On the Torus degree of symmetry of SU(3) and G_2

By

Tsuyoshi WATABE*

(Received November 10, 1977)

Introduction

In this note we shall consider the torus degree of symmetry of simple Lie groups SU(3) and G_2 , where the torus degree of symmetry of a manifold M, denoted by T(M), is by definition the maximal dimension of torus which can act on the manifold M effective-ly (eee [3]).

We shall prove the following.

Theorem A. T(SU(3))=4.

THEOREM B. $T(G_2)=4$.

This work is motivated by the following conjecture of W. Y. Hsiang ([3]); The torus degree of symmetry of compact semi-simple Lie group G is equal to 2 rk G. In the following we shall consider only differentiable actions and use the notations:

(1) $X \sim Y$ means $H^*(X:A) \simeq H^*(Y:A)$

as algebras, where A is a commutative ring.

(2) Q denotes the field of rational numbers and Z_n a cyclic group of order n.

1. Statement of results

In this section we shall prove Theorems A and B modulo some propositions, which are proved in the subsequent sections.

In the first place we shall consider the case of SU(3) and put X=SU(3).

Suppose $T(X) \ge 5$. Let a 5-dimensional torus T'' act on X by $\Phi: T'' \times X \to X$. From a result in [1], it follows that $\operatorname{rk} \Phi \le 2$, where $\operatorname{rk} \Phi = \min \{\dim T''/T_x'' : x \in X\}$. If $\operatorname{rk} \Phi = 0$ (respectively 1.), some 5-dimensional (respectively 4-dimensional) subtorus of T'' has a fixed point. Since $X \sim S^3 \times S^5$, the fixed point set of any torus action has Q-cohomology ring of product of two odd dimensional spheres ([2]), and hence it is connected and at least 2-dimensional. It follows from the consideration of local representation at fixed point that this is impossible. Thus $\operatorname{rk} \Phi = 2$, and hence some 3-dimensional subtorus T'

* Niigata University

has a fixed point. It can be shown that there is a one-dimensional subtorus T of T' which has 6-dimensional fixed point set. Consider the subgroup Z_2 of T. Since the restricted action of Z_2 on X preserves orientation and T acts effectively on X, dim $F(Z_2, X)$ must be 6, which implies that F(T, X) is a component of $F(Z_2, X)$. In section 2, we shall prove the following

PROPOSITION 1. There is no orientation preserving involution on X with fixed point set one of whose components has Q-cohomology ring of $S^3 \times S^5$ or $S^1 \times S^5$.

It is clear that Proposition 1 implies Theorem A.

REMARK. In the proof of Proposition 1 we use only the fact that X has Q-cohomogy ring of $S^3 \times S^5$ and Z_2 -cohomology ring of SU(3). Hence we have the following

THEOREM A' Let M be a manifold such that $M \sim S^3 \times S^5$ and $M \sim SU(3)$. Then there is $Q \qquad Z_2$ no one-dimensional torus action on M whose fixed point set is 6-dimensional.

Next we shall consider the case of G_2 . Put $X = G_2$. Suppose a 5-dimensional torus T'' act on X by $\Phi: T'' \times X \to X$. As in the case of SU(3), we have rk $\Phi \leq 2$.

Case 1. rk $\Phi = 0$.

Case 2. rk $\Phi \leq 1$.

In these cases there is a subtorus T' of dimension 4 whose fixed point set F(T', X) is not empty. It follows from the Borel formula that there is a corank one subtorus T_1 of T' such that dim $F(T_1, X) > \dim F(T', X)$. Consider the action of T_1 obtained by the restriction. Since the action of T'' is effective, the same argument as above shows that there is a corank one subtorus T_2 of T_1 such that dim $F(T_2, X) > \dim F(T_1, X)$. Thus we obtain a sequence of fixed point sets:

$$F(T', X) \subset F(T_1, X) \subset F(T_2, X) \subset \cdots \subset F(T_k, X) \subset X.$$

Cleary k=4. It is easy to see that there is a one dimensional subtorus T of T'' such that F(T, X) is 6-dimensional or 10-dimensional.

Subcase 1. dim F(T, X)=6.

Take the subgroup Z_2 of T. Then $F(Z_2, X)$ is 6-dimensional, 8-dimensional or at least 10-dimensional. Let F_0 be a component of $F(Z_2, X)$ containing $F(Z_2, X)$. Assumedim $F_0=8$. Then in section 3, we shall prove the following

PROPOSITION 2. $F_0 \sim SU(3)$ and $F_0 \sim S^3 \times S^5$.

Thus T acts on F_0 with 6-dimensional fixed point set, which is impossible by Theorem A'.

The case in which F_0 is 6-dimensional or at least 10-dimensional does not occure by the following

PROPOSITION 3. In the above situation, there is no involution on X whose fixed point set is 6-dimensional and has Q-cohomology ring of product of two odd dimensional spheres.

PROPOSITION 4. In the above situation there is no involution on X whose fixed point set is at least 10-dimensional.

Sucase 2. Dim F(T, X)=10.

This case is clearly impossible by Proposition 4.

Case 2. rk $\boldsymbol{\Phi} = 2$.

In this case there is a 3-dimensional torus T' of T'' such that $F(T', X) \neq \Phi$.

Consider a sequence of fixed point sets:

$$F(T', X) \subset F_1 \subset F_2 \subset X.$$

If dim $F_1=6$, there is a one dimensional subtorus T of T' such that dim F(T, X)=6. The same arguments as in subcase 1 of case 1 show that this is impossible. If dim $F_1>8$. then there is a one-dimensional subtorus T of T'' such that dim $F(T, X) \ge 10$, which is impossible by Proposition 4. Thus it is sufficient to consider only the case in which every 2-dimensional subtorus of T' has at most 4-dimensional fixed point set and every one dimensional subtorus of T' has 8-dimensional fixed point set. Consider the action of a 2dimensional subtorus T^2 obtained by restriction and apply the Borel formula at $x \in F(T^2, X)$. We have

$$\dim X - \dim F(T^2, X)$$
$$= \sum_{K} \{\dim F(K, X) - \dim (F(T^2, X))\},\$$

where K denotes subtorus of T^2 of codimension 1, our assumptin shows that 10 = a(8-4), where a is the number of K. This is clearly impossible. Thus we have proved Theorem B.

2. Proof of Proposition 1

In this section we shall consider an orientation preserving involution on X=SU(3)with 6-dimensional fixed point set and prove Proposition 1 in section 1. Put $G=Z_2$ and recall $H^*(X:Z_2)=Z_2[a]/(a)\otimes \Lambda_{Z_2}(S_a^2 a)$, deg a=3.

In this section we consider only Z_2 -cohomology group unless otherwise stated. LEMMA 1. X is totally non-homologous to zero in the fibre bundle $X_G = X \times E_G \rightarrow B_G$.

PROOF. Consider the spectral sequence of the fibration $X_G \longrightarrow B_G$. Since $E_2^{0,3} = E_4^{0,3}$, every element of $H^3(X)$ is transgressive and hence Sq^2a is also transgressive. Since the action of G on X has fixed point, the homomorphism $H^*(B) \longrightarrow H^*(X_G)$ is injective. Then the transgression is trivial. In fact consider the following commutative diagram;

$$\begin{array}{cccc} & & & & \\ H^{3}(X) & \longrightarrow & H^{4}(X_{G}, X) & \xrightarrow{j^{*}} & H^{4}(X_{G}) \\ & & \uparrow & & \\ & & \uparrow & & \\ & & & H^{4}(B_{G}, X) & \cong & H^{4}(B_{G}). \end{array}$$

Let $\tau(x) = y$ (τ denotes the transgression). By definition of τ , we have $\delta(x) = q^*(y)$. Then $\pi^*(y) = j^*q^*(y) = j^*\delta(x) = 0$. Since π^* is injective, y = 0. Since $H^*(X)$ is generated by a and $Sq^2 a$, the homorphism $i^* : H^*(X_G) \longrightarrow H^*(X)$ is injective. This completes the proof of lemma.

Find an element $\alpha \in H^3(X_G)$ such that $i^*(\alpha) = a$. From a result in [2] (Chap. VII. 1. 4) it follows that $H^*(X_G)$ is a free $H^*(B_G)$ -module generated by α , $Sq^2 \alpha$, and $\alpha S^2 \alpha$. Let F_0 denote a 6-dimensional component of F(G, X) and choose a point $x \in F_0$. Let $j_0 : (F_0, x)_G \longrightarrow X_G$ be the inclusion. Then we have

(2.1) $j_0^*(\alpha) = 1 \otimes b_3 + t \otimes b_2 + t^2 \otimes b_1$,

where $H^*(B_G) = \mathbb{Z}_2[t]$ and $b_i \in H^i(F_0)$.

LEMMA 2. $b_3^2 = 0$.

PROOF. Since $a^2=0$, we have $i^*(\alpha^2)=0$ and hence $\alpha^2 \in \text{Ker } i^*=\langle H^+(B_G) \rangle$, i.e. $(j_0^*(\alpha))^2=1 \otimes b_3^2+t^2 \otimes b_1^2 \in \langle H^*(B_G) \rangle$, which

implies $b_3^2 = 0$. The completes the proof.

By the same arguments as in [2] (chap. VII), we can show that $H^*(F_0)$ is multiplicatively generated by b_3 , b_2 , b_1 and $S_q^2 b_3$. Note that dim $H^*(F(Z_2, X)) = \dim_{Z_2} H^*(X) = 4$. It follows from this that $H^*(F_0)$ is generated by b_2 and $F_0 \sim CP_3$ or generated by b_3 .

Clearly both cases contradict to the structure of Q-cohomology ring of F_0 .

This completes the proof of Proposition 1 in section 1.

In the above arguments we use only the fact $X \sim S^3 \times S^5$ and $X \sim SU(3)$. Hence we have proved the Theorem A'.

3. Proof of Propositions 2, 3 and 4

In this section we shall prove Proposition 2, 3 and 4. Put $G=Z_2$, $X=G_2$ and recall $H^*(X; Z_2)=Z_2[a]/a^4 \otimes \Lambda_{z_2}(S_q^2 a)$, deg a=3. In this section all cohomology groups are on Z_2 unless otherwise stated. By the same argument as in section 2, we can prove the following

LEMMA 1. X is totally non-homologous to zero in the fibration $X_G \rightarrow B_G$.

Find an element $\alpha \in H^3(X_G)$ such that $i^*(\alpha) = a$, where $i: X \to X_G$ inclusion. Denote $\beta = S_q^2 \alpha$ and F_0 the component of F(G, X) which contains F(T, X). Choose a point $x \in F_0$ and denote $j_0: (F_0, x)_G \to (X_G, x_G)$ inclusion. We have

(1)
$$j_0^*(\alpha) = 1 \otimes b_3 + t \otimes b_2 + t^2 \otimes b_1$$

and

(2)
$$j_0^*(\beta) = j_0^*(S_q^2 \alpha) = 1 \otimes S_q^2 b_3 + t \otimes b_2^2 + t^4 \otimes b_1$$
.

Note $H^*(F_0)$ is generated as algebra by b_1 , b_2 , b_3 and $S_q^2 b_3$ and $\dim_{Z_2} H^*(F_0) \leq 8$. By the same argument as in section 2 we can prove

LEMMA 2. $b_3^4=0$, $(S_q^2b_3)^2=0$, and $S_q^1b_3=0$. Moreover we prove

LEMMA 3. Assume $b_3 \neq 0$. Then we have

- a) if $b_1=0$, then $b_2=0$.
- b) if $b_1 \neq 0$, then $b_2 = 0$ or $b_2 = b_1^2 \neq 0$.
- c) if $b_1 \neq 0$ and $b_2 = 0$, then $b_3 = b_1^3$.

PROOF. Since j_0^* is surjective in high degrees (see [2]. chap. VII), we have

(3)
$$t^r \otimes b_3 = j_0^* (A_1 t^r \alpha + A_2 t^{r-3} \alpha^2 + A_3 t^{r-6} \alpha^3 + B_0 t^{r-2} \beta + B_1 t^{r-5})$$

$$\alpha\beta+B_2t^{r-8}\alpha^2\beta+B_3t^{r-11}\alpha^3\beta),$$

where A_i and B_j are in Z_2 , Clearly $A_1=1$. We have

$$(4) t^r \otimes b_3 - j_0^*(t^r \alpha) = t^{r+2} \otimes b_1 + t^{r+1} \otimes b_2.$$

The left hand side of (4) is

$$tr \otimes b_{3} - j_{0}^{*}(tr\alpha)$$

= $tr^{+2} \otimes B_{0}b_{1} + tr^{+1} \otimes (A_{2}b_{1}^{2} + B_{1}b_{1}^{2}) + tr \otimes$
 $(A_{2}b_{1}^{3} + B_{1}b_{1}b_{2} + B_{2}b_{1}^{3}) + \cdots$

Compairing coefficients of t^k , we have

$$b_1 = B_0 b_1$$

 $b_2 = (A_2 + B_1) b_1^2$

and $b_3 = A_3 b_1^3 + B_1 b_1 b_2 + B_2 b_1^3$.

It is now easy to show that lemma holds. This completes the proof.

Now we shall prove the Propositions 3 and 4 in section 1.

Case 1. dim $F_0=6$.

Note that possible generator of $H^6(F_0)$ is b_1^6 , $b_1^4 b_2$, $b_1^3 b_3$, $b_1^2 b_2^2$, $b_1 S_a^2 b_3$, b_3^2 and b_3^2 .

Subcase 1. b_1^6 is a generator of $H^6(F_0)$.

Clearly dim $H^*(F_0) \ge 7$. Suppose dim $H^*(F_0) = 7$.

Then there exsits a component F_1 of F(G, X) such that dim $H^*(F_1) = 1$. Since F_1 is an orientable closed manifold, $F_1 = \{pt\}$. Moreover since F(G, X) is T-invariant, $F(T, X) = F(T, F(G, X)) = F_0 \cup F_1$, which cortradcts to the connectedness of F(T, X). Thus we have dim $H^*(F_0) = 8$ and F_0 is connected and $F_0 = F(T, X)$. It is known that $F_0 \sim S^1 \times S^5$

or $F_0 \sim S^3 \times S^3$. Clearly dim $H^3(F_0) = 2$. and b_1^3 and b_3 are generators of $H^3(F_0)$.

LEMMA 4. $b_1 b_3 = 0$.

PROOF. It follows from lemma 3 that $b_2 \neq 0$. We have

 $t^{r+1} \otimes b_2$ = the right hand side of (3).

Since $b_2 = b_1^2$, $A_1 + B_1 + A_2 = 1$ and we have

(4)
$$t^{r+1} \otimes b_2 - j_0^* (A_1 t^r \alpha + A_2 t^{r-3} \alpha^2 + B_1 t^{r-5} \alpha \beta)$$
$$= j_0^* (A_3 t^{r-6} \alpha^3 + B_0 t^{r-2} \beta + B_2 t^{r-8} \alpha^2 \beta + B_3 t^{r-11} \alpha^3 \beta).$$

Case of $A_1 = 1$ and $B_1 = A_2 = 0$.

Clearly we have

the left hand side of $(4) = t^{r+2} \otimes b_1 + t^r \otimes b_3$.

and hence $b_3 = b_1^3$, which contradicts to our situation.

Case of $A_2=1$ and $A_1=B_1=0$.

we have

the left hand side of $(4) = tr^{-1} \otimes b_1^4 + tr^{-3} \otimes b_3^2$.

and hence $B_0=0$ and $A_3+B_3=0$. Comparing the coefficients of t^{r-1} , we have a contradiction.

Case of $A_1 = A_2 = 0$ and $B_1 = 1$

We have

the left hand side of (4)

 $=tr \otimes b_1^3 + tr^{-1} \otimes b_1 b_3 + tr^{-2} \otimes b_1^5 + tr^{-3} \otimes (b_1^6 + b_1 S_a^2 b^3) + \cdots$

and hence $B_0=0$ and $A_3+B_2=1$. Moreover, by compairing of coefficients of t^i in (4) we have

(i) $b_1b_3 = A_3b_1^4 + B_3b_1^4$

(ii)
$$b_1^5 = A_3(b_1^5 + b_1^2b_3) + B_2b_1^5 + B_3b_1^5$$

(iii) $b_1^6 + b_1 S_a^2 b_3 = A_3 b_1^6 + B_2 b_1^6 + B_3 (b_1^6 + b_1^3 b_3).$

Suppose $A_3=1$ and $B_2=0$. If $b_1b_3=0$, then $B_3=1$. From (iii), it follows that $b_1^6=b_1$ $S_q^1b_3$. Since $S_q^2(b_1b_3)=b_1S_q^2b_3$, we have $b_1S_q^2b_3=0$ and hence $b_1^6=0$, which is a contradiction. If $b_1b_3\neq 0$, then $B_3=0$ and $b_1b_3=b_1^4$, which implies $b_1^2b_3=b_1^5$. It follows from (ii) that $b_1^2b_3=0$. This is a contradiction. Suppose $A_3=0$ and $B_2=0$. It follows from (ii) that $B_3=0$ and hence $b_1b_3=0$

Case of $B_1 = A_1 = A_2 = 1$ **.**

We have

48

$$t^{r+2}\otimes b_1 + t^r \otimes (b_1^3 + b_3) + t^{r-1}\otimes (b_1b_3 + b_1^4)$$

 $=tr^{+2}\otimes B_0b_1+tr\otimes (A_3b_1^3+B_2b_1^3)+\cdots$

Since $b_1^3 \neq b_3$, we have $A_3 b_1^3 + B_2 b_1^3 = b_1^3 + b_3$, which is clearly impossible. These arguments complete the proof.

The following proposition shows that subcase 1 does not hold.

PROPOSITION 5. $F_0 \stackrel{\bullet}{\sim} S^1 \times S^5$ and $F_0 \stackrel{\bullet}{\sim} S^3 \times S^3$. PROOF. We suppose $F_0 \stackrel{\bullet}{\sim} S^1 \times S^5$. We may assume that b_1 is mod 2 reduction of an element of $H^1(F_0; Z)$. Hence we have $b_1^2 = S_q^1 b_1 = 0$, which is a contradiction. Next we suppose $F_0 \sim S^3 \times S^3$. Then we may assume that b_1^3 and b_3 are mod 2 reductions of elements of $H^3(F_0, Z)$, $b_1^3 = r(r_1)$ and $b_3 = r(r_2)$, where $r: H^3(F_0: Z) \to H^3(F_0: Z_2)$ is mod 2 reduction. We can choose r_1 and r_2 such that $r_1 r_2$ is a generator of $H^6(F_0 : Z)$ and hence $r(r_1 r_2)$ $\neq 0$, which contradicts to the fact $r(\gamma_1) r(\gamma_2) = b_1^3 b_3 = 0$. This completes the proof.

Subcase 2. $b_1^4 b_2$ is a generator of $H^6(F_0)$.

Since dim $H^*(F_0) > 9$ this case does not occur.

Subcase 3. $b_1^3 b_3$ is a generator of $H^6(F_0)$.

By the same argument as in subcase 1, we can prove Proposition 5 for this case. Hence this case does not hold.

Subcase 4. $b_1^2 b_2^2$ is a generator of $H^6(F_0)$.

It is easy to see that dim $H^*(F_0) > 9$.

Subcase 5. $b_1 S_a^2 b_3$ is a generator of $H^6(F_0)$.

If $b_3 = b_1^3$, then $S_q^2 b_3 = b_1^5$ and hence this case is reduced to subcase 1. Since $b_1 S_q^2 b_3$ $=S_{q}^{2}(b_{1} b_{3})$, we have $b_{1} b_{3} \neq 0$. If $b_{1} b_{3} = b_{1}^{4}$, then $S_{q}^{2}(b_{1} b_{3}) = 0$. Hence we have $b_{1} b_{3} \neq b_{1}^{4}$. If $b_1^4 \neq 0$, then dim $H^*(F_0) > 8$. Thus we have $b_1^4 = 0$. By the same argument as in the proof of Lemma 4, we can prove that $b_1b_3=0$, which is clearly impossible.

Subcase 6. b_2^3 is a generator of $H^6(F_0)$.

It follows from lemma 3 that $b_3=0$. Assume $b_1\neq 0$. It is easy to see that $b_2=b_1^2$, which is a contradiction. Hence we have $b_1=0$, and $F_0 \sim CP_3$, which contradicts to the Z_2 structure of cohomology ring of F_0 .

Subcase 7. b_3^2 is a generator of $H^6(F_0)$.

Since $b_3^2 = S_a^3 b_3 = S_a^1 S_a^2 b_3 \neq 0$, we have $S_a^2 b_3 = 0$ and hence $b_1 \neq 0$. It is easy to see that dim $H^*(F_0)=5$, 7 or 8. Assume dim $H^*(F_0)=5$ or 7. Then there is a component F_1 of

49

T. Watabe

 $F(Z_2, X)$ such that dim $H^*(F_1 : Z_2) = 1$ or 2. Clearly in both cases the Euler characteristic of F_1 is not zero. Hence $F(T, F_1) \neq \phi$, which is a contradiction. Thus dim $H^*(F_0)$ must be 8. Assume $b_1 S_q^2 b_3 \neq 0$. This case reduces to the subcase 5. If $b_1 S_q^2 b_3 = 0$, F_0 must have the same Q-cohomology ring of $S^3 \times S^3$ and hence $b_1^3 b_3 \neq 0$, which reduces to the subcase 3.

Case 2. dim $F_0 = 10$.

Assume $b_3=0$. Note if $b_1 \neq 0$, then $b_2=b_1^2 \neq 0$ or $b_2=0$. Thus a generator of $H^{10}(F_0)$ is one of the following: b_1^{10} and b_2^5 . In the case of b_1^{10} , dim $H^*(F_0)$ is clearly greater than 8, which is impossible. In the case of b_2^5 , $F_0 \sim CP_5$ and hence $\chi(F_0) \neq 0$. Since $F(T, X) = Z_2$ $F(T, F_0)$, we have $\chi(F(T, X)) \neq 0$, which contradicts to the fact F(T, X) has Q-cohomology ring of product of odd dimensional spheres. Assume $b_3 \neq 0$. b_1 must be non-zero. We may assume $b_2 \neq 0$, since $b_3 = b_1^3$ if $b_2 = 0$. It is easy to see that dim $H^*(F_0) > 9$.

Case 3. dim $F_0 = 12$.

By the same argument as case 2, it can be shown that this case does not occur,

Summing up the above arguments, we have proved Propesitions 3 and 4 in section 1.

Case 4. dim $F_0=8$.

In case in which $b_3=0$, the same argument as in case 2 shows that this case does not occur. Now assume $b_3 \neq 0$ and $b_1^3 \neq b_3$. Note that $b_2=0$ or $b_2=b_1^2$. Then possible generators of $H^8(F_0)$ are $b_1^5b_3$, $b_1^2b_2^6$, $b_1^3S_q^2b_3$ and $b_3S_q^2b_3$. In cases except the case of $b_3S_q^2b_3$, it is easy to see that dim $H^*(F_0) > 8$. Consider the case of $b_3S_q^2b_3$. Then we way assume $b_1=0$; in other words $F_0 \sim SU(3)$. We shall prove $F_0 \sim SU(3)$. Suppose $H_3(F_0:Z)$ is torsion Z_2 group. Then, by Poincare duality, $H_5(F_0:Z) \cong H^3(F_0:Z)$ is also torsion group. Since $H^5(F_0:Z) = Hom (H_5(F_0:Z), Z) + Ext (H_4(F_0:Z), Z), H_5(F_0:Z)$ is torsion group. Moreover, since $H^4(F_0) = H^6(F_0) = 0$, the mod 2 reductions: $H^i(F_0:Z) \to H^i(F_0)$ are surjective for i=3, 5. We put $b_3=r(\beta_1)$ and $S_q^2b_3=r(\beta_1)r(\beta_2)=r(\beta_1\beta_2)=0$. Thus we have proved $F_0 \sim S^3 \times S^5$. This proves Proposition 3 in section 1.

References

- [1] ALLDAY, C.: On the rank of a spaces. Trans. Amer. Math. Soc., 166 (1972) 173-185.
- [2] BREDON, G. E.: Introduction to Compact Transformation Groups. Academic Press, 1972.
- [3] HSIANG, W. Y.: Cohomology Theory of Topological Transformation Groups. Springer, 1975.
- [4] CHANG, T. and SKJELBRED, T.: Lie group actions on a Cayley projective plane and a note on homogeneous spaces of prime number characteristic. Amer. Jour. of Math., 98 (1976) 655-678.