On the Torus degree of symmetry of $\operatorname{SU}(\mathbf{3})$ and \mathbf{G}_{2}

By
Tsuyoshi Watabe*

(Received November 10, 1977)

Introduction

In this note we shall consider the torus degree of symmetry of simple Lie groups $S U(3)$ and G_{2}, where the torus degree of symmetry of a manifold M, denoted by $T(M)$, is by definition the maximal dimension of torus which can act on the manifold M effectively (eee [3]).

We shall prove the following.
Theorem A. $\quad T(S U(3))=4$.
Theorem B. $\quad T\left(G_{2}\right)=4$.
This work is motivated by the following conjecture of W. Y. Hsiang ([3]);
The torus degree of symmetry of compact semi-simple Lie group Gis equal to $2 r k$ G.
In the following we shall consider only differentiable actions and use the notations:

```
X~}~Y\mathrm{ means }\mp@subsup{H}{}{*}(X:A)\cong\mp@subsup{H}{}{*}(Y:A
```

as algebras, where A is a commutative ring.
(2) $\quad Q$ denotes the field of rational numbers and Z_{n} a cyclic group of order n.

1. Statement of results

In this section we shall prove Theorems A and B modulo some propositions, which are proved in the subsequent sections.

In the first place we shall consider the case of $S U(3)$ and put $X=S U(3)$.
Suppose $T(X) \geqq 5$. Let a 5 -dimensional torus $T^{\prime \prime}$ act on X by $\Phi: T^{\prime \prime} \times X \rightarrow X$. From a result in [1], it follows that $\operatorname{rk} \Phi \leqq 2$, where $\operatorname{rk} \Phi=\min \left\{\operatorname{dim} T^{\prime \prime} / T_{x^{\prime \prime}}: x \in X\right\}$. If $\operatorname{rk} \Phi$ $=0$ (respectively 1 .), some 5 -dimensional (respectively 4 -dimensional) subtorus of $T^{\prime \prime}$ has a fixed point. Since $X \widetilde{Q} S^{3} \times S^{5}$, the fixed point set of any torus action has Q-cohomology ring of product of two odd dimensional spheres ([2]), and hence it is connected and at least 2 -dimensional. It follows from the consideration of local representation at fixed point that this is impossible. Thus $\operatorname{rk} \Phi=2$, and hence some 3 -dimensional subtorus T^{\prime}

[^0]has a fixed point. It can be shown that there is a one-dimensional subtorus T of T^{\prime} which has 6 -dimensional fixed point set. Consider the subgroup Z_{2} of T. Since the restricted action of Z_{2} on X preserves orientation and T acts effectively on $X, \operatorname{dim} F\left(Z_{2}, X\right)$ must be 6, which implies that $F(T, X)$ is a component of $F\left(Z_{2}, X\right)$. In section 2, we shall prove the following

Proposition 1. There is no orientation preserving involution on X with fixed point set one of whose components has Q-cohomology ring of $S^{3} \times S^{5}$ or $S^{1} \times S^{5}$.

It is clear that Proposition 1 implies Theorem A.
Remark. In the proof of Proposition 1 we use only the fact that X has Q-cohomogy ring of $S^{3} \times S^{5}$ and Z_{2}-cohomology ring of $S U(3)$. Hence we have the following

Theorem A^{\prime} Let M be a manifold such that $M \underset{Q}{\sim} S^{3} \times S^{5}$ and $M \underset{Z_{2}}{\sim} \operatorname{SU}(3)$. Then there is no one-dimensional torus action on M whose fixed point set is 6-dimensional.

Next we shall consider the case of G_{2}. Put $X=G_{2}$. Suppose a 5 -dimensional torus $T^{\prime \prime}$ act on X by $\Phi: T^{\prime \prime} \times X \rightarrow X$. As in the case of $S U(3)$, we have $\mathrm{rk} \Phi \leqq 2$.

Case 1. $\operatorname{rk} \Phi=0$.
Case 2. rk $\Phi \leqq 1$.
In these cases there is a subtorus T^{\prime} of dimension 4 whose fixed point set $F\left(T^{\prime}, X\right)$ is not empty. It follows from the Borel formula that there is a corank one subtorus T_{1} of T^{\prime} such that $\operatorname{dim} F\left(T_{1}, X\right)>\operatorname{dim} F\left(T^{\prime}, X\right)$. Consider the action of T_{1} obtained by the restriction. Since the action of $T^{\prime \prime}$ is effective, the same argument as above shows that there is a corank one subtorus T_{2} of T_{1} such that $\operatorname{dim} F\left(T_{2}, X\right)>\operatorname{dim} F\left(T_{1}, X\right)$. Thus we obtain a sequence of fixed point sets:

$$
F\left(T^{\prime}, X\right) \subset F\left(T_{1}, X\right) \subset F\left(T_{2}, X\right) \subset \cdots \cdots \subset F\left(T_{k}, X\right) \subset X
$$

Cleary $k=4$. It is easy to see that there is a one dimensional subtorus T of $T^{\prime \prime}$ such that $F(T, X)$ is 6 -dimensional or 10 -dimensional.

Subcase 1. $\operatorname{dim} F(T, X)=6$.
Take the subgroup Z_{2} of T. Then $F\left(Z_{2}, X\right)$ is 6 -dimensional, 8 -dimensional or at least 10-dimensional. Let F_{0} be a component of $F\left(Z_{2}, X\right)$ containing $F\left(Z_{2}, X\right)$. Assumedim $F_{0}=8$. Then in section 3 , we shall prove the following

Proposition 2. $F_{0} \widetilde{Z}_{2} S U(3)$ and $F_{0} \widetilde{Q}^{3} \times S^{5}$.
Thus T acts on F_{0} with 6 -dimensional fixed point set, which is impossible by Theorem A^{\prime}.

The case in which F_{0} is 6 -dimensional or at least 10 -dimensional does not occure by the following

Proposition 3. In the above situation, there is no involution on X whose fixed point set is 6 -dimensional and has Q-cohomology ring of product of two odd dimensional spheres.

Proposition 4. In the above situation there is no involution on X whose fixed point set is at least 10-dimensional.

Sucase 2. $\operatorname{Dim} F(T, X)=10$.
This case is clearly impossible by Proposition 4.
Case 2. $\operatorname{rk} \Phi=2$.
In this case there is a 3 -dimensional torus T^{\prime} of $T^{\prime \prime}$ such that $F\left(T^{\prime}, X\right) \neq \Phi$.
Consider a sequence of fixed point sets:

$$
F\left(T^{\prime}, X\right) \subset F_{1} \subset F_{2} \subset X
$$

If $\operatorname{dim} F_{1}=6$, there is a one dimensional subtorus T of T^{\prime} such that $\operatorname{dim} F(T, X)=6$. The same arguments as in subcase 1 of case 1 show that this is impossible. If $\operatorname{dim} F_{1}>8$. then there is a one-dimensional subtorus T of $T^{\prime \prime}$ such that $\operatorname{dim} F(T, X) \geqq 10$, which is impossible by Proposition 4. Thus it is sufficient to consider only the case in which every 2 -dimensional subtorus of T^{\prime} has at most 4 -dimensional fixed point set and every one dimensional subtorus of T^{\prime} has 8 -dimensional fixed point set. Consider the action of a 2 dimensional subtorus T^{2} obtained by restriction and apply the Borel formula at $x \in F\left(T^{2}\right.$, X). We have

$$
\begin{aligned}
\operatorname{dim} X & -\operatorname{dim} F\left(T^{2}, X\right) \\
& =\sum_{K}\left\{\operatorname{dim} F(K, X)-\operatorname{dim}\left(F\left(T^{2}, X\right)\right)\right\}
\end{aligned}
$$

where K denotes subtorus of T^{2} of codimension 1 , our assumptin shows that $10=a(8-4)$, where a is the number of K. This is clearly impossible. Thus we have proved Theorem B.

2. Proof of Proposition 1

In this section we shall consider an orientation preserving involution on $X=S U(3)$ with 6-dimensional fixed point set and prove Proposition 1 in section 1. Put $G=Z_{2}$ and recall $H^{*}\left(X: Z_{2}\right)=Z_{2}[a] /(a) \otimes \Lambda_{Z_{2}}\left(S_{q}^{2} a\right), \operatorname{deg} a=3$.

In this section we censider only Z_{2}-cohomology group unless otherwise stated.
Lemma 1. X is totally non-homologous to zero in the fibre bundle $X_{G}=\underset{G}{X} E_{G} \rightarrow B_{G}$.
Proof. Consider the spectral sequence of the fibration $X_{G} \longrightarrow B_{G}$. Since $E_{2}^{0,3}=E_{4}^{0,3}$, every element of $H^{3}(X)$ is transgressive and hence $S q^{2} a$ is also transgressive. Since the action of G on X has fixed point, the homomorphism $H^{*}(B) \longrightarrow H^{*}\left(X_{G}\right)$ is injective. Then the transgression is trivial. In fact consider the following commutative diagram;

Let $\tau(x)=y$ (τ denotes the transgression). By definition of τ, we have $\boldsymbol{\delta}(x)=q^{*}(y)$. Then $\pi^{*}(y)=j^{*} q^{*}(y)=j^{*} \delta(x)=0$. Since π^{*} is injective, $y=0$. Since $H^{*}(X)$ is generated by a and $S q^{2} a$, the homorphism $i^{*}: H^{*}\left(X_{G}\right) \longrightarrow H^{*}(X)$ is injective. This completes the proof of lemma.

Find an element $\alpha \in H^{3}\left(X_{G}\right)$ such that $i^{*}(\alpha)=a$. From a result in [2] (Chap. VII. 1. 4) it follows that $H^{*}\left(X_{G}\right)$ is a free $H^{*}\left(B_{G}\right)$-module generated by $\alpha, S q^{2} \alpha$, and $\alpha S^{2} \alpha$. Let F_{0} denote a 6-dimensional component of $F(G, X)$ and choose a point $x \in F_{0}$. Let $j_{0}:\left(F_{0}, x\right)_{G}$ $\longrightarrow X_{G}$ be the inclusion. Then we have

$$
\begin{equation*}
j_{0}^{*}(\alpha)=1 \otimes b_{3}+t \otimes b_{2}+t^{2} \otimes b_{1} \tag{2.1}
\end{equation*}
$$

where $H^{*}\left(B_{G}\right)=Z_{2}[t]$ and $b_{i} \in H^{i}\left(F_{0}\right)$.
Lemma 2. $b_{3}^{2}=0$.
Proof. Since $a^{2}=0$, we have $i^{*}\left(\alpha^{2}\right)=0$
and hence $\alpha^{2} \in \operatorname{Ker} i^{*}=<H^{+}\left(B_{G}\right)>$, i.e. $\left(j_{0}^{*}(\alpha)\right)^{2}=1 \otimes b_{3}^{2}+t^{2} \otimes b_{1}^{2} \in<H^{*}\left(B_{G}\right)>, \quad$ which implies $b_{3}^{2}=0$. The completes the proof.

By the same arguments as in [2] (chap. VII), we can show that $H^{*}\left(F_{0}\right)$ is multiplicatively generated by b_{3}, b_{2}, b_{1} and $S_{q}^{2} b_{3}$. Note that $\operatorname{dim}_{Z_{2}} H^{*}\left(F\left(Z_{2}, X\right)\right)=\operatorname{dim} Z_{Z_{2}} H^{*}(X)=4$. It follows from this that $H^{*}\left(F_{0}\right)$ is generated by b_{2} and $F_{0} \sim C P_{3}$ or generated by b_{3}. Clearly both cases contradict to the structure of Q-cohomology ring of F_{0}.

This completes the proof of Proposition 1 in section 1.
In the above arguments we use only the fact $X \widetilde{Q} S^{3} \times S^{5}$ and $X \widetilde{Z_{2}} \underset{\sim}{S U(3) . \text { Hence we }}$ have proved the Theorem A^{\prime}.

3. Proof of Propositions 2, 3 and 4

In this section we shall prove Proposition 2, 3 and 4. Put $G=Z_{2}, X=G_{2}$ and recall $H^{*}\left(X ; Z_{2}\right)=Z_{2}[a] / a^{4} \otimes \Lambda_{z_{2}}\left(S_{q}^{2} a\right)$, deg $a=3$. In this section all cohomology groups are on Z_{2} unless otherwise stated. By the same argument as in section 2, we can prove the following

Lemma 1. X is totally non-homologous to zero in the fibration $X_{G} \rightarrow B_{G}$.
Find an element $\alpha \in H^{3}\left(X_{G}\right)$ such that $i^{*}(\alpha)=a$, where $i: X \rightarrow X_{G}$ inclusion. Denote $\beta=S_{q}^{2} \alpha$ and F_{0} the component of $F(G, X)$ which contains $F(T, X)$. Choose a point $x \in F_{0}$ and denote $j_{0}:\left(F_{0}, x\right)_{G} \rightarrow\left(X_{G}, x_{G}\right)$ inclusion. We have

$$
\begin{equation*}
j_{0}^{*}(\alpha)=1 \otimes b_{3}+t \otimes b_{2}+t^{2} \otimes b_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{0}^{*}(\beta)=j_{0}^{*} *\left(S_{q}^{2} \alpha\right)=1 \otimes S_{q}^{2} b_{3}+t \otimes b_{2}^{2}+t^{4} \otimes b_{1} \tag{2}
\end{equation*}
$$

Note $H^{*}\left(F_{0}\right)$ is generated as algebra by b_{1}, b_{2}, b_{3} and $S_{q}^{2} b_{3}$ and $\operatorname{dim}_{Z_{2}} H^{*}\left(F_{0}\right) \leqq 8$. By the same argument as in section 2 we can prove

Lemma 2. $\quad b_{3}^{4}=0,\left(S_{q}^{2} b_{3}\right)^{2}=0$, and $S_{q}^{1} b_{3}=0$.
Moreover we prove
Lemma 3. Assume $b_{3} \neq 0$. Then we have
a) if $b_{1}=0$, then $b_{2}=0$.
b) if $b_{1} \neq 0$, then $b_{2}=0$ or $b_{2}=b_{1}^{2} \neq 0$.
c) if $b_{1} \neq 0$ and $b_{2}=0$, then $b_{3}=b_{1}^{3}$.
Proof. Since $j_{0}{ }^{*}$ is surjective in high degrees (see [2]. chap. VII), we have

$$
\begin{align*}
& \operatorname{tr} \otimes b_{3}=j_{0}^{*}\left(A_{1} t r \alpha+A_{2} t^{r-3} \alpha^{2}+A_{3} t^{r-6} \alpha^{3}+B_{0} t^{r-2} \beta+B_{1} t^{r-5}\right. \tag{3}\\
& \left.\alpha \beta+B_{2} t^{r-8} \alpha^{2} \beta+B_{3} t^{r-11} \alpha^{3} \beta\right)
\end{align*}
$$

where A_{i} and B_{j} are in Z_{2}, \quad Clearly $A_{1}=1$.
We have
(4)

$$
\operatorname{tr} \otimes b_{3}-j_{0}^{*}(t r \alpha)=t^{r+2} \otimes b_{1}+t^{r+1} \otimes b_{2}
$$

The left hand side of (4) is

$$
\begin{aligned}
& \operatorname{tr} \otimes b_{3}-j_{0}^{*}(t r \alpha) \\
&= t^{r+2} \otimes B_{0} b_{1}+t^{r+1} \otimes\left(A_{2} b_{1}^{2}+B_{1} b_{1}^{2}\right)+t^{r} \otimes \\
&\left(A_{2} b_{1}^{3}+B_{1} b_{1} b_{2}+B_{2} b_{1}^{3}\right)+\cdots \cdots
\end{aligned}
$$

Compairing coefficients of t^{k}, we have

$$
\begin{aligned}
& b_{1}=B_{0} b_{1} \\
& b_{2}=\left(A_{2}+B_{1}\right) b_{1}^{2} \\
& \text { and } \quad b_{3}=A_{3} b_{1}^{3}+B_{1} b_{1} b_{2}+B_{2} b_{1}^{3} \text {. }
\end{aligned}
$$

It is now easy to show that lemma holds. This completes the proof.
Now we shall prove the Propositions 3 and 4 in section 1.
Case 1. $\operatorname{dim} F_{0}=6$.
Note that possible generator of $H^{6}\left(F_{0}\right)$ is $b_{1}^{6}, b_{1}^{4} b_{2}, b_{1}^{3} b_{3}, b_{1}^{2} b_{2}^{2}, b_{1} S_{q}^{2} b_{3}, b_{3}^{2}$ and b_{3}^{2}.
Subcase 1. b_{1}^{6} is a generator of $H^{6}\left(F_{0}\right)$.
Clearly $\operatorname{dim} H^{*}\left(F_{0}\right) \geqq 7$. Suppose $\operatorname{dim} H^{*}\left(F_{0}\right)=7$.
Then there exsits a component F_{1} of $F(G, X)$ such that $\operatorname{dim} H^{*}\left(F_{1}\right)=1$. Since F_{1} is an orientable closed manifold, $F_{1}=\{p t\}$. Moreover since $F(G, X)$ is T-invariant, $F(T, X)$ $=F(T, F(G, X))=F_{0} \cup F_{1}$, which cortradcts to the connectedness of $F(T, X)$. Thus we have $\operatorname{dim} H^{*}\left(F_{0}\right)=8$ and F_{0} is connected and $F_{0}=F(T, X)$. It is known that $F_{0} \underset{Q}{\sim} S^{1} \times S^{5}$ or $F_{0} \underset{Q}{ } S^{3} \times S^{3}$. Clearly $\operatorname{dim} H^{3}\left(F_{0}\right)=2$. and b_{1}^{3} and b_{3} are generators of $H^{3}\left(F_{0}\right)$.

Lemma 4. $b_{1} b_{3}=0$.

Proof. It follows from lemma 3 that $b_{2} \neq 0$. We have

$$
t^{r+1} \otimes b_{2}=\text { the right hand side of (3). }
$$

Since $b_{2}=b_{1}^{2}, A_{1}+B_{1}+A_{2}=1$ and we have

$$
\begin{align*}
& t^{r+1} \otimes b_{2}-j_{0}^{*}\left(A_{1} t r \alpha+A_{2} t^{r-3} \alpha^{2}+B_{1} t^{r-5} \alpha \beta\right) \tag{4}\\
& =j_{0}^{*}\left(A_{3} t^{r-6} \alpha^{3}+B_{0} t^{r-2} \beta+B_{2} t^{r-8} \alpha^{2} \beta+B_{3} t^{r-11} \alpha^{3} \beta\right) .
\end{align*}
$$

Case of $A_{1}=1$ and $B_{1}=A_{2}=0$.
Clearly we have
the left hand side of $(4)=t^{r+2} \otimes b_{1}+t r \otimes b_{3}$.
and hence $b_{3}=b_{1}^{3}$, which contradicts to our situation.
Case of $A_{2}=1$ and $A_{1}=B_{1}=0$.
we have
the left hand side of (4) $=t^{r-1} \otimes b_{1}^{4}+t r^{-3} \otimes b_{3}^{2}$.
and hence $B_{0}=0$ and $A_{3}+B_{3}=0$. Comparing the coefficients of t^{r-1}, we have a contradiction.

Case of $\mathbf{A}_{1}=A_{2}=0$ and $B_{1}=1$
We have
the left hand side of (4)

$$
=t r \otimes b_{1}^{3}+t^{r-1} \otimes b_{1} b_{3}+t^{r-2} \otimes b_{1}^{5}+t^{r-3} \otimes\left(b_{1}^{6}+b_{1} S_{q}^{2} b^{3}\right)+\cdots \cdots
$$

and hence $B_{0}=0$ and $A_{3}+B_{2}=1$. Moreover, by compairing of coefficients of t^{i} in (4) we have
(i) $b_{1} b_{3}=A_{3} b_{1}^{4}+B_{3} b_{1}^{4}$
(ii) $b_{1}^{5}=A_{3}\left(b_{1}^{5}+b_{1}^{2} b_{3}\right)+B_{2} b_{1}^{5}+B_{3} b_{1}^{5}$
(iii) $\quad b_{1}^{6}+b_{1} S_{q}^{2} b_{3}=A_{3} b_{1}^{6}+B_{2} b_{1}^{6}+B_{3}\left(b_{1}^{6}+b_{1}^{3} b_{3}\right)$.

Suppose $A_{3}=1$ and $B_{2}=0$. If $b_{1} b_{3}=0$, then $B_{3}=1$. From (iii), it follows that $b_{1}^{6}=b_{1}$ $S_{q}^{1} b_{3}$. Since $S_{q}^{2}\left(b_{1} b_{3}\right)=b_{1} S_{q}^{2} b_{3}$, we have $b_{1} S_{q}^{2} b_{3}=0$ and hence $b_{1}^{6}=0$, which is a contradiction. If $b_{1} b_{3} \neq 0$, then $B_{3}=0$ and $b_{1} b_{3}=b_{1}^{4}$, which implies $b_{1}^{2} b_{3}=b_{1}^{5}$. It follows from (ii) that $b_{1}^{2} b_{3}=$ 0 . This is a contradiction. Suppose $A_{3}=0$ and $B_{2}=0$. It follows from (ii) that $B_{3}=0$ and hence $b_{1} b_{3}=0$

Case of $\mathbf{B}_{1}=\mathbf{A}_{1}=\mathbf{A}_{2}=\mathbf{1}$.
We have

$$
\begin{aligned}
& t^{r+2} \otimes b_{1}+t^{r} \otimes\left(b_{1}^{3}+b_{3}\right)+t^{r-1} \otimes\left(b_{1} b_{3}+b_{1}^{4}\right) \\
& =t^{r+2} \otimes B_{0} b_{1}+t^{r} \otimes\left(A_{3} b_{1}^{3}+B_{2} b_{1}^{3}\right)+\cdots . .
\end{aligned}
$$

Since $b_{1}^{3} \neq b_{3}$, we have $A_{3} b_{1}^{3}+B_{2} b_{1}^{3}=b_{1}^{3}+b_{3}$, which is clearly impossible. These arguments complete the proof.

The following proposition shows that subcase 1 does not hold.
Proposition 5. $F_{0} \underset{Q}{\sim} S^{1} \times S^{5}$ and $F_{0} \underset{Q}{\sim} S^{3} \times S^{3}$.
 element of $H^{1}\left(F_{0}: Z\right)$. Hence we have $b_{1}^{2}=S_{q}^{1} b_{1}=0$, which is a contradiction. Next we suppose $F_{0} \sim S^{3} \times S^{3}$. Then we may assume that b_{1}^{3} and b_{3} are $\bmod 2$ reductions of elements of $H^{3}\left(F_{0}, Z\right), b_{1}^{3}=r\left(r_{1}\right)$ and $b_{3}=r\left(\gamma_{2}\right)$, where $r: H^{3}\left(F_{0}: Z\right) \rightarrow H^{3}\left(F_{0}: Z_{2}\right)$ is mod 2 reduction. We can choose γ_{1} and γ_{2} such that $\gamma_{1} \gamma_{2}$ is a generator of $H^{6}\left(F_{0}: Z\right)$ and hence $r\left(\gamma_{1} \gamma_{2}\right)$ $\neq 0$, which contradicts to the fact $r\left(\gamma_{1}\right) r\left(\gamma_{2}\right)=b_{1}^{3} b_{3}=0$. This completes the proof.

Subcase 2. $b_{1}^{4} b_{2}$ is a generator of $H^{6}\left(F_{0}\right)$.
Since $\operatorname{dim} H^{*}\left(F_{0}\right)>9$ this case does not occur.
Subcase 3. $b_{1}^{3} b_{3}$ is a generator of $H^{6}\left(F_{0}\right)$.
By the same argument as in subcase 1, we can prove Proposition 5 for this case. Hence this case does not hold.

Subcase 4. $b_{1}^{2} b_{2}^{2}$ is a generator of $H^{6}\left(F_{0}\right)$.
It is easy to see that $\operatorname{dim} H^{*}\left(F_{0}\right)>9$.
Subcase 5. $\quad b_{1} S_{q}^{2} b_{3}$ is a generator of $H^{6}\left(F_{0}\right)$.
If $b_{3}=b_{1}^{3}$, then $S_{q}^{2} b_{3}=b_{1}^{5}$ and hence this case is reduced to subcase 1. Since $b_{1} S_{q}^{2} b_{3}$ $=S_{q}^{2}\left(b_{1} b_{3}\right)$, we have $b_{1} b_{3} \neq 0$. If $b_{1} b_{3}=b_{1}^{4}$, then $S_{q}^{2}\left(b_{1} b_{3}\right)=0$. Hence we have $b_{1} b_{3} \neq b_{1}^{4}$. If $b_{1}^{4} \neq 0$, then $\operatorname{dim} H^{*}\left(F_{0}\right)>8$. Thus we have $b_{1}^{4}=0$. By the same argument as in the proof of Lemma 4, we can prove that $b_{1} b_{3}=0$, which is clearly impossible.

Subcase 6. b_{2}^{3} is a generator of $H^{6}\left(F_{0}\right)$.
It follows from lemma 3 that $b_{3}=0$. Assume $b_{1} \neq 0$. It is easy to see that $\mathrm{b}_{2}=b_{1}^{2}$, which is a contradiction. Hence we have $b_{1}=0$, and $F_{0} \widetilde{Z}_{2} C P_{3}$, which contradicts to the structure of cohomology ring of F_{0}.

Subcase 7. b_{3}^{2} is a generator of $H^{6}\left(F_{0}\right)$.
Since $b_{3}^{2}=S_{q}^{3} b_{3}=S_{q}^{1} S_{q}^{2} b_{3} \neq 0$, we have $S_{q}^{2} b_{3}=0$ and hence $b_{1} \neq 0$. It is easy to see that $\operatorname{dim} H^{*}\left(F_{0}\right)=5,7$ or 8 . Assume $\operatorname{dim} H^{*}\left(F_{0}\right)=5$ or 7 . Then there is a component F_{1} of
$F\left(Z_{2}, X\right)$ such that $\operatorname{dim} H^{*}\left(F_{1}: Z_{2}\right)=1$ or 2 . Clearly in both cases the Euler characteristic of F_{1} is not zero. Hence $F\left(T, F_{1}\right) \neq \phi$, which is a contradiction. Thus $\operatorname{dim} H^{*}\left(F_{0}\right)$ must be 8. Assume $b_{1} S_{q}^{2} b_{3} \neq 0$. This case reduces to the subcase 5. If $b_{1} S_{q}^{2} b_{3}=0, F_{0}$ must have the same Q-cohomology ring of $S^{3} \times S^{3}$ and hence $b_{1}^{3} b_{3} \neq 0$, which reduces to the subcase 3 .

Case 2. $\operatorname{dim} F_{0}=10$.
Assume $b_{3}=0$. Note if $b_{1} \neq 0$, then $b_{2}=b_{1}^{2} \neq 0$ or $\mathrm{b}_{2}=0$. Thus a generator of $H^{10}\left(F_{0}\right)$ is one of the following: b_{1}^{10} and b_{2}^{5}. In the case of $b_{1}^{10}, \operatorname{dim} H^{*}\left(F_{0}\right)$ is clearly greater than 8 , which is impossible. In the case of $b_{2}^{5}, F_{0} \widetilde{Z}_{2} C P_{5}$ and hence $\chi\left(F_{0}\right) \neq 0$. Since $F(T, X)=$ $F\left(T, F_{0}\right)$, we have $\chi(F(T, X)) \neq 0$, which contradicts to the fact $F(T, X)$ has Q-cohomology ring of product of odd dimensional spheres. Assume $b_{3} \neq 0$. b_{1} must be non-zero. We may assume $b_{2} \neq 0$, since $b_{3}=b_{1}^{3}$ if $b_{2}=0$. It is easy to see that $\operatorname{dim} H^{*}\left(F_{0}\right)>9$.

Case 3. $\operatorname{dim} F_{0}=12$.
By the same argument as case 2, it can be shown that this case does not occur,
Summing up the above arguments, we have proved Propesitions 3 and 4 in section 1.
Case 4. $\operatorname{dim} F_{0}=8$.
In case in which $b_{3}=0$, the same argument as in case 2 shows that this case does not occur. Now assume $b_{3} \neq 0$ and $b_{1}^{3} \neq b_{3}$. Note that $b_{2}=0$ or $b_{2}=b_{1}^{2}$. Then possible generators of $H^{8}\left(F_{0}\right)$ are $b_{1}^{5} b_{3}, b_{1}^{2} b_{2}^{\varepsilon}, b_{1}^{3} S_{q}^{2} b_{3}$ and $b_{3} S_{q}^{2} b_{3}$. In cases except the case of $b_{3} S_{q}^{2} b_{3}$, it is easy to see that $\operatorname{dim} H^{*}\left(F_{0}\right)>8$. Consider the case of $b_{3} S_{q}^{2} b_{3}$. Then we way assume $b_{1}=0$; in other words $F_{0} \widetilde{Z}_{2} \operatorname{SU}(3)$. We shall prove $F_{0} \sim \operatorname{SU}(3)$. Suppose $H_{3}\left(F_{0}: Z\right)$ is torsion group. Then, by Poincare duality, $H_{5}\left(F_{0}: Z\right) \cong H^{3}\left(F_{0}: Z\right)$ is also torsion group. Since $H^{5}\left(F_{0}: Z\right)=\operatorname{Hom}\left(H_{5}\left(F_{0}: Z\right), Z\right)+\operatorname{Ext}\left(H_{4}\left(F_{0}: Z\right), Z\right), H_{5}\left(F_{0}: Z\right)$ is torsion group. Moreover, since $H^{4}\left(F_{0}\right)=H^{6}\left(F_{0}\right)=0$, the mod 2 reductions: $H^{i}\left(F_{0}: Z\right) \rightarrow H^{i}\left(F_{0}\right)$ are surjective for $i=3,5$. We put $b_{3}=r\left(\beta_{1}\right)$ and $S_{q}^{2} b_{3}=r\left(\beta_{2}\right)$. Since β_{1} and β_{2} are torsion elements, we have $\beta_{1} \beta_{3}=0$, which implies $b_{3} S_{q}^{2} b_{3}=r\left(\beta_{1}\right) r\left(\beta_{2}\right)=r\left(\beta_{1} \beta_{2}\right)=0$. Thus we have proved $F_{0} \sim S^{3} \times S^{5}$. This proves Proposition 3 in section 1.

References

[1] Allday, C.: On the rank of a spaces. Trans. Amer. Math. Soc., 166 (1972) 173-185.
[2] Bredon, G. E.: Introduction to Compact Tranoformation Groups. Academic Press, 1972.
[3] Hsiang, W. Y.: Cohomology Theory of Topological Transformation Groups. Springer, 1975.
[4] Chang, T. and Skjelbred, T.: Lie group actions on a Cayley projective plane and a note on homogeneous spaces of prime number characteristic. Amer. Jour. of Math., 98 (1976) 655-678.

[^0]: * Niigata University

