On maximality of $H^{\infty}(\alpha)$ in finite von Neumann algebras

By

Kichi-Suke SAITO*

(Recived October 21, 1976)

1. Introduction

Let M be a finite von Neumann algebra and $\{\alpha_t\}_{t \in R}$ be a flow on M which we mean a σ -weakly continuous one-parameter group of *-automorphisms of M. Suppose that there exists a α_t -invariant, faithful, normal, finite trace τ on M such that $\tau(1) = 1$. We construct the Banach space $L^p(M, \tau)$ $(1 \le p \le \infty)$ in the sense as Segal [7]. For each $p, 1 \le p \le \infty$, $\{\alpha_t\}_{t \in R}$ extends uniquely to a strongly continuous representation of R of isometries on $L^{p}(M, \tau)$. We denote this extension to each $L^{p}(M, \tau)$ by $\{\alpha_{t}\}_{t \in R}$ also. Therefore we can consider a spectrum of an element in $L^{p}(M, \tau)$ according to Arveson [1]. Let $H^{p}(\alpha)$ be the set of all elements of $L^{p}(M, \tau)$ with non-negative spectrum with respect to $\{\alpha_{t}\}_{t \in \mathbb{R}}$ and $H_0^p(\alpha)$ be the L^p -norm closure (σ -weakly closure if $p = \infty$) of the set of all elements of $L^{p}(M, \tau)$ with positive spectrum with respect to $\{\alpha_{t}\}_{t \in R}$. We shall call $H^{p}(\alpha)$ the non-Then the structure of $H^{p}(\alpha)$ was investigated by Saito [6] commutative Hardy space. and, in particular, the structure of $H^{\infty}(\alpha)$ was studied by Kawamura and Tomiyama [2], Loebl and Muhly [3] and Saito [5]. They showed that $H^{\infty}(\alpha)$ is a maximal subdiagonal algebra if the family of α_t -invariant normal states of M separates the non-negative elements of M. However, we don't know whether $H^{\infty}(\alpha)$ is maximal as a σ -weakly closed subalgebra of M. On the other hand, the Hardy space H^{∞} , which is the space of bounded analytic functions in the open unit disk, is a maximal σ -weakly closed subalgebra of L^{∞} of the unit circle. Therefore, in this note, we shall investigate the maximality of $H^{\infty}(\alpha)$ as a σ -weakly closed subalgebra of M.

2. Maximality of $H^{\infty}(a)$

Keep the notations as §1 and suppose $\{a_t\}_{t \in R}$ is ergodic in the sense that, for $x \in M$, $a_t(x) = x$ for all $t \in R$ implies $x = \lambda 1$ for some complex number λ . For $a \in M$, the least projection of all the projections q in M such that qa = a is called the left support of a and is denoted by l(a). For a subset S of $L^p(M, \tau)$, $[S]_p$ is the closed (σ -weakly closed if $p = \infty$) linear span of S in $L^p(M, \tau)$.

* Niigata University.

Our goal in this note is the following theorem.

THEOREM Keep the notations as above. If l(x) = 1 for every non-zero element x in $H^{\infty}(\alpha)$, then $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M.

PROOF. Suppose that $H^{\infty}(\alpha)$ is not a maximal σ -weakly closed subalgebra of M and let B be a proper σ -weakly closed subalgebra of M which contains $H^{\infty}(\alpha)$ properly. Then we shall prove that $L^2(M, \tau) \neq [B]_2$. Since $B \subseteq M$, there exists a non-zero element a of $L^1(M, \tau)$ such that $\tau(a^* y) = 0$ for every $y \in B$. As B contains $H^{\infty}(\alpha)$, we have $a^* \in H_0^{-1}(\alpha)$ by [6, Proposition 2.7] Let a = u |a| be the polar decomposition of a and let $|a| = \int_0^{\infty} \lambda \, de_{\lambda}$ be the spectral decomposition of |a|. How we define a function $f(\lambda) = \min(1, 1/\lambda), \lambda \ge 0$. Putting k = f(|a|), k is a self-adjoint operator in M and the invertible element k^{-1} of k belongs to $L^1(M, \tau)$. Furthermore we have $k \in [kH_0^{\infty}(\alpha)]_{\infty}$. Then $[kH^{\infty}(\alpha)]_{\infty}$ is a right simply invariant subspace in the sense that

$$[[kH^{\infty}(\alpha)]_{\infty}H_{0}^{\infty}(\alpha)]_{\infty} \subseteq [kH^{\infty}(\alpha)]_{\infty}.$$

According to [6, Theorem 5.1], there exists a unitary element v of M such that $[kH^{\infty}(\alpha)]_{\infty} = vH^{\infty}(\alpha)$. Thus there exists an element y of $H^{\infty}(\alpha)$ such that k=vy. Then we have

$$ay^* = u |a| kv = u \int_0^\infty \lambda \operatorname{de}_\lambda \int_0^\infty f(\lambda) \operatorname{de}_\lambda v = u \int_0^\infty \lambda f(\lambda) \operatorname{de}_\lambda v.$$

Since $\lambda f(\lambda)$ is bounded, we have $ay^* \in M$. Furthermore for every $z \in [B]_2$,

$$(z, ay^*) = \tau((ay^*)^*z) = \tau(ya^*z) = \tau(a^*zy) = 0.$$

Thus $ay^* \in [B]_2^+ \cap M$ where $[B]_2^+$ is the orthogonal complement of $[B]_2$ in $L^2(M, \tau)$. Therefore we have $L^2(M, \tau) \neq [B]_2$.

By [6, Proposition 2.7], we have $[B]_2^{\perp} \subset H_0^2(\alpha)^*$. Furthermore there exists a projection p of $B \cap B^*$ such that 0 . We choose an element <math>x in B which is invertible in B but which does not belong to $H^{\infty}(\alpha)$. Such a choice is possible since a Banach algebra with identity is spanned by its invertible elements and since $B \neq M$. As $x \in M \cap M^{-1}$, $[xH^{\infty}(\alpha)]_{\infty}$ is a right simply invariant subspace of M. Thus there exists a unitary element u of M such that $[xH^{\infty}(\alpha)]_{\infty} = uH^{\infty}(\alpha)$. Then there exists $y \in H^{\infty}(\alpha) \cap H^{\infty}(\alpha)^{-1}$ such that x = uy. Since $x \in H^{\infty}(\alpha)$, u is not a scalar multiple of 1 and $u^{-1} = u^* \in B$. Therefore B contains all the spectral projections of u. Since u is not a scalar multiple of 1, there exists a spectral projection p of u as a unitary operator such that 0 .

Since $p \in B$, we have $[B]_2^+ p \subset [B]_2^+ \subset H_0^2(\alpha)^*$. Putting $b = ay^* p(=ay^*(1-p))$ if $ay^* p = 0$, we have $l(b^*) \leq p < 1$ and $b^* \in H_0^{\infty}(\alpha)$. This is a contradiction. Therefore $H^{\infty}(\alpha)$ is a maximal σ -weakly closed subalgebra of M.

Q. E. D.

References

- 1. W. B. ARVESON, On groups of automorphisms of operator algebras, J. Funct. Anal., 15 (1947), 217-243.
- 2. S. KAWAMURA, and J. TOMIYAMA, On subdiagonal algebras associated with flows in operator algebras, to appear.
- 3. R. I. LOEBL and P. S. MUHLY, Analyticity and flows in von Neumann algebras, preprint.
- 4. P. S. MUHLY, Maximal weak*-Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.
- 5. K. -S. SAITO, The Hardy spaces associated with a periodic flow on a von Neumann algebra, to appear in Tôhoku Math. J.
- 6. K. -S. SAITO, On non-commutative Hardy spaces associated with flows on finite von Neumann algebras, to appear in Tôhoku Math. J.
- 7. I. E. SEGAL, A non-commutative extension of abstract integrations, Ann. Math., 57 (1953), 401-457.