j^{*}$

$H^{3}(X)\rightarrow H^{4}(Xc, X)\rightarrow H^{4}(XG)$

$\uparrow$ $\backslash q^{*}\uparrow\pi^{*}$

$H^{4}(B_{G}, X)$ $\cong$ $H^{4}(Bc)$.



46 T. Watabe

Let $\tau(x)=y$ ( $\tau$ denotes the transgression). By definition of $\tau$ , we have $\delta(x)=q^{*}(y)$ . Then
$\pi^{*}(y)=j^{*}q^{*}(y)=j^{*}\delta(x)=0$. Since $\pi^{*}$ is injective, $y=0$. Since $H^{*}(X)$ is generated by $a$ and
$Sq^{2}a$, the homorphism $i^{*}:$ $H^{*}(Xc)\rightarrow H^{*}(X)$ is injective. This completes the proof of
lemma.

Find an element $a\in H^{3}(Xc)$ such that $i^{*}(\alpha)=a$ . From a result in [2] (Chap. VII. 1. 4)

it follows that $H^{*}(X_{G})$ is a free $H^{*}(Bc)$-module generated by $a,$ $ Sq^{2}\alpha$, and $a\wp a$ . Let $F_{0}$

denote a 6-dimensional component of $F(G, X)$ and choose a point $x\in F_{0}$. Let $\dot{l}_{0}$ : $(F_{0}, x)c$

$\rightarrow XG$ be the inclusion. Then we have

(2. 1) $j_{0}^{*}(a)=1\otimes b_{3}+t\otimes b_{2}+t^{2}\otimes b_{1}$ ,

where $H^{*}(Bc)=Z_{2}[t]$ and $b;\in H^{i}(F_{0})$ .
LEMMA 2. $b_{3}^{2}=0$.
PROOF. Since $a^{2}=0$, we have $i^{*}(a^{2})=0$

and hence $a^{2}\in Keri^{*}=<H^{+}(Bc)>$, i.e. $(j_{0}^{*}(\alpha))^{2}=1\otimes b_{3}^{2}+t^{2}\otimes b_{1}^{2}\in<H^{*}(Bc)>$ , which

implies $b_{3}^{2}=0$. The completes the proof.
By the same arguments as in [2] (chap. VII), we can show that $H^{*}(F_{0})$ is multiplica $\cdot$

tively generated by $b_{3},$ $b_{2},$ $b_{1}$ and $S_{q}^{2}b_{3}$ . Note that $\dim$ $ H^{*}(F(Z_{2}, X))=\dim$ $H^{*}(X)=4$ .
$Z_{2}$ $Z_{2}$

It follows from this that $H^{*}(F_{0})$ is generated by $b_{2}$ and $F_{0}-CP_{3}$ or generated by $b_{3}$ .
Clearly both cases contradict to the structure of Q-cohomology ring of $F_{0}$ .

This completes the proof of Proposition 1 in section 1.
In the above arguments we use only the fact $X\sim S^{3}\times S^{5}$ and $X\sim SU(3)$. Hence we

$Q$ $Z_{2}$

have proved the Theorem $A^{\prime}$ .

3. Proof of Propositions 2, 3 and 4

In this section we shall prove Proposition 2, 3 and 4. Put $G=Z_{2},$ $X=(\mathfrak{X}$ and recall
$H^{*}(X;Z_{2})=Z_{2}[a]/a^{4}\otimes\Lambda_{z_{2}}(\wp_{q}a),$ $\deg a=3$. In this section all cohomology groups are on
$Z_{2}$ unless otherwise stated. By the same argument as in section 2, we can prove the
following

LEMMA 1. $X$ is totally non-homologous to zero in the fibration $Xc\rightarrow Bc$

Find an element $a\in H^{3}(Xc)$ such that $i^{*}(a)=a$, where $i:X\rightarrow Xc$ inclusion. Denote
$\beta=S_{q}^{2}$ $a$ and $F_{0}$ the component of $F(G, X)$ which contains $F(T, X)$. Choose a point $x\in F_{0}$

and denote $j_{0}$ : $(F_{0}, x)G\rightarrow(Xc, xc)$ inclusion. We have

(1) $j_{0}^{*}(a)=1\otimes b_{3}+t\otimes b_{2}+t^{2}\otimes b_{1}$

and

(2) $j_{0^{*}}(\beta)=i_{0}^{*}(\wp_{q^{a}})=1\otimes S_{q}^{2}b_{3}+f\otimes b_{2}^{2}+\mu\otimes b_{1}$ .
Note $H^{s}(F_{0})$ is generated as algebra by $b_{1},$ $b_{2},$ $b_{3}$ and $S_{q}^{2}b_{3}$ and $\dim$ $H^{*}(F_{0})\leqq 8$. By the

$Z_{2}$

same argument as in section 2 we can prove
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LEMMA 2. $b_{3}^{4}=0,$ $(S_{q}^{2}b_{3})^{2}=0$ , and $S_{q}^{1}b_{3}=0$ .
Moreover we prove

LEMMA 3. Assume $b_{3}\neq 0$ . Then we have
a) if $b_{1}=0$ , then $b_{2}=0$ .
b) if $b_{1}\neq 0$, then $b_{2}=0$ or $b_{2}=b_{1}^{2}\neq 0$ .
c) if $b_{1}\neq 0$ and $b_{2}=0$ , then $b_{3}=b_{1}^{3}$ .
PROOF. Since $j_{0}^{*}$ is surjective in high degrees (see [21. chap. VII), we have

(3) $t^{r}\otimes b_{3}=j_{0^{*}}(A_{1}t^{r}\alpha+A_{2}t^{r-3}a^{2}+A_{3}t^{r-6}\alpha^{3}+Rt^{r-2}\beta+B_{1}t^{r-5}$

$\alpha\beta+B_{2}t^{r-8}a^{2}\beta+B_{3}t^{r-11}\alpha^{3}\beta)$,

$whereAiandBjareinZ_{2}$, $ClearlyA_{1}=1$ .
We have

(4) $t^{r}\otimes b_{3}-j_{0}^{*}(t^{r}\alpha)=t^{r+2}\otimes b_{1}+t^{r+1}\otimes b_{2}$ .
The left hand side of (4) is

$t^{r}\otimes b_{3}-j_{0}^{*}(t^{r}\alpha)$

$=t^{r+2}\otimes B_{0}b_{1}+t^{r+1}\otimes(A_{2}b_{1}^{2}+B_{1}b_{1}^{2})+t^{r}\otimes$

$(A_{2}b_{1}^{3}+B_{1}b_{1}b_{2}+B_{2}b_{1}^{3})+\cdots\cdots$

Compairing coefficients of $t^{k}$ , we have

$b_{1}=Rb_{1}$

$b_{2}=(A_{2}+B_{1})b_{1}^{2}$

and $b_{3}=A_{3}b_{1}^{3}+B_{1}b_{1}b_{2}+B_{2}b_{1}^{3}$ .
It is now easy to show that lemma holds. This completes the proof.

Now we shall prove the Propositions 3 and 4 in section 1.

Case 1. $\dim F_{0}=6$ .
Note that possible generator of $H^{6}(F_{0})$ is $b_{1}^{6},$ $b_{1}^{4}b_{2},$ $b_{1}^{3}b_{3},$ $b_{1}^{2}b_{2}^{2},$ $b_{1}S_{q}^{2}b_{3},$ $b_{3}^{2}$ and $b_{3}^{2}$ .
Subcase 1. $b_{1}^{6}$ is a generator of $H^{6}(F_{0})$ .

Clearly $\dim H^{*}(F_{0})\geqq 7$ . Suppose $\dim H^{*}(F_{0})=7$ .
Then there exsits a component $F_{1}$ of $F(G, X)$ such that $\dim H^{*}(F_{1})=1$ . Since $F_{1}$ is an
orientable closed manifold, $F_{1}=\{pt\}$ . Moreover since $F(G, X)$ is T-invariant, $F(T, X)$

$=F(T, F(G, X))=F_{0}\cup F_{1}$ , which cortradcts to the connectedness of $F(T, X)$. Thus we
have $\dim H^{*}(F_{0})=8$ and $F_{0}$ is connected and $F_{0}=F(T, X)$ . It is known that

$F_{0}\sim S^{1}\times S^{5}Q$

or
$F_{0}\sim S^{3}\times S^{3}Q$

Clearly $\dim H^{3}(F_{0})=2$ . and $b_{1}^{3}$ and $b_{3}$ are generators of $H^{3}(F_{0})$ .

LEMMA 4. $b_{1}b_{3}=0$ .
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PROOF. It follows from lemma 3 that $b_{2}\neq 0$ . We have

$t^{r+1}\otimes b_{2}=the$ right hand side of (3).

Since $b_{2}=b_{1}^{2},$ $A_{1}+B_{1}+A_{2}=1$ and we have

(4) $t^{r+1}\otimes b_{2}-j_{0}^{*}(A_{1}t^{r}\alpha+A_{2}t^{r-3}a^{2}+Rt^{r-5}\alpha\beta)$

$=j_{0}^{*}(A_{3}t^{r-6}a^{3}+B_{0}t^{r-2}\beta+B_{2}t^{-8}\alpha^{2}\beta+Rt^{r-11}\alpha^{3}\beta)$ .
Case of $A_{1}=1$ and $B_{1}=A_{2}=0$ .

Clearly we have

the left hand side of (4) $=l^{r+2}\otimes b_{I}+t^{r}\otimes b_{3}$ .
and hence $b_{3}=b_{1}^{3}$ , which contradicts to our situation.

Case of $A_{2}=1$ and $A_{1}=B_{1}=0$ .
we have

the left hand side of (4) $=l^{r-1}\otimes b_{1}^{4}+t^{r-3}\otimes b_{3}^{2}$ .
and hence $R=0$ and $A_{3}+B_{3}=0$ . Comparing the coefficients of $t^{r-1}$ , we have a contradic-
tion.

Case of $A_{1}=A_{2}=0$ and $B_{1}=1$

We have
the left hand side of (4)

$=t^{r}\otimes b_{1}^{3}+t^{r-1}\otimes b_{1}b_{3}+t^{-2}\otimes b_{1}^{5}+t^{r-3}\otimes(b_{1}^{6}+b_{1}\wp_{q}b^{3})+\cdots\cdots$

and hence $B_{0}=0$ and $A_{3}+B_{2}=1$ . Moreover, by compairing of coefficients of $t^{i}$ in (4) we
have

( i) $b_{1}b_{3}=A_{3}b_{1}^{4}+B_{3}b_{1}^{4}$

(ii) $b_{1}^{5}=A_{3}(b_{1}^{5}+b_{1}^{2}b_{3})+B_{2}b_{1}^{5}+B_{3}b_{1}^{5}$

(iii) $b_{1}^{6}+b_{1}\wp_{q}b_{3}=A_{3}b_{1}^{6}+bb_{1}^{6}+B_{3}(b_{1}^{6}+b_{1}^{3}b_{3})$.

Suppose $A_{3}=1$ and&=0. If $b_{1}b_{3}=0$ , then $R=1$ . From (iii), it follows that $b_{1}^{6}=b_{1}$

$S_{q}^{1}b_{3}$ . Since $\wp_{q}(b_{1}b_{3})=b_{1}\wp_{q}b_{3}$ , we have $b_{1}\wp_{q}b_{3}=0$ and hence $b_{1}^{6}=0$ , which is a contradiction.

If $b_{1}b_{3}\neq 0$, then &=0 and $b_{1}b_{3}=b_{1}^{4}$, which implies $b_{1}^{2}b_{3}=b_{1}^{5}$. It follows from (ii) that $b_{1}^{2}b_{3}=$

$0$ . This is a contradiction. Suppose $A_{3}=0$ and $B_{2}=0$ . It follows from (ii) that &=0 and

hence $b_{I}b_{3}=0$

Case of $B_{1}=A_{1}=A_{2}=1$ .
We have
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$t^{r+2}\otimes b_{1}+t^{r}\otimes(b_{1}^{3}+b_{3})+t^{r-1}\otimes(b_{1}b_{3}+b_{1}^{4})$

$=t^{r+2}\otimes B_{0}b_{1}+t^{r}\otimes(A_{3}b_{1}^{3}+B_{2}b_{1}^{3})+\cdots\cdots$

Since $b_{1}^{3}\neq b_{3}$ , we have $A_{3}b_{1}^{3}+bb_{1}^{3}=b_{1}^{3}+b_{3}$ , which is clearly impossible. These arguments
complete the proof.

The following proposition shows that subcase 1 does not hold.
PROPOSITION 5.

$F_{0}\sim S^{1}Q\times S^{5}$
and

$F_{0}\sim S^{3}\times S^{3}Q$

PROOF. We suppose
$F_{0}\sim S^{1}Q\times S^{5}$

. We may assume that $b_{1}$ is $mod 2$ reduction of an

element of $H^{1}(F_{0}: Z)$. Hence we have $b_{1}^{2}=S_{q}^{1}b_{1}=0$, which is a contradiction. Next we
suppose

$F_{0}\sim S^{3}\times S^{3}Q$
Then we may assume that $b_{1}^{3}$ and $b_{3}$ are $mod 2$ reductions of ele-

$mentsofH^{3}(F_{0}, Z),$ $b_{1}^{3}=r(\gamma_{1})andb_{3}=r(\gamma_{2})$, wherer: $H^{3}(F_{0} : Z)\rightarrow H^{3}(F_{0}: Z_{2})$ is mod2reduc-
tion. We can choose $\gamma_{1}$ and $\gamma_{2}$ such that $\gamma_{1}\gamma_{2}$ is a generator of $H^{6}(F_{0} : Z)$ and hence $r(\gamma_{1}\gamma_{2})$

$\neq 0$, which contradicts to the fact $r(\gamma_{1})r(\gamma_{2})=b_{1}^{3}b_{3}=0$. This completes the proof.

Subcase 2. $b_{1}^{4}b_{2}$ is a generator of $H^{6}(F_{0})$ .
Since $\dim H^{*}(F_{0})>9$ this case does not occur.

Subcase 3. $b_{1}^{3}b_{3}$ is a generator of $H^{6}(F_{0})$.
By the same argument as in subcase 1, we can prove Proposition 5 for this case.

Hence this case does not hold.

Subcase 4. $b_{1}^{2}b_{2}^{2}$ is a generator of $H^{6}(F_{0})$.
It is easy to see that $\dim H^{*}(F_{0})>9$ .
Subcase 5. $b_{1}\wp_{q}b_{3}$ is a generator of $H^{6}(F_{0})$ .

If $b_{3}=b_{1}^{3}$ , then $\wp_{q}b_{3}=b_{1}^{5}$ and hence this case is reduced to subcase 1. Since $b_{1}\wp_{q}b_{3}$

$=\wp_{q}(b_{1}b_{3})$, we have $b_{1}b_{3}\neq 0$ . If $b_{1}b_{3}=b_{1}^{4}$ , then $S_{q}^{2}(b_{1}b_{3})=0$. Hence we have $b_{1}b_{3}\neq b_{1}^{4}$ . If
$b_{1}^{4}\neq 0$ , then $\dim H^{*}(F_{0})>8$. Thus we have $b_{1}^{4}=0$ . By the same argument as in the proof

of Lemma 4, we can prove that $b_{1}b_{3}=0$, which is clearly impossible.

Subcase 6. $b_{2}^{3}$ is a generator of $H^{6}(F_{0})$.

It follows from lemma 3 that $b_{3}=0$ . Assume $b_{1}\neq 0$ . It is easy to see that $b_{2}=b_{1}^{2}$ ,
which is a contradiction. Hence we have $b_{1}=0$, and $F_{0}\sim CP3$ , which contradicts to the

$Z_{2}$

structure of cohomology ring of $F_{0}$ .
Subcase 7. $b_{3}^{2}$ is a generator of $H^{6}(F_{0})$.

Since $b_{3}^{2}=S_{q}^{3}b_{3}=S_{q}^{1}S_{q}^{2}b_{3}\neq 0$ , we have $S_{q}^{2}b_{3}=0$ and hence $b_{1}\neq 0$. It is easy to see that
$\dim H^{*}(F_{0})=5,7$ or 8. Assume $\dim H^{*}(F_{0})=5$ or 7. Then there is a component $F_{1}$ of
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$F(Z_{2}, X)$ such that $\dim H^{*}(F_{1} : Z_{2})=1$ or 2. Clearly in both cases the Euler characteristic
of $F_{1}$ is not zero. Hence $ F(T, F_{1})\neq\phi$ . which is a contradiction. Thus $\dim H^{*}(F_{0})$ must

be 8. Assume $b_{1}\wp_{q}b_{3}\neq 0$ . This case reduces to the subcase 5. If $b_{1}S_{q}^{2}b_{3}=0,$ $F_{0}$ must have

the same Q-cohomology ring of $S^{3}\times S^{3}$ and hence $b_{1}^{3}b_{3}\neq 0$ , which reduces to the subcase 3.

Case 2. $\dim F_{0}=10$.
Assume $b_{3}=0$. Note if $b_{1}\neq 0$, then $b_{2}=b_{1}^{2}\neq 0$ or $b_{2}=0$ . Thus a generator of $H^{10}(F_{0})$ is

one of the following: $b_{1}^{10}$ and $b_{2}^{5}$. In the case of $b_{1}^{10},$ $\dim H^{*}(F_{0})$ is clearly greater than 8,

which is impossible. In the case of $b_{2}^{5},$

$F_{0}\sim CP_{5}Z_{2}$
and hence $\chi(F_{0})\neq 0$ . Since $F(T, X)=$

$F(T, F_{0})$, we have $\chi(F(T, X))\neq 0$, which contradicts to the fact $F(T, X)$ has Q-cohomology
ring of product of odd dimensional spheres. Assume $b_{3}\neq 0$ . $b_{1}$ must be non-zero. We
$mayassumeb_{2}\neq 0,$ $sinceb_{3}=b_{1}^{3}ifb_{2}=0$ . $Itiseasytoseethat\dim H^{*}(F_{0})>9$ .

Case 3. $\dim F_{0}=12$.
By the same argument as case 2, it can be shown that this case does not occur,
Summing up the above arguments, we have proved Propesitions 3 and 4 in section 1.

Case 4. $\dim F_{0}=8$.
In case in which $b_{3}=0$, the same argument as in case 2 shows that this case does not

occur. Now assume $b_{3}\neq 0$ and $b_{1}^{3}\neq b_{3}$ . Note that $b_{2}=0$ or $b_{2}=b_{1}^{2}$ . Then possible gene-

rators of $H^{8}(F_{0})$ are $b_{1}^{5}b_{3},$ $b_{1}^{2}b^{\epsilon},$

$b_{1}^{3}\wp_{q}b_{3}2$ and $b_{3}S_{q}^{2}b_{3}$ . In cases except the case of $b_{3}S_{q}^{2}b_{3}$, it is

easy to see that $\dim H^{*}(F_{0})>8$. Consider the case of $b_{3}\wp_{q}b_{3}$ . Then we way assume $b_{1}=0$ ;
in other words

$F_{0}\sim SU(3)Z_{2}$
We shall prove

$F_{0}\sim SU(3)Q$
Suppose

$H_{3}(F_{0} : Z)$
is torsion

group. Then, by Poincare duality, $H_{5}(F_{0} : Z)\cong H^{3}(F_{0} : Z)$ is also torsion group. Since
$H^{5}(F_{0} : Z)=Hom(H_{5}(F_{0} : Z), Z)+Ext(H_{4}(F_{0} : Z), Z),$ $H_{5}(F_{0} : Z)$ is torsion group. More-
over, since $H^{4}(F_{0})=H^{6}(F_{0})=0$, the $mod 2$ reductions: $H^{i}(F_{0} : Z)\rightarrow H^{i}(F_{0})$ are surjective for
$i=3,5$ . We put $b_{3}=r(\beta_{1})$ and $\wp_{q}b_{3}=r(\beta_{2})$ . Since $\beta_{1}$ and $\beta_{2}$ are torsion elements, we have
$\beta_{1}\beta_{3}=0$ , which implies $b_{3}S_{q}^{2}b_{3}=r(\beta_{1})r(\beta_{2})=r(\beta_{1}\beta_{2})=0$ . Thus we have proved

$F_{0}-S^{3}\times SQ$

This proves Proposition 3 in section 1.
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