$\mathbf{S O}$ (3)-action and 2-torus action on homotopy complex projective 3 -spaces

By
Tsuyoshi Watabe

(Received May 20, 1975)

Introduction

In this note, we shall consider $\mathrm{SO}(3)$-action and 2 -torus action on homotopy complex projective 3 -space with the view of proving that any exotic homotopy complex projective 3 -space admits no effective $\mathrm{SO}(3)$-action nor 2 -torus action. In this direction the following results are known.

1. A homotopy complex projective 3 -space (abbreviated by $h C P_{3}$) which admits an effective 3-torus action is diffeomorphic to the standard complex projective 3-space CP_{3}. ([8])
2. An hCP ${ }_{3}$ which admits an effective 1-torus action with fixed point set of 2 components is diffeomorphic to CP_{3}. ([11])
3. An hCP P_{3} which admits n-dimensional compact connected Lie group action $(n \geqq 6)$ is diffeomorphic to CP_{3}. ([4])

In this note we shall prove the following
Theorem. If an hCP P_{3} admits an effective $\mathrm{SO}(3)$-action or 2-torus action, then it is diffeomorphic to C_{3}.

In the following all actions are assumed to be differentiable.

1. Statement of results

First we shall consider 2-torus action. Let G be a 2 -torus and t_{1}, t_{2} denote the standard complex 1-dimensional representations of G. Then it is well known that the complex representation ring $R(G)=Z\left[t_{1}, t_{2}, t_{1}^{-1}, t_{2}^{-1}\right]$.

Lemma 1. Let ϕ_{1} and ϕ_{2} be complex 1-dimensional representations of G. Put $\phi_{1}=t_{1}{ }^{a}$ $t_{2}{ }^{b}$ and $\phi_{2}=t_{1}{ }^{c} t_{2}{ }^{d}$, where a, b, c, d, are integers. Then if ker $\phi_{1} \cap$ ker $\phi_{2}=1$, we have ad$b c=1$.

Proof. Assume the contrary. Then $a d-b c=e \neq \pm 1$ and e is not zero. It is easy to see that there are integers k, l such that at least one of $(k d-l b) / e,(l a-k c) / e$ is not integer. Hence there exist real numbers θ and λ such that $a \theta+b \lambda \equiv 0(2 \pi), c \theta+\lambda d \equiv 0(2 \pi)$
and θ or λ is not integral multiple of 2π. This contradicts to our assumption.
We have the following
Corollary. $R(G)=Z\left[\phi_{1}, \phi_{2}, \phi_{1}^{-1}, \phi_{2}^{-1}\right]$.
Let M be an $h C P_{3}$ and consider an effective action of G on M. Let F denote the fixed point set $F(G, M)$. It is clear that F contains no component of dimension 4. Then the following four cases can occur.

Case 1. $\quad F=S^{2} \cup S^{2} \quad\left(S^{2}=2\right.$-dimensional sphere)
Case 2. $F=S^{2} \cup\left\{x_{1}, x_{2}\right\}$
Case 3. $F=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
Consider the case 1 and 2. Let φ_{x} denote the local representation of G at $x \in S^{2} . \varphi_{x}$ may be written by $1+t_{1}{ }^{a} t_{2} b+t_{1} c t_{2} d$, where a, b, c and d are integers (Note that φ_{x} is considered as complex representation). The restricted action to ker $t_{1} a t_{2}{ }^{b}$ ($=1$-torus) has 4 -dimensional fixed point set. It follows from the following proposition that M is diffeomorphic to CP_{3}.

Proposition 1. Assume that there exists an orientable 4-dimensional submanifold F of M such that $F \underset{Q}{\sim} C P_{2}$ and inclusion $i: F \longrightarrow M$ induces an isomorphism $i^{*}: H^{2}(M ; Q) \sim H^{2}(F ;$ Q), where Q is the field of rational numbers, for spaces $X, Y, X \underset{Q}{\mathcal{Q}}$ means that X and Y have isomorphic Q-cohomology. Then M is diffeomorphic to $C P_{3}$.

We shall prove this proposition in section 2.
Consider case 3. Let $\rho_{i}=\varphi_{i 1}+\varphi_{i 2}+\varphi_{i 3}$ be the local representation at isolated fixed point $x_{i}(\mathrm{i}=1,2,3,4)$ (considered as complex representation). Assume that ker $\varphi_{i j \cap} \operatorname{ker}$ $\varphi_{i k}$? \{identity\} $(j \neq k)$. Then there exists a subgroup $Z_{p} \subset G$ (p; prime) such that $F\left(Z_{p}\right.$, $M)$ is 4 -dimensional. Denote F be the 4 -dimensional component of $F\left(Z_{p}, M\right)$. Then F is Z_{p}-cohomological complex projective 2 -space. Let T be a 1 -torus containing Z_{p}. Since $F(T, M)=F\left(T / Z_{p}, F\left(Z_{p}, M\right)\right)=F\left(T / Z_{p}, F\right) \cup\{$ one point $\}$, and Euler characteristic of $F(T$, M) is equal to that of M, we have $F \widetilde{Q} C P_{2}$ and inclusion $i: F \longrightarrow M$ induces an isomorphism $i^{*}: H^{2}(M ; Q) 工 H^{2}(F ; Q)$ (see [2] chap. VII). Proposition 1 shows that M is $C P_{3}$. Thus we may assume that for any $i, j, k(j \neq k) \operatorname{ker} \varphi_{i j} \cap \operatorname{ker} \varphi_{i k}=\{1\}$. Put $\varphi_{1}=\varphi_{11}$ and $\varphi_{2}=$ φ_{12}. Then from lemma 1 it follows that $R(G)=Z\left[\varphi_{1}, \varphi_{2}, \varphi_{1}{ }^{-1}, \varphi_{2}^{-1}\right]$. Since ker $\varphi_{1} \cap \operatorname{ker}$ $\varphi_{13}=\operatorname{ker} \varphi_{2} \cap \operatorname{ker} \varphi_{13}=\{1\}$, we may assume $\rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2}$. In fact, let $\varphi_{13}=\varphi_{1} a \varphi_{2}{ }^{b}$. Then we have $|a|=|b|=1$. If $\varphi_{13}=\varphi_{1} \varphi_{2}{ }^{-1}$, we have $\varphi_{1}=\varphi_{2} \varphi_{13}$ and hence we can take φ_{13} instead of φ_{1}. If $\varphi_{13}=\varphi_{1}^{-1} \varphi_{2}^{-1}$, no change is needed, because $\varphi_{1} \varphi_{2}$ and $\varphi_{1}^{-1} \varphi_{2}^{-1}$ determine the same real representation.

Put $\rho_{i}=\varphi_{1} a_{i} \varphi_{2} a_{i}{ }^{\prime}+\varphi_{1} b_{i} \varphi_{2} b_{i}{ }^{\prime}+\varphi_{1} c_{i} \varphi_{2} c^{c^{\prime}}(i=2,3,4)$, where $a_{i}, a_{i}{ }^{\prime}, b_{i}, b_{i}{ }^{\prime}, c_{i}, c_{i}{ }^{\prime}$ are integers. Note that we may assume that $a_{i}+b_{i}=c_{i}$ and $a_{i}{ }^{\prime}+b_{i}{ }^{\prime}=c_{i}{ }^{\prime}$. Let $K_{i}=\operatorname{ker} \varphi_{i} \quad(i=1,2)$. Consider the restricted action of K_{i}. We may assume $F\left(K_{i}, M\right)=S^{2} \cup$ \{two points\}. Then the following two cases can occur. Write $F\left(K_{1}, M\right)=S_{1}{ }^{2} \cup\left\{z_{1}, z_{2}\right\}$ and $F\left(K_{2}, M\right)=S_{2}{ }^{2} \cup\left\{y_{1}\right.$, y_{2} \}.

Case 1. $x_{1}, x_{2} \in S_{1}{ }^{2} \quad x_{1}, x_{2} \in S_{2}{ }^{2}$

$$
\left\{x_{3}, x_{4}\right\}=\left\{z_{1}, z_{2}\right\} \quad\left\{x_{4}, x_{3}\right\}=\left\{y_{1}, y_{2}\right\}
$$

Case 2. $x_{1}, x_{2} \in S_{1}{ }^{2} \quad x_{1}, x_{3} \in S_{2}{ }^{2}$

$$
\left\{x_{3}, x_{4}\right\}=\left\{z_{1}, z_{2}\right\} \quad\left\{x_{2}, x_{4}\right\}=\left\{y_{1}, y_{2}\right\}
$$

Consider the case 1. It can be shown that $\rho_{2}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2} \pm 1$. In fact, since $\rho_{2}=$ $\varphi_{1} a_{2} \varphi_{2} a_{2}{ }^{\prime}+\varphi_{1} b_{2} \varphi_{2} b_{2}{ }^{\prime}+\varphi_{1} c_{2} \varphi_{2} c_{2}{ }^{\prime}$ and $x_{2} \in S_{1}{ }^{2}$, we have $\rho_{2} / K_{1}=1+\varphi_{2}+\varphi_{2}$ and hence we may assume $a_{2}{ }^{\prime}=0, b_{2}{ }^{\prime}= \pm 1$ and $c_{2}{ }^{\prime}= \pm 1$. Moreover since ρ_{2} / K_{2} is equivalent to $\rho_{1} \mid K_{2}$, we may assume $b_{1}=0, a_{1}= \pm 1$ and $c_{1}= \pm 1$. Thus we have $\rho_{2}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2} \pm 1$ (Note φ_{1} and $\varphi_{1}{ }^{-1}$ determine the same real 2-dimensional representation of S^{1}). By similar arguments, we can show that in case 2 local representations at x_{i} are given as follows;

$$
\begin{aligned}
& \rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2} \\
& \rho_{2}=\varphi_{1}+\varphi_{1} a \varphi_{2}+\varphi_{1} a+1 \varphi_{2} \\
& \rho_{3}=\varphi_{2}+\varphi_{1} \varphi_{2} b+\varphi_{1} \varphi_{2} b+1 \\
& \rho_{4}=\varphi_{1} a_{4} \varphi_{2} a_{4}^{\prime}+\varphi_{1} b_{4} \varphi_{2} b_{4}^{\prime}+\varphi_{1} c_{4} \varphi_{2} c_{4}^{\prime}
\end{aligned}
$$

In section 3, we show that only possible case is case 1 with one exception and local representations are given;

$$
\begin{aligned}
& \rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2} \\
& \rho_{2}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2} \\
& \rho_{i}=\varphi_{1} a_{i} \varphi_{2} a_{i}^{\prime}+\varphi_{1} b_{i} \varphi_{2} b_{i}^{\prime}+\varphi_{1} c_{i} \varphi_{2}^{c_{i}^{\prime}} \quad i=3,4
\end{aligned}
$$

where $a_{i}{ }^{\prime}+a_{i} \neq 0$ and $b_{i}+b_{i}{ }^{\prime} \neq 0$.
In this case let D denote the subgroup of G defined by $\varphi_{1}=\varphi_{2}$. Clearly D is 1-torus with $F(D, M)=F(G, M)$ and $R(D)=Z\left[\varphi, \varphi^{-1}\right]$, where $\varphi=\varphi_{1}=\varphi_{2}$. Let η be the pull back of the Hopf bundle over $C P_{3}$ via a homotopy equivalence from M to $C P_{3}$. η may be considered a D-bundle over M. Put $\eta \mid x_{i}=\varphi^{\alpha_{i}}$. We may assume $\alpha_{1}=0$ (For these arguments, see Part II section 1 in [7]). The following results are proved in [7].

1. $\alpha_{i}{ }^{\prime} \mathrm{s}$ are all distinct integers.
2. Let $\varphi^{n_{i 1}}+\varphi^{n_{i 2}}+\varphi^{n_{i 3}}$ be local representations of D at $x_{i}(i=1,2,3,4)$.

Then

$$
\prod_{j \neq i}\left(\alpha_{j}-\alpha_{i}\right)=\varepsilon \prod_{j \neq i} n_{i j} \quad(i=1,2,3,4)
$$

where $\varepsilon= \pm 1$ is independent on i.
3. $\sum_{i=1}^{4} \prod_{j=1}^{3}\left(\varphi^{n_{i j}}+1\right)\left(\varphi^{n_{i j}}-1\right)=0$
 first Pontrjagin class $p_{1}(M)$ of M is equal to $4 a^{2}$, where $H^{*}(M ; Z)=$ $Z[a] /\left(a^{4}\right)$, and hence M is diffeomorphic to $C P_{3}$ ([12]).
Applying these results to our action of D, we have three non-zero all distinct integers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfying
(1)

$$
\begin{gather*}
\alpha_{1} \alpha_{2} \alpha_{3}= \pm 2 \\
\alpha_{1}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)= \pm 2 \tag{2}\\
\alpha_{2}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)= \pm\left(a_{3}+a_{3}^{\prime}\right)\left(b_{3}+b_{3}^{\prime}\right)\left(c_{3}+c_{3}^{\prime}\right) \tag{3}\\
\alpha_{3}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)= \pm\left(a_{4}+a_{4}^{\prime}\right)\left(b_{4}+b_{4}^{\prime}\right)\left(c_{4}+c_{4}^{\prime}\right) \tag{4}
\end{gather*}
$$

From (1) and (2) it follows that $\alpha_{1}= \pm 1, \alpha_{2}=\mp 1$ and $\alpha_{3}= \pm 2$ or $\alpha_{1}= \pm 1, \alpha_{2}= \pm 2$ and $\alpha_{3}=\mp 1$, respectively. Then the left hand sides of (3) and (4) are 6 or -6 . Since $a_{3}+a_{3}{ }^{\prime}$ and $b_{3}+b_{3}{ }^{\prime}$ are relatively prime and $c_{3}+c_{3}{ }^{\prime}=\left(a_{3}+a_{3}{ }^{\prime}\right)+\left(b_{3}+b_{3}{ }^{\prime}\right)$, we may assume $a_{3}+a_{3}{ }^{\prime}$ $= \pm 1$ and $b_{3}+b_{3}{ }^{\prime}= \pm 2$, respectively. Similarly we have $a_{4}+a_{4}{ }^{\prime}= \pm 1$ and $b_{4}+b_{4}{ }^{\prime}= \pm 2$, respectively. Then we can choose $n_{i j}$ so that the condition of 4 is satisfied. Thus we have proved the following

Theorem A. If an hCP 3_{3} admits an effective 2-torus action, it is diffeomorphic to CP_{3}.
Now consider $\mathrm{SO}(3)$-action on $h C P_{3} M$. Denote $G=S O$ (3). Note that there is a point of M whose isotropy subgroup is a maximal torus of G. In fact, assume the contrary. Then all orbits have the same Q-cohomology of 3 -sphere or a point. Hence by Vietoris-Begle mapping thereom, the orbit map $\pi: M \longrightarrow M^{*}$ induces isomorphism π^{*} : $H^{*}\left(M^{*} ; Q\right) \longrightarrow H^{*}(M ; Q)$ for ${ }^{*} \leqq 3$. It is not difficult to see that this contradicts to the structure of $H^{*}(M ; Q)$.

In section 4, we shall prove the following
Lemma 2. If there is an element $g \neq 1$ (1 denotes the identity element of G) with 4dimensional fixed point set, then M is diffeomorphic to CP_{3}.

Since we are only interested in proving that M is diffeomorphic to $C P_{3}$, we may assume that any element of finite order has at most 2 -dimensional fixed point set. It follows

Proposition 2. Any principal isotropy subgroup consists of only identity.
Let T be the standard maximal torus of G. We shall find possible types of $F(T, M)$. It follows from a result in [10] that it is impossible for $F(T, M)$ to have a 4-dimensional component. Hence we have following possible three cases;

1. $F(T, M)=$ union of two 2 -spheres
2. $F(T, M)=$ union of 2 -sphere and isolated two points
3. $F(T, M)=$ union of isolated four points.

In case $1, M$ is diffeomorphic to $C P_{3}$. Hence we consider the cases 2 and 3.
We shall prove the following lemma in section 4.
Lemma 3. In case $3, M$ is diffeomorphic to CP_{3}
Let D_{2} be the dihedral subgroup of order 4. We have
Lemma 4. $F\left(D_{2}, M\right) \neq \varnothing$.
Then by a result in [1] (chap. XIII. Th. 4.3), the dimension of $F\left(D_{2}, M\right)$ is given by

$$
2 \operatorname{dim} F\left(D_{2}, M\right)=\left(\sum_{H} \operatorname{dim} F(H, M)\right)-6
$$

where H is subgroups of D_{2} of index 2. Let a and b be generators of D_{2} such that $b \in T$ and $N=T \cup a T$ the normalizer of T. Then H is $\{a\},\{b\}$ or $\{a b\}$. Since $\operatorname{dim} F(a, M)=\operatorname{dim}$ $F(b, M)=\operatorname{dim} F(a b, M)=2$, we have $\operatorname{dim} F\left(D_{2}, M\right)=0$. It follows from a result in [1] (chap. XIII. Th. 3.6) that $F\left(D_{2}, M\right)$ consist of four points. Moreover $F(b, M)$ is union of two 2-spheres (see [2], chap. VIII) and hence $F(a, M)$ is also union of two 2-spheres. Let $F(b, M)=S_{1}^{2} \cup S_{2}{ }^{2}$. We may assume that $F(T, M)=S_{1}{ }^{2} \cup\left\{x_{1}, x_{2}\right\}$. Since $F(a, F(b, M))$ $=F\left(a, S_{1}{ }^{2}\right) \cup F\left(a, S_{2}{ }^{2}\right) \neq \varnothing, F\left(a, S_{1}{ }^{2}\right)$ and $F\left(a, S_{2}{ }^{2}\right)$ is not empty. It is known that the fixed point set of an involution on 2 -sphere is 1 -dimensional or two points (see [2] chap. VII) and hence $F\left(D_{2}, M\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $y_{1}, y_{2} \in S_{1}{ }^{2} \subseteq F(T, M)$. Hence y_{1}, and $y_{2} \in F(N, M)$. Possible types of $F(N, M)$ are following

$$
\begin{aligned}
& \text { (a) } F(N, M)=\left\{y_{1}, y_{2}\right\} \subseteq S_{1}^{2} \\
& \text { (b) } F(N, M)=\left\{y_{1}, y_{2}, x_{1}, x_{2}\right\} .
\end{aligned}
$$

The following lemma is proved in [6] ([6] Th. (3.2))
Lemma 5. Let $z \in F\left(D_{2}, M\right)$ and G_{z} is a normalizer of a 1 -torus. Then $G(z) \cap F\left(D_{2}, M\right)$ consists of three points.

Consider case (a). Suppose $y_{1} \in F(N, M)-F(G, M)$. Then it follows from lemma 5 that $G\left(y_{1}\right) \cap F\left(D_{2}, M\right)$ consists of three points. Put $G\left(y_{1}\right) \cap F\left(D_{2}, M\right)=\left\{y_{1}, z_{1}, z_{2}\right\}$. It is clear that $y_{2}=z_{j}$ for some j. Hence $\left\{z_{1}, z_{2}\right\}=\left\{y_{3}, y_{4}\right\}$, and one of y_{1} and y_{2} is a fixed point. Assume $y_{1} \in F(G, M)$. Consider the action of G on S^{5} (=the small unit sphere around y_{1}) induced by local representation of G at y_{1}. This action has S^{2} as an orbit. It follows from a result in [9] ([9] section 2) that all 0-dimensional isotropy subgroup are \{1\}. Since 2-dimensional component of $F(a, M)$ containing y_{1} intersects with 2-dimensional component of $F(b, M)$ containing y_{1} at one point y_{1}, the action of G on S^{5} must have a non-trivial finite isotropy subgroup, which contradicts to the above fact. Similarly we can show that case (b) can not occur. Thus under our assumption the case in which $F(T, M)=S^{2} \cup\left\{x_{1}, x_{2}\right\}$ cannot occur. Hence we have proved the following

Theorem B. If an $h C P_{3}$ admits a non-trivial $S O(3)$-action, then it is diffeomorphic to CP_{3}.

2. Proof of Proposition 1

In this section, we shall prove proposition 1 . Let ν be the normal bundle of F in M. It follows from a result in [3] that the Euler class $\chi(\nu)$ is given by

$$
\chi(\nu)=i^{*} D^{-1}\left(i_{*}[F]\right),
$$

where $[F]$ denotes the fundamental class of F and $D: \quad H^{2}(M, Z) \longrightarrow H_{4}(M ; Z)$ Poincare duality. α denotes a generator of $H^{2}(F ; Z) / T o r . \cong Z$ and a a generator of $H^{*}(M ; Z)=$ $Z[a] /\left(a^{4}\right)$. Put $i^{*}(a)=m \alpha+\beta$, where $\beta \in \operatorname{Tor} H^{2}(F: Z)$. We ahve $i^{*}\left(a^{2}\right)=m^{2} \alpha^{2}$.

Put $D^{-1} i_{*}[F]=k a$. Then we have

$$
\begin{aligned}
k & =<[M], k a^{3}>=<k a \cap[M], a^{2}> \\
& =<i_{*}[F], a^{2}>=<[F], i^{*} a^{2}> \\
& =<[F], m^{2} \alpha^{2}>=m^{2} .
\end{aligned}
$$

Hence we have $\chi(\nu)=i^{*}\left(m^{2} a\right)=m^{2}(m \alpha+\beta)$. This implies $p_{1}(\pi)=(\chi(\nu))^{2}=m^{6} \alpha^{2}$. Put $p_{1}(M)=l a^{2}$. From $i^{*} p_{1}(M)=p_{1}(F)+p_{1}(\nu)$, it follows that $3=m^{2}\left(l-m^{4}\right)$. Since m and l are integers, we have $l=4$. Hence M is diffeomorphic to $C P_{3}$ (see [12]).

3. 2-torus action

In this section, we shall consider the remaining cases in section 2. We use the same notations as in section 2.

Case 1. One of $a_{i}+a_{i}{ }^{\prime}, b_{i}+b_{i}{ }^{\prime}(i=3,4)$ is zero.
Without loss of generality, we may assume that $a_{3}+a_{3}{ }^{\prime}=0$. If $b_{3}+b_{3}{ }^{\prime}=0$, the fixed point set of D-action is 6 -dimensional, which contradicts to the effectivity. Since $F(D$, M) has 2-dimensional component S and x_{1}, x_{2} as isolated fixed points, we have $x_{4} \in S$. We may assume that $a_{4}+a_{4}{ }^{\prime}=0$, because the local representations of D at x_{3} and x_{4} are equivalent. Choose new coordinates θ_{1}, θ_{2} on G such that $\varphi_{1}=\theta_{1}$ and $\varphi_{2}=\theta_{1} \theta_{2}$. Then we have

$$
\rho_{i}=\theta_{1}+\theta_{1} \theta_{2}+\theta_{1}^{2} \theta_{2} \quad i=1,2
$$

and

$$
\rho_{j}=\theta_{2} a_{i}^{\prime}+\theta_{1} b_{i}+b_{i^{\prime}} \theta_{2} b_{i}^{\prime}+\theta_{1} c_{i}+c_{i}^{\prime} \theta_{2} c_{i}^{\prime} \quad i=3,4 .
$$

We have $a_{i}{ }^{\prime}= \pm 1$ and $b_{i}+b_{i}{ }^{\prime}= \pm 1$ and hence $\rho_{j}=\theta_{2}+\theta_{1} \theta_{2} b_{j}+\theta_{1} \theta_{2} b_{j} \pm 1$ for $j=3$, 4. Moreover we choose coordinates ξ_{1}, ξ_{2} on G such that

$$
\begin{array}{lll}
\rho_{i}=\xi_{1}+\xi_{1}{ }^{2} \xi_{2}+\xi_{1}{ }^{4} \xi_{2} & i=1,2 & \\
\rho_{j}=\xi_{1}{ }^{2} \xi_{2}+\xi_{1} b_{j}+1 \xi_{2} b_{j}+\xi_{1}{ }^{2\left(b_{j} \pm 1\right)+1} \xi_{2}\left(b_{j} \pm 1\right) & j=3,4 .
\end{array}
$$

Consider the action restricted to $D^{\prime}=\left\{\xi=\xi_{2}=\xi_{1}\right\}$. Then local representations of D^{\prime} at x_{i} are as follows;

$$
\begin{aligned}
& \text { at } x_{i}(i=1,2) ; \xi+\xi^{4}+\xi^{5} \\
& \text { at } x_{i}(i=3,4) ; \xi^{3}+\xi^{2} b_{j}+1+\xi^{3\left(b_{j} \pm 1\right)+1}
\end{aligned}
$$

Clearly $F\left(D^{\prime}, M\right)=F(G, M)$. Then there exist three distinct integers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satifying
(1) $\alpha_{1}\left(\alpha_{2} \alpha_{3}= \pm 20\right.$
(2) $\alpha_{1}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)= \pm 20$
(3) $\alpha_{2}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)= \pm 3\left(2 b_{3}+1\right)\left(3\left(b_{3} \pm\right)+1\right)$
(4) $\alpha_{3}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)= \pm 3\left(2 b_{4}+1\right)\left(3\left(b_{4} \pm 1\right)+1\right)$.

From (1) and (2) it follows that possible pairs of ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) are followings

case	1	2	3	$\alpha_{2}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{3}-\alpha_{2}\right)$	$\alpha_{3}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)$
1	1	-4	5	± 180	± 180
2	1	5	-4	± 180	± 180
3	-1	4	-5	± 180	± 180
4	-1	-5	4	± 180	± 180
5	4	-1	5	± 130	± 30
6	4	5	-1	± 30	± 30
7	-4	1	-5	± 30	± 30
8	-4	-5	1	± 30	± 30
9	+5	1	4	± 12	± 12
10	5	4	1	± 12	± 12
11	-5	-4	-1	± 12	± 12
12	-5	-1	-4	± 12	

Consider equations; $(2 x+1)(3 x+4)= \pm 60, \pm 10$, or $(2 x+1)(3 x-2)= \pm 60, \pm 10$. It is easily seen that these equations have no integral roots. Hence cases $1,2, \ldots . . ., 8$ cannot occur. Consider cases $9, \ldots \ldots, 12$. Since $(2 x+1)(3 x+4)=4$ has 0 as its integral roots, local representations of D^{\prime} of following type may occur;

$$
\begin{aligned}
& \text { at } x_{i}(i=1,2) ; \xi+\xi^{4}+\xi^{5} \\
& \text { at } x_{i}(i=3,4) ; \xi+\xi^{3}+\xi^{4}
\end{aligned}
$$

In [7], it is proved that the number of coonnected components of $F\left(Z_{p^{r}}, M\right)$ intercecting $F\left(D^{\prime}, M\right)$ is the number of distinct residue classes among the four integers $0, \alpha_{1}$, α_{2}, α_{3}. Let Z_{5} be defined by $\xi^{5}=0$. Clearly the number of connected components of $F\left(Z_{5}\right.$, M) intercecting $F\left(D^{\prime}, M\right)$ is 3 . Hence the number of distinct residue classes among $0, \alpha_{1}$, α_{2}, α_{3} is 3 . From relations
(1) $\alpha_{1} \alpha_{2} \alpha_{3}$

$$
= \pm 20
$$

(2) $\alpha_{1}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)= \pm 20$
(3) $\alpha_{2}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)= \pm 12$
(4) $\alpha_{3}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)= \pm 12$,
it follows that only possible residue classes are;

$$
\begin{aligned}
& \alpha_{1} \equiv 0 \\
& \alpha_{2} \neq 0 \\
& \alpha_{3} \neq 0 \\
& \alpha_{2} \neq \alpha_{3}
\end{aligned}
$$

Then clearly $\alpha_{1}= \pm 5$ and $\alpha_{1}=\alpha_{2}+\alpha_{3}$. Hence we have $\alpha_{2}= \pm 1, \alpha_{3}= \pm 4, \alpha_{1}-\alpha_{2}= \pm 4, \alpha_{1}-\alpha_{3}$ $= \pm 1$ and $\alpha_{2}-\alpha_{3}= \pm 3$. It is not difficult to see that one can choose signs of $n_{i j}$ so that condition of 4 in section 1 holds. Therefore M is diffeomorphic to $C P_{3}$.

Next we shall consider case 2. In this case we have shown that local representations at x_{i} are given as follows;

$$
\begin{aligned}
& \rho_{1}=\varphi_{1}+\varphi_{2}+\varphi_{1} \varphi_{2} \\
& \rho_{2}=\varphi_{1}+\varphi_{1}{ }^{a} \varphi_{2}+\varphi_{1} a^{+1} \varphi_{2} \\
& \rho_{3}=\varphi_{2}+\varphi_{1} \varphi_{2}^{b}+\varphi_{1} \varphi_{2}{ }^{b+1} \\
& \rho_{4}=\varphi_{1} a_{4} \varphi_{2} a_{4}^{\prime}+\varphi_{1} b_{4} \varphi_{2} b_{4}^{\prime}+\varphi_{1} c_{4} \varphi_{2} c_{4}^{\prime}
\end{aligned}
$$

where $c_{4}=a_{4}+b_{4}, c_{4}{ }^{\prime}=a_{4}{ }^{\prime}+b_{4}{ }^{\prime}$.
Since x_{1} and x_{2} are not contained in the same component of $F\left(K_{2}, M\right), a$ is neither 0 nor -1 . Similarly we have $b \neq 0,1$. Consider the action restricted to $D^{\prime}=\left\{\varphi_{1}=\varphi_{2}^{-1}\right]$. Clearly $F\left(D^{\prime}, M\right)$ has 2 -dimensional component which contains x_{1}. Then the following three cases can occur;
(1) $a=1$
(2) $a \neq 1$ and $b=1$
(3) $a \neq 1, b \neq 1$ and one of $a_{4}-a_{4}{ }^{\prime}, b_{4}-b_{4}{ }^{\prime}$ and $c_{4}-c_{4}{ }^{\prime}$ is zero.

Case (1). Considered the action restricted to $H=\left\{\varphi_{1}=\varphi_{2}-1\right\}$. Clearly x_{2} is contained in a 2 -dimensional component of $F(H, M)$. Since x_{1} and x_{3} are isolated fixed points of $F(H, M)$, just one of $a_{4}-2 a_{4}{ }^{\prime}, b_{4}-2 b_{4}{ }^{\prime}$ and $c_{4}-2 c_{4}{ }^{\prime}$ must be zero. Assume that $a_{4}=2 a_{4}{ }^{\prime}$. It follows from the fact $\operatorname{det}\left(\begin{array}{ll}a_{4} & b_{4} \\ a_{4} & b_{4}\end{array}\right)= \pm 1$ that $a_{4}{ }^{\prime}= \pm 1$ and $2 b_{4}{ }^{\prime}-b_{4}= \pm 1$. Hence we ahve $\rho_{4}=\varphi_{1}{ }^{ \pm 2} \varphi_{2}{ }^{ \pm 1}+\varphi_{1}{ }^{d} \varphi_{2} d^{\prime}+\varphi_{1} e \varphi_{2} e^{\prime} \quad$ (Note $e=d \pm 2, e^{\prime}=b^{\prime} \pm 1$).

Since $2 d^{\prime}-d= \pm 1$, we have
or

$$
\begin{aligned}
\rho_{4} & =\varphi_{1}^{2} \varphi_{2}+\varphi_{1}^{2} d^{\prime} \mp 1 \\
\varphi_{2} d^{\prime}+\varphi_{1}^{2} d^{\prime} \mp 1+2 & \varphi_{2}^{d^{\prime}+1} \\
& =\varphi_{1}^{2} \varphi_{2}+\varphi_{1}^{2} d^{\prime} \mp 1
\end{aligned} \varphi_{2}^{d^{\prime}}+\varphi^{2} d^{\prime} \mp 1-2 \varphi_{2}^{d^{\prime}-1}
$$

Clearly x_{1}, x_{2} and x_{3} are isolated fixed points of $H^{\prime}=\left\{\varphi_{2}=\varphi_{1}{ }^{2}\right\}$ and hence x_{4} must be isolated fixed point. Thus we have the local representations of H^{\prime}

$$
\begin{aligned}
& \text { at } x_{1} ; \varphi+\varphi^{2}+\varphi^{3} \\
& \text { at } x_{2} ; \varphi+\varphi^{3}+\varphi^{4} \\
& \text { at } x_{3} ; \varphi^{2}+\varphi^{2 b+1}+\varphi^{2 b+3} \\
& \text { at } x_{4} ; \varphi^{4}+\varphi^{4 d \mp 1}+\varphi^{4} d \pm 4 \mp 1
\end{aligned}
$$

Hence there exist three distinct integers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfying
(1) $\alpha_{1} \alpha_{2} \alpha_{3}= \pm 6$
(2) $\alpha_{1}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)= \pm 12$
(3) $\alpha_{2}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)= \pm 2(2 b+1)(2 b+3)$
(4) $\alpha_{3}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)= \pm 4\left(4 d^{\prime}-1\right)\left(4 d^{\prime} \pm 41\right)$.

From (1) and (2) it follows the following three cases occur.
i) $\begin{array}{lll}\alpha_{1}= \pm 1 & \alpha_{2}=\mp 2 & \alpha_{3}=\mp 3\end{array}$
ii) $\alpha_{1}= \pm 1 \quad \alpha_{2}=\mp 3 \quad \alpha_{3}=\mp 2$
iii) $\alpha_{1}= \pm 3 \quad \alpha_{2}=\mp 1 \quad \alpha_{3}= \pm 2$,
where the signs are corresponding respectively.
Case i). It follows from (3) and (4) that $b=-2$ and $d^{\prime}=$ or $d^{\prime}=-2$. If $d^{\prime}=0$, then x_{4} is contained in 2-dimensional component of $F\left(K_{1}, M\right)$, which contradicts to the assumption. If $d^{\prime}= \pm 2$, we have $\rho_{4}=\varphi_{1}{ }^{2} \varphi_{2}+\varphi_{1}{ }^{3} \varphi_{2}{ }^{2}+\varphi_{1} \varphi_{2}$, which implies that only x_{3} is contained in a 2 -dimensional component of the fixed point set of the subgroup $\left\{\varphi_{1}=\varphi_{2}\right\}$ of G, it is impossible. It is not difficult to see that case ii) and iii) are impossible.

Case $a \neq 1$ and $b=1$.
This case reduces to the case $a=1$.
Case $a \neq 1, b \neq 1$ and one of $a_{4}-a_{4}{ }^{\prime}, b_{4}-b_{4}{ }^{\prime}$ and $c_{4}-c_{4}{ }^{\prime}$ is zero.
We may assume $a_{3}=a_{3}{ }^{\prime}$ without loss of generality. We have the following four possibilities of ρ_{4};

$$
\begin{aligned}
& \varphi_{1} \varphi_{2}+\varphi_{1}^{c} \varphi_{2}{ }^{c+1}+\varphi_{1}^{c+1} \varphi_{2}^{c+2} \\
& \varphi_{1} \varphi_{2}+\varphi_{1}^{c} \varphi_{2}^{c-1}+\varphi_{1}^{c+1} \varphi_{2}^{c} \\
& \varphi_{1} \varphi_{2}+\varphi_{1} c_{2}^{c+1}+\varphi_{1}^{c-1} \varphi_{2}^{c} \\
& \varphi_{1} \varphi_{2}+\varphi_{1}{ }^{c} \varphi_{2}^{c-1}+\varphi_{1}^{c-1} \varphi_{2}^{c-2}
\end{aligned}
$$

If we put $\varphi_{1}=\theta_{1}$ and $\varphi_{2}=\theta_{1}{ }^{2} \theta_{2}$, we have

$$
\begin{aligned}
\rho_{1}= & \theta_{1}+\theta_{1}{ }^{2} \theta_{2}+\theta_{1}{ }^{3} \theta_{2} \\
\rho_{2}= & \theta_{1}+\theta_{1} a^{a+2} \theta_{2}+\theta_{1} a^{a+3} \theta_{2} \\
\rho_{3}= & \theta_{1}{ }^{2} \theta_{2}+\theta_{1}{ }^{2 b+1} \theta_{2} b+\theta_{1}{ }^{2 b+3} \theta_{2} b+1 \\
\rho_{4}= & \theta_{1}{ }^{3} \theta_{2}+\theta_{1}{ }^{3} c+2 \theta_{2} c+1+\theta_{1}{ }^{3 c+5} \theta_{2} c^{c+2} \\
& \theta_{1}{ }^{3} \theta_{2}+\theta_{1}{ }^{3} c-2 \theta_{2} c-1+\theta_{1}{ }^{3 c+1} \theta_{2}{ }^{c} \\
& \theta_{1}{ }^{3} \theta_{2}+\theta_{1}{ }^{3 c+2} \theta_{2} c-1+\theta_{1}{ }^{3 c-1} \theta_{2} c \\
& \theta_{1}{ }^{3} \theta_{2}+\theta_{1}{ }^{3 c-2} \theta_{2}{ }^{c-1}+\theta_{1}{ }^{3 c-5} \theta_{2}{ }^{c-2} .
\end{aligned}
$$

The action restricted to $D=\left\{\theta_{1}=\theta_{2}\right\}$ has the same fixed point set as G-action. Then as above, there are three distinct integers α_{1}, α_{2} and α_{3} satisfiying
(1) $\alpha_{1} \alpha_{2} \alpha_{3} \quad= \pm 12$
(2) $\alpha_{1}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)= \pm(a-3)(a+4)$
(3) $\alpha_{2}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)= \pm 3(2 b+1)(3 b+4)$
(4) $\alpha_{3}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{2}\right)= \pm 4(4 c+3)(4 c+7)$

$$
\begin{aligned}
& = \pm 4(4 c-3)(4 c+1) \\
& = \pm 4(4 c+3)(4 c-1) \\
& = \pm 4(4 c-3)(4 c-7) .
\end{aligned}
$$

By direct computations we can show a contradiction.

4. $\mathrm{SO}(3)-$ action

In this section we shall consider actiona of $G=S O(3)$ on an $h C P_{3}, M$ with the following property;
(*) Let T be the standard maximal torus of G. Then the fixed point set $F(T, M)$ is a union of one 2-sphere and two isolated points or a union of four isolated points.

First we shall prove lemma 2 in section 2. Assume there is an element g of order p ($p ;$ prime) such that $\operatorname{dim} F(g, M)$ is greater than 2. If p is odd, $\operatorname{dim} F(g, M)$ is 4 and $F(g, M)=F \cup\{p t$.$\} , where \underset{z_{p}}{\sim} C P_{2}$. Let S be a torus containing g. We have $F(S, M)=$ $F(S /\{g\}, F(g, M))=F(S /\{g\}, F) \cup\{p t$.$\} . Since the Euler characteristic of F(T, M)$ is 4, we have the Euler characteristic of $F(S /\{g\}, F)=3$. Since $H^{1}\left(F ; Z_{p}\right)=H^{3}\left(F ; Z_{p}\right)=0$, we have $H^{1}(F ; Q)=H^{3}(F ; Q)=0$ and $H^{2}(F ; Q)=Q$. In particular, $H^{2}(F ; Z) / T o r=Z$. It is easy to see that $F_{\widetilde{Q}} C P_{2}$. Since the inclusion $i: F \longrightarrow M$ induces an isomorphism $i^{*}{ }_{p}$: $H^{2}\left(M ; Z_{p}\right) \xrightarrow{\rightarrow} H^{2}\left(F ; Z_{p}\right), i^{*}: H^{2}(M ; Z) — H^{2}(F ; Z)$ maps the generator of $H^{*}(M ; Z)$ to a non-zero element and hence $i^{*} Q: H^{2}(M ; Q) \underset{\rightarrow}{\sim} H^{2}(F ; Q)$ is an isomorphism. By proposition $1, M$ is diffeomorphic to $C P_{3}$. If p is even, $\operatorname{dim} F(g, M)$ may be 3 (see [2], Chap. VII). In this case $F(g, M)$ is connected and $F(g, M) \underset{Z_{2}}{\sim} R P_{3}$, which contradicts to the fact the Euler characteristic of $F(S, M)$ is non-zero. In the case in which $\operatorname{dim} F(g, M)=4$, the same argument as in the case in which p is odd show that M is diffeomorphic to $C P_{3}$. This completes the proof of lemma 2.

It follows from the assumption (*) that $G F(T, M)$ is at most 4-dimensional and hence there exists a point x in M whose isotropy subgroup is 0 -dimensional. Let H be a principal isotropy subgroup and assume $H \neq\{1\}$. Since there is an element x with $G_{x}=T, H$ is cyclic. Let g be an element of H whose order is p (p; prime). It is clear that $F(g, M$) is at least 4-dimensional. It follows from lemma 2 that M is diffeomorphic to $C P_{3}$. This completes the proof of Proposition 2 in section 1.

Consider the case in which $F(T, M)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Let a denote the element $\left[\begin{array}{ll}1 & \\ & -1 \\ & -1\end{array}\right]$ and $b=\left[\begin{array}{ccc}-1 & & \\ & -1 & \\ & & 1\end{array}\right]$. Then $N=T \cup a T$ and $D_{2}=\{1, a, b, a b\}$. Cleary $F(T, M)$ is a-invariant. Since $M_{(T)}$ is non-empty, there may occur following two case;

Case 1. $F(N, M)=\left\{x_{1}, x_{2}\right\}$
Case 2. $F(N, M)=\varnothing$.
Consider case 1. In this case $F\left(D_{2}, M\right) \neq \varnothing$. In section 1 , we have noticed that $F\left(D_{2}\right.$,
$M)$ consists of isolated four points. We may put $F\left(D_{2}, M\right)=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Assume $F(G, M)=\varnothing$. It follows from lemma 5 in section 1 that $G\left(x_{1}\right) \cap F\left(D_{2}, M\right)$ and $G\left(x_{2}\right) \cap F\left(D_{2}\right.$, M) are consisting of 3 points and hence $G\left(x_{1}\right)$ and $G\left(x_{2}\right)$ must intercect, which is impossible. Thus $F(G, M) \neq \varnothing$. Assume $x_{1} \in F(G, M)$ and consider the $S O(3)$-action on S^{5} induced by the slice representation of G at x_{1}. Clearly this action has only 0 -dimensional isotropy subgroups and hence principal isotropy subgroups are icosahedral subgroup (see [9]). This is impossible, because $F\left(D_{2}, M\right)$ is 0 -dimensional.

Consider case 2. Assume $S^{2}{ }_{i}$ is a-invariant (Recall $F(b, M)=S_{1}{ }^{2} \cup S_{2}{ }^{2}$.) In this case the same arguments as in the proof of lemma 4 in section 1 show that $F\left(D_{2}, M\right) \neq \varnothing$. Let $F\left(D_{2}, M\right) \cap S_{1}^{2}=\left\{z_{1}, z_{2}\right\}$. Clearly $\mathrm{G}_{z_{i}}$ is 0 -dimensional. By a result in [6] ([6], (3.7)) it follows that $F\left(D_{2}, M\right) \cap G\left(z_{1}\right)$ consists of six points which is impossible. Thus S_{i} is not a-invariant and hence we may assume that $a x_{1}=x_{3}, a x_{2}=x_{4}$. Consider the restricted action of T. We can decompose the tangent space at x_{i} into a direct sum $T_{x_{i}}\left(G\left(x_{i}\right)\right) \oplus$ $T_{x_{i}}\left(S_{j}{ }^{2}\right) \oplus V_{i}$, where $S_{j}{ }^{2}$ is the component of $F(b, M)$ containing x_{i}. Then local represen-
 $m_{1}=m_{2}$ and $m_{3}=m_{4}$. It is easy to see that $m_{1}=m_{3}$ and $n_{1}=n_{3}, n_{2}=n_{4}$. As noticed in section 1 , there are distinct non-zero integers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfying
(1) $\alpha_{1} \alpha_{2} \alpha_{3}$

$$
= \pm 2 m n
$$

(2) $\alpha_{1}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)= \pm 2 m k$
(3) $\alpha_{2}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)$
$= \pm 2 m n$
(4) $\alpha_{3}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)$
$= \pm 2 m k$
It is not difficult to show that n and k are distinct. Hence there is a prime p such that n is divisible by p^{s} and k is not divisible by p^{s}. Clearly the number of components of $F\left(Z_{p s}, M\right)$ intersecting $F(T, M)$ is 3 and hence the number of distinct residue classes among the four integers $0, \alpha_{1}, \alpha_{2}, \alpha_{3}$, is 3 . Thus we have $\alpha_{2} \equiv 0\left(p^{s}\right), \alpha_{1} \not \equiv 0$ (p^{s}), $\alpha_{3} \neq 0$ (p^{s}) and $\alpha_{1} \not \equiv \alpha_{3}$ ($p s$). Moreover $2 m$ and n divide one of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{2}-\alpha_{1}$ and $\alpha_{2}-\alpha_{3}$. Then n divides α_{2}. Similarly k divides $\alpha_{1}-\alpha_{3}$. Assume $2 m$ divides α_{2}. Then by (1) we have $\alpha_{1} \alpha_{3}= \pm 1$, and hence $\alpha_{1}-\alpha_{3}= \pm 2$ and $k= \pm 2$, which contradicts to the fact ($2 m, k$) $=1$. Thus we have $2 m \mid \alpha_{1}$ or $2 m \mid \alpha_{3}$. We may assume $\alpha_{1}= \pm 2 m$ without loss of generality. Then $\alpha_{3}= \pm 1$. Thus the value of the formula in 4 in section 1 is constant on i and hence M is diffeomorphic to $C P_{3}$. This completes the proof of lemma 3.

We shall prove lemma 4. Let k be the largest integer such that $F\left(Z_{2} k, M\right) \neq F(T$, $M)\left(Z_{2^{k}} \subseteq T\right)$. Since $F(b, M) \supseteq F(T, M)$, we have $k \geqq 1$. Assume $F\left(D_{2}, M\right)=\varnothing$. Let a_{1} be a generator of $Z_{2^{k}}$. Clearly $N^{\prime}=N / Z_{2^{k}}$ acts on $F\left(a_{1}, M\right)$. For $x \in F(a M)-F(T, M)$, $N^{\prime} x$ is odd cyclic. In fact, assume G_{x} is cyclic. Then $N_{x}^{\prime}=G_{x} / Z_{2^{k}}$. If order of N_{x}^{\prime} is even, we have $F\left(Z_{2^{k+1}}, M\right) \neq F(T, M)$, which contradicts to the choise of k. Next assume G_{x} is not cyclic. Then $G_{x}=D_{2 i+1}$ (dihedral subgroup), because $F\left(D_{2}, M\right)=\varnothing$. If $k \geqq 2$, then $G_{x} \supset Z_{4}$, which contradicts to the fact $G_{x}=D_{2 i+1}$. Hence we have $k=1$. In this case $N^{\prime} x_{x}=\{1\}$. Consider the restriction of N^{\prime}-action to a subgroup isomorphic to D_{2}. Since
$F\left(a_{1}, M\right)$ and $F(T, M)$ have a 2 -dimensional component in common, $F\left(a_{1}, M\right)-F(T, M)$ is connected and has homotopy type of S^{1}. It follows from above arguments that the subgroup of N^{\prime} acts on $F\left(a_{1}, M\right)-F(T, M)$ freely, which is impossible (see [2], Chap. II section 8). This completes the proof of lemma 4.

Niigata Univercity

References

[1] Borel, A. et al.: Seminar on Transformation Groups. Ann. of Math. Studies 46. Princeton Univ. Press 1960.
[2] Bredon, G. E.: Introduction to Compact Transformation Groups. Academic Press 1972.
[3] Hirzebruch, F.: Topological methods in algebraic geometry. Springer 1966.
[4] Kaga, T. and Watabe, T.: Simply connected 6-manifolds of large degree of symmetry. Science rep. of Niigata Univ. Ser. A. No. 12 (1975) 15-32.
[5] Montgomery, D. and Samelson, H.: On the action of $S O(3)$ on S^{n}. Pacific J. Math. 12 (1962) 649-659.
[6] Montgomery, D. and Yang, C. T.: A theorem on the action of SO(3). Pacific J. Math. 12 (1962) 1385-1400.
[7] Petrie, T.: Smooth S^{1}-action on homotopy complex projective spaces and related topics. Bull. Amer. Math. Soc. 78 (1972) 105-153.
[8] Petrie, T.: Torus action on homotopy complex projective spaces. Inv. Math. 20 (1973) 139-146.
[9] Richardson, R. W. Jr.: Action of the rotational group on the 5-sphere. Ann. of Math. 74 (1961) 414-423.
[10] Uchida, F.: Compact transformation groups and fixed point set of restricted action to maximal torus (to appear).
[11] Yoshida, T.: On smooth semi-free S^{1}-action on cohomology complex projective (to appear)
[12] Montgomery, D and Yang, C. T.: Free differentiable action on homotopy seven spheres II. Proc. Conference on Transformation Groups (New Orleans, La., 1967) Springer (1968) 125-134.

