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1. Introduction

This paper is concerned with continuous time Markov game in which the state space
is countable and the action spaces of player I and player II are compact metric spaces. In
the game, the players continuously observe the state of the system and then the players
choose independently actions. As a result, the reward is paid to player I from player II
and the system moves to a new state which is governed by the known transition probabi-
lity rates. Then, the optimization problem is to maximize the long-run expected average
gain of player I as the game proceeds over the infinite future and to minimize the long $\cdot$

run expected average loss of player II.
However, so far as we know, such the game has not been tried up to the present.

Hence, at first, we shall give the formulation of a continuous time Markov game with the
criterion of long-run expected average reward. Then, we shall show that the game has
a value and there exist the optimal stationary strategies for both players under this cri-
terion and some assumptions. Moreover, we shall give the sufficient conditions for some
important assumption.

2. The formulation of the problem

In this paper, we determine ”continuous time Markov game” by five objects $(S,$ $A,$ $B,$ $q$,
$r)$ . Here, $S$ is a countable state space labeled {1, 2, 3, }, the set of states of a system;
$A$ is a non-empty Borel subset of a Polish space, the set of actions available to player I, $B$

is a non-empty Borel subset of a Polish space, the set of actions available to player II, $q$ is
the transition probability rates which govern the law of motion of the system and is a
bounded function $q(\cdot|i, a, b)$ on $S$ for each triple $(s, a, b)\in S\times A\times B;r$, the reward func-
tion, is a bounded Borel measurable function on $S\times A\times B$.

In this game, player I and player II continuously observe the state of the system and
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classify it into one of the possible state $i\in S$, then player I and player II choose actions
$a\in A$ and $b\in B$, respectively. As a consequence of the present state $i$ and the actions $a$

and $b$ chosen by the players, player II pays player I reward $r(i, a, b)$ unit of money and
the system moves to a new state $j\in S$, which is governed by the transition probability
rate $q(j|i, a, b)$ . Then, our optimization problem is to maximize the expected average
gain of player I as the game proceeds over the infinite future and to minimize the expect-
ed average loss of player II.

We assume that the strategies for player I and playre II are independent of the past
history of the system and depend only on the present state of the system. Such a strategy
$\pi=\pi(t)$ for player I is specified by a family $\{\mu_{t}\}$ , where $\mu_{t}$ is a probability measure
$\mu_{t}$ (. i) on the Borel measurable space $(A, oe (A))$ in which $\oplus(A)$ is the $\sigma- field$ generated
by the metric on $A$ for each $i\in S$ and $ t\in[0, \infty$ ) and $\mu_{t}$ is a Lebesgue measurable function
$\mu.(M|i)$ on $[0, \infty$ ) for each $M\in oe(A)$ and $i\in S$. Then, we call such a strategy a Markov
strategy. Moreover, such a Markov strategy $\pi=\pi(t)$ is said to be stationary if $\pi(t)$ is in-
dependent of $t$, that is, there exists a map $\mu$ from $S$ into PA such that $\mu_{t}=\mu$ for all $t\in[0$,
$\infty)$ , where PA is the set of all probability measures on $(A, G(A))$ . $\Pi$ denotes the class of
all Markov strategies for player I. Markov strategies and stationary strategies for player
II are defined analogously. $\Gamma$ denotes the class of all Markov strategies for player II.

Throughout the paper, we shall assume, for the transition rate matrix $Q(a, b)=$

$\{q(j|i, a, b);i, j\in S\}$ corresponding to $a\in A$ and $b\in B$, the following

ASSUMPTION 1. For each $i,$ $j\in S,$ $q(j|i, a, b)$ is a continuous function on $A\times B$ and for
all $a\in A,$ $b\in B,$ $q(j|i, a, b)\geqq 0,$ $i\neq j,$

$\sum_{j}q(j|i, a, b)=0$ and $|q(i|i, a, b)|\leqq M$ for all $i\in S$ and
a positive number $ M<\infty$ .

When a pair of the Markov strategies $(\pi, \sigma)$ for player I and player II is used, the
transition probability rates are defined as follows: for each $ t\in[0, \infty$ )

$q(j|i, t, \pi, \sigma)=\int\int q(j|i, a, b)d\mu_{t}(a|i)d\lambda_{t}(b|i)$ ,

where the strategies $\pi$ and $\sigma$ are specified by the families $\{\mu_{t}\}$ and $\{\lambda_{t}\}$ , respectively.
Then, for all $i,$ $j\in S$ and $ t\in[0, \infty$ ), $q(j|i, t, \pi, \sigma)$ satisfies also the following conditions

$q(j|i, t, \pi, \sigma)\geqq 0,$ $i\neq i$
$\sum_{j}q(i|i, t, \pi, \sigma)=0$ (2. 1)

and

$|q(i|i, t, \pi, \sigma)|\leqq M$ (2. 1)

We write the transition rate matrix corresponding to $\pi$ and $\sigma$ as $Q(t, \pi, \sigma)=\{q(j|i$. $t,$ $\pi$ ,
$\sigma);i,$ $j\in S$ } and, if $\pi$ and $\sigma$ are stationary strategies, we write $Q(\pi, \sigma)$ instead of $Q(t, \pi, \sigma)$ .
Under the conditions (2. 1) and (2. 2), it has already been showed in [11 to exist a unique
stochastic transition probability matrix $F(s, t, \pi, \sigma)=\{fij(s, t, \pi, \sigma);i, j\in S\}$ correspond-
ing to $Q(t, \pi, \sigma)$ . Moreover, $F(s, t, \pi, \sigma)$ satisfies the kolmogorov forward differential
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equations

$\frac{\partial}{\partial t}F(s, t, \pi, \sigma)=F(s, t, \pi, \sigma)Q(t, \pi, \sigma)$ (2. 3)

with $F(s, s, \pi, \sigma)=I$, for almost all $ t\in[s, \infty$ ), where $I$ is the infinite unit matrix.
Also, a measurable Markov process $\{X(t, \pi, \sigma);t\geqq 0\}$ corresponding to the stochastic

transition probability matrix $F(s, t, \pi, \sigma)$ exists and is well-behaved. Throughout our
discussion the game starts from the origin. In view of this we write $F(t, \pi, \sigma)$ instead of
$F(0, t, \pi, \sigma)$ .

Now, we define the expected average criterion function. When a pair of the Markov
strategies $(\pi, \sigma)$ is chosen by player I and player II, at any time $t$ the expected gain rate
out of state $i\in S$ is given by

$r(i, t, \pi, \sigma)=\int\int r(i, a, b)d\mu_{t}(a|i)d\lambda_{t}(b|i)$ . (2. 4)

It is clear that $r(i, t, \pi, \sigma)$ is a Lebesgue measurable function of $t$. Thus, when the system
starts from a state $i\in S$ and a pair of the Markov strategies $(\pi, \sigma)$ is used, the total
expected gain of player I up to the time $T$ is defined to be

$\phi(i, T, \pi, \sigma)=\int_{0}^{T}\sum_{j}f_{\dot{\iota}j}(t, \pi, \sigma)r(j, t, \pi, \sigma)dt$. (2. 5)

A Markov strategy $\pi^{*}$ is optimal for player I if, for all $\sigma^{\prime}\in\Gamma$ and $i\in S$,

$\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}\leqq_{\tau\rightarrow\infty}\varliminf\frac{\phi(i,T,\pi^{*},\sigma^{\prime})}{T}$.
A Markov strategy $\sigma^{*}$ is optimal for player II if, for all $\pi^{\prime}\in\Pi$ and $i\in S$.

$\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}\geqq\varlimsup_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi^{\prime},\sigma^{*})}{T}$.
We shall say that a continuous time Markov game has a value if for all $i\in S$

$\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}=\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}$

When the game has a value, the quantity

$\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}$

as a function on $S$, is called the value function.

3. On the existence of optimal stationary strategies

Throughout our discussion in this section, we shall assume the following:
ASSUMPTION 2. $A$ and $B$ are compact metric spaces and, for each $i\in S,$ $r(i, a, b)$ is a

continuous function on $A\times B$.
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ASSUMPTION 3. There exist a bounded function $\nu$ on $S$ and a constant $g$ such that,

for all $i\in S$,

$g=\sup_{\mu\in P_{4}}\inf_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu(j)\}$
, $(3, 1)$

$wh\dot{e}re$, for each $\mu\in PA$ and $\lambda\in PB$

$r(i, \mu, \lambda)=\int\int r(i, a, b)d\mu(a)d\lambda(b)$

and

$q(j|i, \mu, \lambda)=\int\int q(j|i, a, b)d\mu(a)d\lambda(b)$ .

Hence, by Assumption 2, PA and PB endowed with weak topology are compact metric
spaces and, for each $i\in S$ and $j\in S$, by Assumption 1 and Assumption 2, $r(i, \mu, \lambda)$ and
$q(j|i, \mu, \lambda)$ are continuous bounded functions on $PA\times PB$.

Then, under Assumption 1 and Assumption 2, we can prove the following theorem.

THEOREM 3. 1. For a pair of the stationary strategies $(\mu, \lambda)$ , if there exist a bounded
function $\nu$ on $S$ and a constant $g$ such that, for each $i\in S$.

$g=r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu(j)$ , (3. 2)

then, it holds that, for each $i\in S$,

$g=\lim_{\tau\rightarrow\infty}\frac{\phi(i,T,\mu,\lambda)}{T}$

PROOF. Let $\{fn(t, \mu, \lambda);l, i\in S\}$ be the transition probability matrix corresponding
to $Q(\mu, \lambda)$ . Multiplying both sides of (3. 2) by $fi;(t, \mu, \lambda)$ and summing over all $i\in S$, we
have, for each $l\in S$,

$g=\sum_{i}fi;(t, \mu, \lambda)r(i, \mu, \lambda)+\sum_{i}fi;(t, \mu, \lambda)\sum_{j}q(j|i, \mu, \lambda)\nu(j)$ . (3. 3)

Since $\sum_{i}\sum|fi;(t, \mu, \lambda)q(j|i, \mu, \lambda)|<\infty$ , the summation signs in the seconds term of
(3. 3) can $fbe$ interchanged.
Using the Kolmogorov forward differential equation (2. 3), we get for each $l\in S$,

$g=\sum_{i}fi;(t, \mu, \lambda)r(i, \mu, \lambda)+\sum_{j}\frac{\partial f_{lj}(t,\mu,\lambda)}{\partial t}\nu(j)$ . (3. 4)

By integrating on both sides of (3. 4) with respect to $t$ from $0$ to $ T<\infty$ , we have

$Tg=\int_{0}^{T}\sum_{\dot{l}}fi;(t, \mu, \lambda)r(i, \mu, \lambda)dt+\int_{0}^{T}\sum_{j}\frac{\partial f_{lj}(t,\mu,\lambda)}{\partial t}\nu(j)dt$

$=\int_{0}^{T}\sum_{i}f_{!i}(t, \mu, \lambda)r(i, \mu, \lambda)dt+\sum_{j}fi_{j}(T, \mu, \lambda)\nu(j)-\nu(l)$ .

Dividing by $T$ and taking the limit as $ T\rightarrow\infty$ , we get
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$g=\lim_{\tau\rightarrow\infty}\frac{\phi(l,T,\mu,\lambda)}{T}$ for each $l\in S$.

Thus, the proof is complete.
Moreover, the following lemma is important.

LEMMA. If $\nu$ is a bounded function on $S$, for each $i\in S,$
$\sum_{j}q(j|i, a, b)\nu(j)$ converges

uniformly in $a$ and $b$ . As this result, $\sum_{j}q(j|i, a, b)\nu(j)$ is a bounded continuous function on
$A\times B$.

The proof of the lemma is given in our paper [9].

Next, for $\nu$ in Assumption 3, we define

$K(i, \mu, \lambda)\equiv r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu(j)$ .

Then, by the lemma, $K(i, \mu, \lambda)$ is a continuous function on $PA\times PB$ for each $i\in S$. $K(i$ ,
$t\nu,$

$\lambda$), PA and PB satisfy the conditions of Sion’s minimax theorem (Theorem 3. 4 of [6])

because of its bilinearity in $(\mu, \lambda)$ and, consequently, for each $i\in S$.
$\sup_{\mu\in P_{A}}\inf_{\lambda\in P_{B}}K(i, \mu, \lambda)=\inf_{\lambda\in P_{B}}\sup_{\mu\in P_{A}}K(i, \mu, \lambda)$ .

Moreover, since $K(i, \mu, \lambda)$ is continuous on $PA\times PB$ for each $i\in S$ and $PA$ , PB are compact,
$\sup$ and inf can be replaced by $\max$ and $\min$, respectively. Thus, (3. 1) is written as
follows: for each $i\in S$

$g=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}K(i, \mu, \lambda)=\min_{\lambda\in P_{B}}\max_{\mu\in P_{A}}K(i, \mu, \lambda)$ .

From [5], there exist maps $\mu^{*}$ and $\lambda^{*}$ from $S$ into PA and $PB$, respectively, such that, for
each $i\in S$,

$m\ln_{B}K(i, \mu^{*}, \lambda)=\max_{\mu\lambda\in}\min_{\lambda\in P_{B}}K(i, \mu, \lambda)$ (3. 5)

$=\min_{\lambda\in P_{B}}\max_{\mu\in P_{A}}K(i, \mu, \lambda)$

$=\max_{\mu\in P_{A}}K(i, \mu, \lambda^{*})$ .

Then, under Assumption 1, Assumption 2 and Assumption 3, we can prove the fol-
lowing theorem.

THEOREM 3. 2. The game has a value and both players have optimal stationary stmtegies.

PROOF. From (3. 5), there exists a map $\mu^{*}$ from $S$ into PA such that, for each $i\in S$,

$g=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu(j)\}$
(3. 6)

$=\min_{\lambda\in P_{B}}\max_{\mu\in P_{A}}K(i, \mu, \lambda)$
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$=\min_{\lambda\in P_{B}}K(i, \mu^{*}, \lambda)$

and, moreover, (3. 6) is written as follows: for each $i\in S$ and all $\lambda\in PB$

$g\leqq r(i, \mu^{*}, \lambda)+\sum_{j}q(j|i, \mu^{*}, \lambda)\nu(j)$ .

Hence, for a stationary strategy $\mu^{*}$ for player I and any Markov strategy $\sigma$ for player II,
we have for each $ t\in[0, \infty$ )

$g\leqq r(i, t, \mu^{*}, \sigma)+\sum_{j}q(j|i, t, \mu^{*}, \sigma)\nu(j)$ . (3. 7)

Now, let the Kolmogorov forward differential equation corresponding to the strategies
$(\mu^{*}, \sigma)$ be

$\frac{\partial f_{ij}(t,\mu^{*},\sigma)}{\partial t}=\sum_{l}f_{il}(t, \mu^{*}, \sigma)q(j|l, t, \mu^{*}, \sigma)$ (3. 8)

for each $i,$ $j\in S$ and $t\geqq 0$.
Multiplying both sides of (3. 8) by $\nu(j)$ and summing over all $j\in S$, we obtain, for each
$i\in S$ and $t\geqq 0$,

$\sum_{j}\frac{\partial f_{ij}(t,\mu^{*},\sigma)}{\partial t}\nu(j)=\sum_{j}\sum_{l}f_{il}(t, \mu^{*}, \sigma)q(j|l, t, \mu^{*}, \sigma)\nu(j)$ . (3. 9)

Since $\sum_{j}\sum_{l}|fi\iota(t, \mu^{*}, \sigma)q(j|l, t, \mu^{*}, \sigma)\nu(j)|<\infty$ , the summation signs in the right-hand
side can be interchanged. Using (3. 7), we obtain, for each $i\in S$,

$\sum_{j}\frac{\partial f_{ij}(t,\mu^{*},\sigma)}{\partial t}\nu(j)=\sum_{l}f_{il}(t, \mu^{*}, \sigma)\sum_{j}q(j|l, t, \mu^{*}, \sigma)\nu(j)$ (3.10)

$\geqq\sum_{l}f_{il}(t, \mu^{*}, \sigma)[g-r(l, t, \mu^{*}, \sigma)]$

$=g-\sum_{l}f_{il}(t, \mu^{*}, \sigma)r(l, t, \mu^{*}, \sigma)$ .

Also, (3. 10) is written as follows

$g\leqq\sum_{!}f_{il}(t, \mu^{*}, \sigma)r(l, t, \mu^{*}, \sigma)+\sum_{j}\frac{\partial f_{ij}(t,\mu^{*},\sigma)}{\partial t}\nu(j)$ . (3.11)

By integrating of both sides of (3. 11) with respect to $t$ from $0$ to $ T<\infty$ , we have

$Tg\leqq\int_{0}^{T}\sum_{l}fi\iota(t, \mu^{*}, \sigma)r(l, t, \mu^{*}, \sigma)dt+\sum_{j}fij(T, \mu^{*}, \sigma)\nu(j)-\nu(i)$ .

Dividing by $T$ and taking the inferior limit as $ T\rightarrow\infty$ , we get, for each $i\in S$,

$g\leqq\varliminf_{\tau\rightarrow\infty}\div\int_{0}^{T}\sum_{l}fi\iota(t, \mu^{*}, \sigma)r(l, t, \mu^{*}, \sigma)dt$. (3.12)
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Thus, from (3. 12), it holds that, for each $i\in S$,

$g\leqq\inf_{\sigma\in\Gamma}\varliminf_{\tau\rightarrow\infty}\frac{\phi(i,T,\mu^{*},\sigma)}{T}\leqq\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}$ . (3.13)

Similarly, it holds that, for each $i\in S$.

$g\geqq\sup_{\pi\in\Pi}\varlimsup_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\lambda^{*})}{T}\geqq\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}$ , (3.14)

where $\lambda^{*}$ is the stationary strategy defined from (3. 5) for player II.
On the other hand, it is generally true that, for each $i\in S$,

$\sup_{\pi\in\Pi}\inf_{\sigma\in\Gamma}\varliminf_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}\leqq\inf_{\sigma\in\Gamma}\sup_{\pi\in\Pi}\varlimsup_{\tau\rightarrow\infty}\frac{\phi(i,T,\pi,\sigma)}{T}$ . (3.15)

By (3. 13), (3. 14) and (3. 15), we have $g$ as the value function of the game and $\mu^{*}$ and $\lambda^{*}$

are optimal stationary strategies for player I and player II, respectively. Thus, the proof

is complete.

4. The sufficient conditions of Assumption 3

In this section, we need the following results which we have given in our paper [9].

If $\mu$ and $\lambda$ are the stationary strategies of player I and player II, respectively, $\Psi(i, \alpha, \mu, \lambda)$

is the unique bounded solution to

$\alpha\Psi(i, \alpha, \mu, \lambda)=r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\Psi(j, \alpha, \mu, \lambda)$ , (4. 1)

where

$\Psi(i, \alpha, \mu, \lambda)=\int_{0}^{\infty}e^{-\alpha l}\sum_{j}f_{ij}(t, \mu, \lambda)r(j, \mu, \lambda)dt$.

Further, if $\mu^{*}$ and $\lambda^{*}$ are $\alpha$-discounted optimal stationary strategies of both players, then
$\Psi(i, \alpha, \mu^{*}, \lambda^{*})$ is the unique bounded solution to

$\alpha\Psi(i, \alpha, \mu^{*}, \lambda^{*})=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\Psi(j, a, \mu^{*}, \lambda^{*})\}$ .
(4. 2)

Now, for a pair of $\alpha$-discounted optimal stationary strategies $(\mu^{*}, \lambda^{*})$ of both players,
we define the notation as follows

$\nu_{ij}(a, \mu^{*}, \lambda^{*})=\Psi(i, \alpha, \mu^{*}, \lambda^{*})-\Psi(j, \alpha, \mu^{*}, \lambda^{*})$ .

We assume the following assumption regarding $\nu ij$ .
ASSUMPTION 4. For some sequence $\alpha_{m}\rightarrow 0$ as $ m\rightarrow\infty$ and for some state $k\in S$, there

exists a positive number $ M<\infty$ such that, for all $m=1,2,$ $\ldots\ldots$ and $i\in S$ ,
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$|\nu_{ik}(a_{m}, \mu_{m}, \lambda_{m})|\leqq M$

Then, under Assumption 1 and Assumption 2, we can prove the following theorem.

THEOREM 4. 1 Under Assumption 4, there exist a boundedfunction $\nu$ on $S$ and a constant
$g$ such that, for all $i\in S$,

$g=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu(j)\}$ . (4. 3)

PROOF. In Assumption 4, $(\mu_{m}, \lambda_{m})$ is a pair of $a_{m}$-discounted optimal stationary stra-
tegies of both players. From (2. 1) and (4. 2), $\Psi(i, a_{m}, \mu_{m}, \lambda_{n})$ satisfies the following
equation: for a fixed state $k\in S$, all $m=1,2,3,$ $\ldots\ldots$ and $i\in S$,

$a_{m}\Psi(i, a_{m}, \mu_{m}, \lambda_{m})=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu_{jk}(a_{m}, \mu_{\hslash}, \lambda_{m})\}$ .

(4. 4)

Since $S$ is a countable space and $|a_{m}\Psi(i, a_{m}, \mu_{m}, \lambda_{m})|\leqq\Vert r\Vert$ , by Assumption 4, there exist
the subsequences $\{\mu_{m^{\prime}}\}$ and $\{\lambda_{m^{\prime}}\}$ of $\{\mu_{m}\}$ and $\{\lambda_{m}\}$ , respectively, such that, for all $i\in S$,

$\lim_{m’\rightarrow\infty}a_{m^{\prime}}\Psi(i, a_{m^{\prime}}, \mu_{m^{\prime}}, \lambda_{m^{\prime}})=g$

and for all $j\in S$ and a fixed $k\in S$,

$\lim_{m’\rightarrow\infty}\nu_{jk}(a_{m^{\prime}}, \mu_{m^{\prime}}, \lambda_{m^{\prime}})=\nu(j)$

where $\alpha_{m^{l}}\rightarrow 0$ as $ m^{\prime}\rightarrow\infty$ .
Clearly, $\nu$ is a bounded function on $S$. Since $\sum_{j}q(j|i, \mu, \lambda)$ converges uniformly in $\mu$ and
$\lambda$ by the lemma, taking the limits as $ m^{\prime}\rightarrow\infty$ on both sides of (4. 4), we get the equation
(4. 3). Thus, the proof is complete.

Moreover, since PA and PB are compact from Assumption 2, there exist the subse-
quences $\{\mu_{m^{\prime}}\}$ and $\{\lambda_{m^{\prime}}\}$ of the sequences $\{\mu_{m}\}$ and $\{\lambda_{m}\}$ of $a_{m}$-discounted optimal station-
ary strategies of both players such that

$\lim_{m’\rightarrow\infty}a_{m^{\prime}}\Psi(i, \alpha_{m^{\prime}}, \mu_{m^{\prime}}, \lambda_{m^{\prime}})=g$, for all $i\in S$

$\lim_{m’\rightarrow\infty}\nu jk(a_{m^{\prime}}, \mu_{m^{\prime}}, \lambda_{m^{\prime}})=\nu(j)$ , for a fixed $k$ and all $i\in S$

and

$\mu_{n\prime}\Rightarrow\mu^{*}\in P_{A}$, $\lambda_{n^{\prime}}\Rightarrow\lambda^{*}\in P_{B}$,

where the $notation\Rightarrow denotes$ weak convergence.
Then, we can prove the following theorem.

THEOREM 4. 2 $\mu^{*}and$ $\lambda^{*}are$ the optimal stationary strategies for player I and player II,
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respectively.

PROOF. $(\mu_{m!}, \lambda_{m^{\prime}})$ is a pair of $\alpha_{m^{\prime}}$ -discounted optimal stationary strategies of both
players. From (2. 1), (4. 1) and (4. 2), we get for all $i\in S$

$\alpha_{m^{\prime}}\Psi(i, \alpha_{m\prime}, \mu_{m^{\prime}}, \lambda_{m^{\prime}})=r(i, \mu_{m^{\prime}}, \lambda_{m^{\prime}})+$

$+\sum_{j}q(i|i, \mu_{m^{\prime}}, \lambda_{m^{\prime}})\nu_{jk(\alpha_{m^{\prime}},\mu_{m^{\prime}},\lambda_{m^{\prime}})}$ . (4. 5)

Since $\sum q(j|i, \mu, \lambda)$ converges uniformly in $\mu$ and $\lambda$ by the lemma, taking the limits on
both sides of (4. 5) as $ m^{\prime}\rightarrow\infty$ , we obtain for all $i\in S$

$g=r(i, \mu^{*}, \lambda^{*})+\sum_{j}q(j|i, \mu^{*}, \lambda^{*})\nu(j)$ .

Thus, the proof is complete.
Next, we impose on $q$ the following assumption.

ASSUMPTION 5. There exist some state $k\in S$ and a positive number $\delta$ such that, for
all $i\neq k,$ $a\in A$ and $b\in B$,

$q(k|i, a, b)\geqq\delta>0$.
Now, under this assumption, we define new transition rates as follows: for each $i$ and

$j\in S$,

$\overline{q}(j|i, a, b)=q(j|i, a, b)+\delta ij\delta$ $j\neq k$

(4. 6)

$\overline{q}(k|i, a, b)=q(k|i, a, b)+\delta ik\delta-\delta$ ,

where $\delta ij$ is the Kronecker delta.
Clearly, new transition probability rate matrix $\overline{Q}(a, b)$ satisfies Assumption 1. Hence,

there exists a unique stochastic transition probability matrix $\overline{F}(s, t, \pi, \sigma)$ for any given
pair of Markov strategies $(\pi, \sigma)$ .

Now, we consider a new Markov game $(S, A, B, \overline{q}, r, \delta)$ with identical state space,
identical action spaces, identical reward and a discount factor $\delta>0$ . Since this new game
satisfies Assumption 1 and Assumption 2, from the result of [9], there exists a pair of
optimal stationary strategies $(\mu^{*}, \lambda^{*})$ of both players.

Then, we can prove the following theorem.

THEOREM 4. 3 Under Assumption 5, there exist a bounded function $\nu$ on $S$ and a constant
$g$ such that, for all $i\in S$,

$g=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\nu(j)\}$ .
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PROOF. Since $\mu^{*}$ and $\lambda^{*}$ are the optimal stationary strategies of both players in new
Markov game, from (4. 2), we have for all $i\in S$,

$\delta\overline{\Psi}(i, \delta, \mu^{*}, \lambda^{*})=\max_{\mu\in P_{A}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}\overline{q}(j|i, \mu, \lambda)\overline{\Psi}(j, \delta, \mu^{*}, \lambda^{*})\}$ .
(4. 7)

Substituting $q(j|i, \mu, \lambda)$ for $\overline{q}(j|i, \mu, \lambda)$ in (4. 7), we obtain, after some simplification, for
all $i\in S$,

$\delta\overline{\Psi}(k, \delta, \mu^{*}, \lambda^{*})=\max_{\mu\in P_{4}}\min_{\lambda\in P_{B}}\{r(i, \mu, \lambda)+\sum_{j}q(j|i, \mu, \lambda)\overline{\Psi}(j, \delta, \mu^{*}, \lambda^{*})\}$ .

Thus, the proof is complete.

REMARK. Under Assumption 5, the pair of $\delta\cdot discounted$ optimal stationary strategies
in the new Markov game is the same as the pair of optimal stationary strategies in the
original Markov game.
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