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Introduction

Let $M$ be a compact connected differentiable manifold of dimension $2n$ . Following
[8], we define $N(M)$ , the degree of symmetry of $M$, the maximum of dimension of
isometry groups of all possible Riemannian structures on $M$ Of course, $N(M)$ is the
maximum of dimensions of compact connected Lie groups which can act almost effec-
tively on $M$

In this note, we shall consider the degree of complex quadric $ Q_{n}=SO(n+2)/SO(2)\times$

$SO(n)$ and homotopy complex projective space $CP_{n}$ .
In [8], W. Y. Hsiang has proved the following
THEOREM. $N(CP_{n})=dimSU(n+1)=n^{2}+2n$ .
We have the following
THEOREM A. Let $M$ be a closed differentiable manifold of dimension $2n$ which is homo-

topy equivalent to $CP_{n}$ . Assume that $n\geqq 13$ . If $N(M)\geqq(1/2)(n^{2}+3n+2)$ , then $M$ is
diffeomorphic to $CP_{n}$ .

As a corollary of this we have the following
THEOREM B. The degree of symmetry of an exiotic homotopy complex proiective space of

dimension of $2n$ is less than $(1/2)(n^{2}+3n+2)$ . $(n\geqq 13)$

For a complex quadric $Q_{n}$ , we have the following
THEOREM C. $N(Q_{n})=dimSO(n+2)=(1/2)(n^{2}+3n+2)(n\geqq 13)$ .
In section 1, we state the results and prove Theorem A and $C$ modulo lemmas and

propositions which are proved in later sections.
In this note all actions are differentiable.

1. Statement of results

A closed differentiable manifold $M^{2n}$ is said to be homologically k\"ahlerian if there
exists an element $a$ $\epsilon H^{2}(M;Q)(Q=rationals)$ such that the multiplication by $a^{n^{-}s}(s=0$,
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1,......, n) is an isomorphism of H $(M;Q)ontoH^{2n^{-}s}(M;Q)$ .
In the following $M^{2n}$ denotes a homologically k\"ahlerian manifold with $ N(M)\geqq$

$(1/2)(n^{2}+3n+2)(n\geqq 13)$ .
For example $CP_{n}$ and $Q_{n}$ are homologically k\"ahlerian. Let $M$ be a simply connected

homologically k\"ahlerian manifold with the second Betti number $b_{2}(M)=1$ . Let $G$ be a
compact connected Lie group acting almost effectively on $M$ with $\dim G=N(M)$ . We
may assume that $G$ is a product $T^{f}\times G_{1}\times\cdots\times G_{S}$ of a torus and simple compact connected
Lie group $G;^{\prime}s$.

First consider the case where $G$ acts transitively on $M$ Since $\pi_{1}(M)=0$ the restricted
action of a maximal torus of $G$ has at least one fixed point (see [3] chap. XII.). Then
the unique isotropy subgroup $H$ is of maximal rank and connected. Hence we have $M=$

$G/H=G_{1}/H_{1}\times\cdots G_{S}/H_{S}$, where $H$. is a subgroup of $Gi$ of maximal rank. The following
lemma implies that $M=G/H$, where $G$ is a simple compact connected Lie group and $H$ is
a subgroup of maximal rank.

LEMMA 1. 1 Let $X=X_{1}\times X_{2}$ be a simply connected homologically kahlerian manifold
with $b_{2}(X)=b_{2}(X_{1})=1$ . Then $X_{2}$ is a point.

We have the following

PROPOSITION 1. Let $G/H$ be a simply connected homogeneous space of a simple compact
connected $Lte$ group $G$ with $b_{2}(G/H)=1$ . Assume $G/H$ is homologically kahlerian and $dim$

$G\geqq(1/2)(n^{2}+3n+2)(2n=dimG/H)$ . Then possible pair $(G, H)$ is $(SO(n+2), SO(2)\times$

$SO(n)),$ $(SU(n+1), N(SU(n), SU(n+1))$ or $sp((n+1)/2),$ $T\times Sp((n-1)/2))$ .
Next consider the case where $G$ acts non-transitively on $M$ Then we have $\dim$

$G/H\leqq 2n-1$ , where $H$ denotes a principal isotropy subgroup and hence we have $\dim$

$G\geqq 1(/2)(n^{2}+3n+2)>(1/8)(2n+7)\dim G/H$ By a result in [8], there exists a simple

normal subgroup, say $G_{1}$ of $G$ satifying

(1. 2) $\dim G_{1}+\dim N(H_{1}, G_{1})/H_{1}>(1/8)(2n+7)\dim G_{1}/H_{1}$

and

(1. 3) $\dim H_{1}>((2n-9)/(2n-1))\dim G_{1}$ ,

where $H_{1}=(H_{\cap}G_{1})^{0}$ and $N(H_{1}, G_{1})$ is the normalizer of $H_{1}$ in $G_{1}$ .
We have the following

PROPOSITION 2. Possible pairs $(G_{1}, H_{1})$ sahfying (1. 2), (1. 3) and $dimG_{1}/H_{1}\leqq 2n-1$

are followings;
(i) $(Sp(m)Sp(m-1))(n<2m-1)$

(ii) $(Sp(m), Sp(m-1)\times T)(n<2m-1)$

(iii) $(Sp(m), Sp(m-1)\times sp(1))(n<2m)$

$(Iv)$ $(SO(m), SO(m-1))(n<2m)$

(v) $(SU(m), N(SU(m-1), SU(m)))(n\leqq 2m-2)$



On the degree of symmetry of complex quadric and homotopy complex projective space 87

(vi) $(SU(m), SU(m-1))(n<2m-2)$ .
We consider the following six cases.

Case 1. $(Sp(m), Sp(m-1))$ .
By assumption, we have that $\dim G_{1}/H_{1}\leqq 2n-1$ and hence $2m<n$, which contradicts

to the fact $n<2m-1$ .
Case 2. $(Sp(m), Sp(m-1)\times T)$ .

By the same arguments as in case 1, it is verified that this case is impossible.

Case 3. $(Sp(m), Sp(m-1)\times Sp(1))$ .
Since the resticted action of $G_{1}$ on $M$ has principal isotropy subgroup which is locally

isomorphic to $sp(m-1)\times sp(1)$ and this is a maximal subgroup of $G_{1}$, all orbits $G_{1}(x)$

have cohomology groups $H^{j}(G_{1}(x);Q)=0$ for $0<i<4$ . Hence it follows from the Vie $\cdot$

$toris\cdot Begle$ theorem that $\pi^{*};$ $H^{i}(M/G_{1}; Q)\rightarrow H^{j}(M;Q)$ is isomorphic for $i\leqq 3$, where $\pi$ ;

$M\rightarrow M/G_{1}$ is the orbit map. Thus the generator $a$ of $H^{2}(M;Q)$ is in the image of $\pi^{*},$ $i$ . $e$.
$a=\pi^{*}b,$ $b\in H^{2}(M/G_{1} ; Q)$ . $Since\dim M/G_{1}=\dim M-\dim G_{1}/H_{1}<2n,$ we have b $=0and$

hence we have $a^{n}=0$, which is a contradiction.
Case 4. $(SO(m), SO(m-1))$ .

The same arguments as in case 3 show that this case is impossible.
Case 5. $(SU(m), N(SU(m-1), SU(m)))$ .

In this case there is no fixed point for the restricted action of $G_{1}$ . In fact assume that
there is a fixed point. Then a result in [3] ([3], chap. XIV) and the fact that the nor-
malizer of $N(SU(m-1), SU(m))$ in $SU(m)$ is $N(SU(m-1), SU(m))$ show that $G_{1}/H_{1}$ is
a sphere, which is clearly impossible. Thus $G_{1}$ acts on $M$ with only one type of orbit
$CP_{m-1}$, and hence $M=CP_{m-1}\times M/G_{1}$ . By lemma (1. 1), $M/G_{1}$ is a point, which contradicts
to our assumption.
Case 6. $(SU(m), SU(m-1))$ .

Subcase l. $ThereisnoorbitoftypeCP_{m-1}$ .
In this case possible orbits are rational homology spheres or points. The same argu-

ment as in case 3 shows that this case is impossible.
Subcase 2. There is at least one orbit of type $CP_{m-1}$ and no fixed point.
Put $N=N(SU(m-1), SU(m))$ . Since there is no fixed point, there is a biggest con-

jugate class $(N)$ of isotropy subgroups. Here we mean “biggest” in the following sense:
the conjugate class $(U)$ is smaller than (V) if every element of $(U)$ is contained in
some element of (V). It is not difficult to see that if $gSU(m-1)g^{-1}\leqq N$, then $g$ \’e $N$. Let
$H_{1}$ be a prinicipal isotropy subgroup. This implies that every element of $(H_{1})$ is $con$.
tained in exactly one element of $(N)$ . Since $(H_{1})$ is the smallest class of conjugate class
of isotropy subgroups, the subspace $F=F(H_{1}, M)$ meets every orbit. In fact, for any
point $x\epsilon M,$ $(G_{1^{x}}.)\geqq(H_{1}),$ $i.e$. $H_{1}\subseteqq gG_{1^{x}}.g^{-1}$ for some $g\epsilon G_{1}$ . This implies that $ gx\epsilon F\cap$

$G_{1}(x)$ . $|\lfloor Letx\epsilon M,$ $x_{0}\in F_{\cap}G_{1}(x)$ and $g$ be such that $gx_{0}=x$. We show that such a $g$ is
uniquely determined modolo $N$. In fact it is sufficient to show that for any $x\epsilon M$, if $g_{1}x$,
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$g_{2}x\epsilon F$, then $g_{1^{-1}}g_{2}\in N$ : in other words, if $y,$ $z\epsilon F,$ $y=gz$, then $g\epsilon N$. But this is clear
because every element of $(H_{1})$ is contained in exactly one element of $(N)$ . Now we
define a map $f:M\rightarrow G_{1}/N=CP_{m-1}$ by $f(x)=go$, where $0$ is the coset of $e$ in $G_{1}/N$. It is
not diffiicult to see that $f$ is continuous and equivariant. Let $M_{(N)}=\{x\in M;G_{1^{x}}.\in(N)\}$ .
The normalizer on $N$ in $SU(m)$ being $N$ itself, we have $M_{(N)}=G_{1}/N\times F(N, M_{(N)})$ . Since
the restriction of $f$ to $M_{(N)}$ is clearly the projection $M_{(N)}\rightarrow G_{1}/N$, the homomorphism
$f^{*}:$ $H^{*}(CP_{m-1}: Z)\rightarrow H^{*}(M;Z)$ is injective. $LetbbeageneratorofH^{2}(CP_{m-1};Z)$ such
that $f^{*}b=a$. Since $\dim CP_{m-1}<\dim M$, we have $b^{n}=0$ and hence we have $a^{n}=0$, which
is a contradiction.

The above arguments are valid for any homologically k\"ahlerian manifolds.
Subcase 3. There is at least one orbit of type $CP_{m-1}$ and fixed point.
First let $M$ be a homotopy complex quadric. Let $F$ be the fixed point set of $G_{1}$-action.

Since the action of $G_{1}$ on $M-F$ has $SU(m-1)$ as a principal isotropy subgroup and no
fixed point, the argument as in subcase 2 shows that there exists a map $ f:M-F\rightarrow$

$CP_{m-1}$ such rthat $f^{*}:$ $H^{i}(CP_{m-1};Z)\rightarrow H^{i}(M-F;Z)$ is injective. Since $\dim F\leqq 2n-2m$,
we have $H^{i}(MM-F;Z)=0$ for $i<2m$ . Let $T$ be a maximal torus of $G_{1}$ . From a result
in [3] (chap. XII), the fixed point set $F(T, M)$ has torsion free cohomology and vanihs-
ing odd Betti numbers. Since any component of $F$ is a component of $F(T, M),$ $H^{j}(M,$ $M$

$-F:Z)=0$ for odd $i$. Thus we have isomorphism $H^{2i}(M;Z)\approx H^{2i}(M-F;Z)$ for $ i=0,\ldots$ ,
$m-1$ . Let $j:M-F\rightarrow M,$ $i:CP_{m-1}\rightarrow M-F$ be inclusions. Then $i=j\cdot i_{1}$ . Let $a$ be a
generator of $H^{2}(M;Z)$ . We may assume $i^{*}a=b$ is a generator of $H^{2}(CP_{m-1};Z)$ . It is
not difficult to see that $i^{*}:$ $H^{k}(M;Z)\rightarrow H^{k}(CP_{m-1};Z)$ is surjective for $k<2m$ . Recall
that the cohomology ring of $M$ is given as follows; for $H^{*}(M;Z)$ , there can be chosen an
additive basis $\{e_{0}, ei,\ldots, e_{n}\}$ in the case $n=2k+1$ and $\{e_{0},\ldots e_{n}, e_{k^{\prime}}\}$ in the case $n=2k$ so that
i) for $n=2k+1,$ $ei\epsilon H^{2i}(M;Z)$ and $H^{*}(M;Z)=Ze_{0}+\cdots\cdots+Ze_{n}$

for $n=2k,$ $e;,$ $e;^{J}\epsilon H^{2i}(M;Z)$ and $H^{*}(M;Z)=Ze_{0}+\cdots\cdots+Zek+Ze_{k^{\prime}}+\cdots\cdots+Ze_{n}$ .
ii) $e;Ue_{n-};=e_{n}$ if $n=2k+1$ and $n=2k,$ $i\neq k$.
iii) if $n=2k,$

$e_{k}\cup e_{k}=e_{k^{\prime}}\cup e_{k^{\prime}}=\left\{\begin{array}{ll}e_{n} & k; even\\0 & k; odd\end{array}\right.$

$ek^{U}e_{k^{\prime}}=\left\{\begin{array}{ll}0 & k; even\\e_{n} & k; odd\end{array}\right.$

iv) if $n=2k+1,$
$e_{1^{r}}=\left\{\begin{array}{ll}e_{r} & r\leqq k\\2e_{r} & r>k\end{array}\right.$

if $n=2k$

$e_{1^{r}}=\left\{\begin{array}{ll}e_{r} & r<k\\e_{k}+e_{k^{\prime}} & r=k\\2e_{r} & r>k.\end{array}\right.$

First consider the case when $n=2k+1$ . Since $n<2m-2$, we have $k\leqq m-2$ . Put $i^{*}(e_{k+1})$

$=Ab^{k+1}(A\in Z)$ . Since $i^{*}(a)=b$, we have $i^{*}(a^{k+1})=b^{k+1}$ and hence $b^{k+1}=2i^{*}(e_{k+1})=2Ab^{k+1}.$ ,

which is clearly impossible. By similar arguments, we can deduce a contradiction when
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$n=2k$.
Thus we have the following
PROPOSITION 3. Let $M$ be a closed differentiable manzfold of dimension $2n$ which is homo-

topy equivalent to $Q_{n}$ . If $N(M)\geqq 1/2(n^{2}+3n+2),$ $(n\geq 13)$ , then any compact connected Lie
group $G$ which acts almost effectively on $M$ with $dimG=N(M)$ acts transitively on $M$

From proposition 1, it follows the following
THEOREM 1. $N(Q_{n})=1/2(n^{2}+3n+2)=dimSO(n+2)$ .
Next let $M$ be a homotopy complex projective space. We have the following
PROPOSITION 4. Let $M$ be a closed differentiable manifold which is homotopy equivalent to

complex projective space $CP_{n}$ . Assume $SU(m)(2m-2>n)$ act on $M$ with $ F(SU(m), M)\neq\phi$,
$ M_{(N)}\neq\phi$ and $SU(m-1)$ as identity component of principal isotropy subgroup, where $N$

denotes the normalizer of $SU(m-1)$ in $SU(m)$ . Then $M$ is diffeomorphic to $CP_{n}$ .
Thus we have the following
THEOREM 2. Let $M$ be a closed differentiable manifold of $dim$ . $2n$ which is homotopy

equivalent to $CP_{n}$ . If $N(M)\geqq 1/2(n^{2}+3n+2),$ $(n\geq 13)$ , then $M$ is diffeomorphic to $CP_{n}$ .

2. Some properties of homologically k\"ahlerian manifolds

In this section, $X$ denotes a simply connected homologically k\"ahlerian manifold of
dimension $2n$ and $a$ an element of $H^{2}(X;Q)$ such that the multiplication by $a^{n^{-}s}(s=0$,
1, $\ldots$ , n) is an isomorphism of $H^{s}(X;Q)$ .
PROOF of lemma 1. 1. Let $X_{1}$ be $2m$-manifold. Since $b_{2}(X_{2})=0,$ $a$ is written as $a_{1}\otimes 1$,
$a_{1}\in H^{2}(X_{1}; Q)$ . If $\dim X_{2}>0,$ $a^{n}=0$ and hence $a^{n}=0$, which is a contradiction. Q.E.$D$.

Let $G/H$ be a simply connected homogeneous space of simple compact connetced Lie
group $G$. Assume that $G/H$ is homologically k\"ahlerian with $b_{2}(G/H)=1$ and $\dim G\geqq(1/2)$

$(n^{2}+3n+2)(2n=\dim G/H)$ . LetT beamaximal torus of G. Froma result in [3] ([3],

chap. XII), it follows that the restricted action of $T$ has at least one fixed point. Thus $H$

has the same rank as $G$. Since $\dim G\geqq(1/2)(n^{2}+3n+2)$ , we have $\dim G>(1/4)(n+3)$

$\dim G/H$ From this, it follows that $(\dim G)^{2}-2(\dim G)(\dim H)+(\dim H)^{2}-2\dim$

$G-6\dim H<0$ and hence we have

(2. 1) $\dim G+3-\sqrt{8\dim G+9}<\dim H<\dim G+3+\sqrt{8\dim G+9}$

Let $U$ be the maximal subgroup of $G$ which contains $H$ We consider the following two
cases.
$Ca8e1$ . $H=U$.

In this case, the pair $(G, H)$ may be divided into following three cases ([1]).

(1) $H$ is the connected centralizer of an element of order 2, which generates its center.
(2) $H$ is the centralizer of a one dimensional torus $S$, and $S$ is the identity component of

the center of $H$
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(3) $H$ is the connected centralizer of an element of order 3 or 5 which generates its
center.

Since $H^{2}(G/H;Q)\neq 0,$ $H$ is not semi-simple. Hence $H$ is of the case (2) and the coset
space $G/H$ is an irreducible hermitian symmetric space. It is not difficult to see that the
irreducible hermitian space satisfying (2. 1) is $SU(n+1)/S(U(1)\times U(n))=CP_{n}$ and
$SO(n+2)/SO(2)\times SO(n)=Q_{n}$ .
Case 2. $H\subsetneqq U$.

Consider the fibration $U/H\rightarrow G/H\rightarrow G/U$. Since odd Betti number of $U/H$ and
$G/U$ are all zero, it follows that $b_{2}(G/U)=1$ and $b_{2}(U/H)=0$ or $b_{2}(G/U)=0$ and
$b_{2}(U/H)=1$ . Consider the first case. Let $b$ be a generator of $H^{2}(G/U;Q)$ . Then we
may assume that $\pi^{*}b=a$ Since $\dim G/U<\dim G/H$, we have $a^{n}=0$, which is a contra-
diction. Next consider the second case. It is well known than $U$ is semi-simple (see

[1]).

Subcase 1. $G=A_{m}$ .
All maximal subgroups of $G$ with maximal rank are not semi-simple. ([2])

Subcase 2. $G=B_{m}$ .
From (2. 1), it follows that $\dim H>2m^{2}-3m+1$ . From the table in [2] ([2]. $p$ .

219), only possibility for $U$ is $D_{m}$ . Since $b_{2}(U/H)=1,$ $H$ is of the form $T\times H_{1}$, where $\dim$

$H_{1}<\dim D_{m-1}$, which does not satisfy (2. 1).

Subcase 3. $G=C_{m}$ .
Among maximal subgroups $Ci\times C_{m-}$ : with maximal rank, $C_{1}\times C_{m-1}$ is the only sub $\cdot$

group which satifies (2. 1). Hence $H$ is locally isomorphic to $H_{1}\times H_{2}$, where $H_{1}$ or $H_{2}$ is a
subgroup of $C_{1}$ or $C_{m-1}$ respectively of maximal rank. It is easy to see that $H$ must be
$T\times C_{m-1}$ . From the Gysin sequence of the fibration $\tau\rightarrow Sp(m)/sp(m-1)\rightarrow sp(m)/H$,

it follows that $sp(m)/H$ is a homologically k\"ahlerian manifold. It is clear that $sp(m)/H$

satisfies (2. 1).

Subcase 4. $G=D_{m}$ .
Since $U=Di\times D_{m-j}(i=2,3,\ldots, m-1)$ , no semi-simple maximal subgroup $U$ doen not

satisfy (2. 1).

Subcase 5. $G=exceptional$.
From dimensional considerations, it follows immeadiately that there exists no sub-

group $H$ which satifies (2. 1).

Thus we have completed the proof of Proposition 1 in section 1.

3. Large subgroups of simple Lie groups

In this section, we shall find subgroup $H$ of simple Lie group $G$ which satifies the
following conditions

(3. 1) $\dim G/H\leqq 2n-1$
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(3. 2) $\dim H\geqq((2n-9)/(2n-1))\dim G(n\geqq 13)$

and

(3. 3) $\dim G+\dim N(H, G)/H>(1/8)(2n+7)\dim G/H$

We consider the following two cases.
Case 1. $G$ is exceptional.

(i) $G=G_{2}$. From (3. 2), it follows that $\dim H>9$ . There exists no subgroup $H$ with
$\dim H\geqq 10$ .

(ii) $G=F_{4}$. Only possibility for $H$ which satifies (3. 2) is Spin (9). Sinoe Spin (9) is
maximal, $\dim N(H, G)/H=0$ and henoe (3. 3) implies that $ 52=\dim G1/8(2n+7)\dim$

$G/H\geqq 66$, which is impossible.
(iii) $G=E_{6},$ $E_{7},$ $E_{8}$ . In this case, it is not difficult to see that there is no subgroup

satisfying above conditions.
Case 2. $G$ is classical.

Let $G=CL(m)$ , where $CL$ denotes $SU,$ SO, $Sp$ . From aresult in [8] and the fact $\dim$

$G/H<1/3\dim G$, it follows that there exists a normal subgroup $H_{1}$ of $H$ which is conju.
gate to a standardly embedded $CL(k)$ with $k>m/2$ . Moreover in cases of $G=SO(m)$ and
$Sp(m),$ $H$ is conjugate to $CL(k)\times K\subseteqq CL(k)\times CL(m-k)$ , where $K\subseteqq CL(m-k)$ . One
needs restrictions on $m:m\geqq 9,$ $m\geqq 11$ and $m\geqq 8$ accordingly to $CL=SU,$ SO and $S_{p}$ respec-
tively.

L\‘EMMA 3. 4. $dimN(H, G)/H\leqq dimCL(m-k)+d$, where $d=0,1,3$ according to $CL=SO$,
$SU,$ $Sp$ respectively.

PROOF. We shall prove only the case of $G=SU(m)$ . We may assume that $SU(k)\subseteqq H$.
Since the identity component $N_{0}(SU(k), SU(m))$ of the normalizer of $SU(k)$ in $SU(m)$ is
$S(U(k)\times U(m-k)),$ $SU(k)\subseteqq H\subseteqq S(U(k)\times U(m-k))$ . It follows that $ N(H, SU(m))\subseteqq$

$S(U(k)\times U(m-k))$ . Hence we have dim N$(H, SU(m))\leqq\dim SU(k)+dimSU(m-k)+1$ .
Thus we have $\dim N(H, SU(m))/H\leqq\dim SU(m-k)+1$ . Q.E.D.

We consider the case in which $G=SU(m)$ and $H\subsetneqq S(U(k)\times U(m-k)),$ $G=SO(m)$ or
$G=Sp(m)$ . In this case, sinoe $\dim G/H\geqq\dim CL(m)-\dim CL(k)-\dim CL(m-k)$ , we
have

(3. 5) $\dim CL(m)+\dim CL(m-k)+d>1/8(2n+7)(\dim CL(m)-\dim CL(k)-$

dim $CL(m-k))$ .

It follows from (3. 1) that

(3. 6) $2n\geqq\dim CL(m)-\dim CL(k)-\dim CL(m-k)+1$ .

Thus we have

(3. 7) $\dim CL(m)+\dim CL(m-k)+d>1/8(\dim CL(m)-\dim CL(k)-$
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$\dim CL(m-k)+8)(\dim CL(m)-\dim CL(k)-\dim CL(m-k))$ .

We shall show that $k=m-1$ . Put $A=the$ left hand side of (3. 7) and $B=8$ (the right
hand side of (3. 7)) and $F(k)=B-8A$ . It is to show that $F(k)<0$ holds only when $k=$

$m-1$ . Sinoe the computations for three cases of $G=SU,$ SO and $sp$ are parallel, we con-
sider only the case of $G=SO(m)(m\geqq 11)$ . In this case we have $F(k)=k^{4}-2mh^{3}+k^{2}(m^{2}-$

$12)+k(16m-2)-8m^{2}+8m$ . It is not difficult to see that $F(k)<0$ holds only when $k=$

$m-1$ (Note $k<m$). It is also easy to see that the same result holds when $G=SU(m)$ and
$H=S(U(k)\times U(m-k))$ . By dimensional considerations, we can show that when $m$ is
smaller than 11, the same result holds.

From (3. 1) and (3. 3), it follows immeadiately that the inequalities between $m$ and
$n$ must hold. Thus we have completed the proof of Proposition 1 in section 2.

4. Proof of Proposition 4

Let $M$ be a closed differentiable manifold of dimension $2n$ which is homotopy equi-
valent to $CP_{n}$ . Assume that $SU(m)$ acts on $M$ in the following way: the identity com-
ponent of any principal isotropy subgroup $H$ is conjugate to $SU(m-1)$ , there exists at
least one fixed point and an orbit of type $CP_{m-1}$ .

Put $F=F(SU(m), M)$ and $N=N(SU(m-1), SU(m))$ . Let $T$ be a maximal torus of
$SU(m)$ such that $T\subset N$. From the fact that there is a fixed point, it follows that any
pricipal isotropy subgroup is conjugate to $SU(m-1)$

LEMMA 4. 1. $F(T, M)_{\cap}M_{(N)}=(N(T, SU(m))/N(T, SU(m))\cap N)\times F(N, M_{(N)})$ .
PROOF. It is well known that $M_{(N)}=SU(m)/N\times F(N, M_{(N)})$ . It is clear that

$F(T, M)\cap M_{(N)}=\{gy\in M_{(N)};g\in SU(m), y\in F(N, M_{(N)}), g^{-1}Tg\subset N\}$

$=$ {$gy\in M_{(N)}$ ; $y\in F(N,$ $M_{(N)}),$ $n^{-1}g\in N$ for some $n\in N(T,$ $SU(m))$ }.

Henoe we have

$F(T, M)_{\cap}M_{(N)}=\{nN\in SU(m)/N;n\in N(T, SU(m))\}\times F(N, M_{(N)})$ . This proves
the lemma.

Remark. $N(T, SU(m))/N(T, SU(m))_{\cap}N$ consists exactly $m$ elements.
LEMMA 4. 2. There exists only one orbit of type $CP_{m-1}$ and the fixed point set $F$ is

connected.
PROOF. Since there exists an equivariant closed neighborhood of $U$ of $F$ such that

int $ U_{\cap}M_{(N)}=\phi$, any component of $F$ is a component of $F(T, M)$ . Thus we have $F(T$,
$M)=F_{\cap}(F(T, M)_{\cap}M_{(N)})$ . From lemma (4. 1), it follows that the euler characteristic
of F$(T, M)_{\cap}M_{(N)})isme(F(N, M_{(N)}))$ . If dim F$(N, M_{(N)})>0orF(N, M_{(N)})$ is discon-
nected, then $e(F(N, M_{(N)}))\geqq 2$ . Henoe we have $n+1=e(M)=e(F(T, M))=e(F)+me$
$(F(N, M_{(N)})>2m>n+2$, which is a contradiction.
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Thus $\dim F(N, M_{(N)})=0$ and $F(N, M_{(N)})$ is connected; in other words $F(N, M_{(N)})$

is point. This means that there exists only one orbit of type $CP_{m-1}$ . Considering the
local representation at any fixed point, it can be shown that any component of $F$ has
dimension $2n-2m$ . From results in [6] (chap. VII), it follows that any component of $F$

has integral cohomology ring of $CP_{n-m}$ , and hence $e(F)\geqq n-m+1$ . Then $F$ must be
connected. Q. E. D.

Remark. The inclusion $i;F\rightarrow M$ induces isomorphism $i^{*};$ $H^{k}(M;Z)\rightarrow H^{k}(F;Z)$

for $k\leqq 2n-2m$ .
Let $U$ be a closed equivariant tubular neighborhood of $F$ in $M$ and $P=F(SU(m-1)$ ,

$M$ int $U$). From the similar arguments in [9] (see [9], section 3), it follows the
following

LEMMA 4. 3. $M=S^{2m^{-}1}\times PUD^{2m}\times bP$, identified along $S^{2m^{-}1}\times bP$ and the orbit space
$s^{1}$ $s^{1}$ $s^{1}$

can be gzven by $M/SU(m)=P/S^{1}U[0,1]\times bP/S^{1}$ with $\{1\}\times bP/S^{1}\subset[0,1]\times bP/S^{1}$ attached to
$bP/S^{1}\subset P/S^{1}$ .
Remark. The orbit $CP_{m-1}$ corresponds to a point in $F(S^{1}, P)$ and henoe $F(S^{1}, P)$ consists
of a single point.

LEMMA 4. 4. The inclusion $j;CP_{m-1}\rightarrow M$-int $U$ is a homotopy eqivalence.
PROOF. Sinoe both of $CP_{m-1}$ and $M$-int $U$ are simply connected, it is sufficient to

show that $j$ induces isomorphisms of cohomology groups. By the arguments as in subcase
2 of case 6 in section 1, there exists a map $f:M-$ int $U\rightarrow CP_{m-1}$ .such that $f\circ j=id$.
Henoe $j^{*}:$ $H^{k}$($M-$ int $U;Z$) $\rightarrow H^{k}(CP_{m-1}; Z)$ is surjective for all $k$ and in particular $j^{*}$

is isomorphism for $k\leqq 2m-2$ . We shall show that $H^{k}$($M$-int $U;Z$) $=0$ for $k\geqq 2m-1$ .
Consider the cohomology exact sequenoe of the pair $(M, U)$ ;

$\rightarrow H^{k}(M, U;Z)\rightarrow H^{k}(M;Z)\rightarrow H^{k}(M, U;Z)\rightarrow$

$i^{*}/$ $\backslash \approx$

$H^{k}(F;Z)$ .

Since $i^{*}$ is isomorphism for $k\leqq 2n-2m$ and $H^{odd}(M;Z)=0,$ $H^{k}(M, U;Z)=0$ for
$k\leqq 2n-2m+1$ and henoe $H_{k}(M;U;Z)=0$ for $k\leqq 2n-2m+1$ . From the isomorphsm
$H^{k}$($M$-int $U;Z$) $=H^{k}(M-U;Z)=H_{2^{n}-k(M},$ $U;Z$), it follows that $H^{k}$($M$-int $U;Z$) $=0$

for $k\geqq 2m-1$ . Q. E. D.
LEMMA 4. 5. $P$ is acyclic over integers.
PROOF. Consider the action of $SU(m-1)$ on $M-$ int $U$. It is not difficult to see that

principal isotropy subgroup of the action is conjugate to $SU(m-2)$ . Put $N^{\prime}=N(SU(m-$

2), $SU(m-1))$ . We show that $(M$-int $ U)_{(N^{l})}\neq\phi$ . Assume the contrary. Then all
orbits $K$ of the $SU(m-1)$-action have cohomology groups $H^{k}(K;Q)=0$ for $0<k<2m-3$ .
and henoe the Vietoris.Begle theorem implies that $\grave{t}he$ homomorphism $p^{*};$ $H^{k}(M$-int $U/$

$SU(m-1);Q)\rightarrow H^{k}$($M-$ int $U;Q$) is isomorphism for $k<2m-3$, where $P:M-$ int $U$

$\rightarrow M-$ int $U/SU(m-1)$ is the orbit map. Therefore a generator $a$ of $H^{2}$($M$-int $U;Q$)
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$isintheimageofp^{*},$ $i.e$. $a=p^{*}b,$ $b\in H^{2}(M-intU/SU(m-1);Q)$ . Sinoe $\dim(M-intU/$

$SU(m-1))=2n-2m+3<2m-2,$ $a^{m^{-}1}=0$, which is a contradiction. Sinoe $M$–int $U$ has
the cohomology ring of $CP_{m-1}$ , the same arguments as in lemma 4. 2 show that $P$ has the
cohomology ring of a point. This proves the lemma.

Since $F(S^{1}, P)$ consists of a single point, the results in [6] (7. 2 and 7. 3 in chap. IV)

imply that $S^{1}$ acts semi-freely on $P$.
LEMMA 4. 6. $P$ is contractible.
PROOF. It is sufficient to show that $P$ ia simply connected. Let $W$ be a disk nbhd. of

$x_{0}\in F(S^{1}, P)$ in $P$. Clearly $P/S^{1}$ is homotopy equivalent to $M/SU(m)$ and henoe simply

connected. From van Kampen theorem, it follows that $P/S^{1}$-int $W/S^{1}$ is simply con-
nected. Note that $W/S^{1}$ is simply connected (see [6], chap. II (6. 2)). Consider the
homotopy exact sequenoe of the fibration $S^{1}\rightarrow P-$ int $ W\rightarrow$ ($P$–int $W$) $/S^{1}$ ;

$\rightarrow\pi_{2}$($P$-int $W$) $\rightarrow\pi_{2}$($P$-int $W$) $/S^{1}$) $\rightarrow\pi_{1}(S^{1})\rightarrow\rightarrow\pi_{1}$($P$-int $W$) $\rightarrow 0$ .
From this, it follows that $\pi_{1}$($P$-int $W$) is an abelian group. Since $H_{1}$($P$-int $W;Z$) $=0$,
we have $\pi_{1}$($P$-int $W$) $=0$ . Q. E. D.

Sinoe $M=b(D^{2m}\times P)/S^{1}$, proposition 4 follows from the following
PROPOSITION 5. Let $(S^{1}, X)$ be a differentiable circle action on a contractible manifold

$Xof$ dimension $(2n+2)$ with $ bX\neq\phi$ . Assume $(S^{1}, bX)$ is free. Then $bX/S^{1}$ is a manifold
having the same integral cohomology as $CP_{n}$ . Moreover $bX$ is simply connected and $n\geqq 3$, then
$bX/S^{1}$ is diffeomorphic to $CP_{n}$ .

We omit the proof since it is completely analoguous to the proof of the result (2. 4)

in [9].
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