On the degree of symmetry of complex quadric and homotopy complex projective space

By
Tsuyoshi Watabe

(Received October 31, 1973)

Introduction

Let M be a compact connected differentiable manifold of dimension $2 n$. Following [8], we define $N(M)$, the degree of symmetry of M, the maximum of dimension of isometry groups of all possible Riemannian structures on M. Of course, $N(M)$ is the maximum of dimensions of compact connected Lie groups which can act almost effectively on M.

In this note, we shall consider the degree of complex quadric $Q_{n}=S O(n+2) / S O(2) \times$ $S O(n)$ and homotopy complex projective space $C P_{n}$.

In [8], W. Y. Hsiang has proved the following
Theorem. $\quad N\left(C P_{n}\right)=\operatorname{dim} S U(n+1)=n^{2}+2 n$.
We have the following
Theorem A. Let M be a closed differentiable manifold of dimension $2 n$ which is homotopy equivalent to $C P_{n}$. Assume that $n \geqq 13$. If $N(M) \geqq(1 / 2)\left(n^{2}+3 n+2\right)$, then M is diffeomorphic to $C P_{n}$.

As a corollary of this we have the following
Theorem B. The degree of symmetry of an exiotic homotopy complex projective space of dimension of $2 n$ is less than $(1 / 2)\left(n^{2}+3 n+2\right)$. ($n \geqq 13$)

For a complex quadric Q_{n}, we have the following
Theorem C. $\quad N\left(Q_{n}\right)=\operatorname{dim} S O(n+2)=(1 / 2)\left(n^{2}+3 n+2\right)(n \geqq 13)$.
In section 1, we state the results and prove Theorem A and C modulo lemmas and propositions which are proved in later sections.

In this note all actions are differentiable.

1. Statement of results

A closed differentiable manifold $M^{2 n}$ is said to be homologically kählerian if there exists an element $a \varepsilon H^{2}(M ; Q)\left(Q=\right.$ rationals) such that the multiplication by $a^{n-s}(s=0$,
$1, \ldots \ldots, n)$ is an isomorphism of $H^{s}(M ; Q)$ onto $H^{2 n-s}(M ; Q)$.
In the following $M^{2 n}$ denotes a homologically kählerian manifold with $N(M) \geqq$ $(1 / 2)\left(n^{2}+3 n+2\right)(n \geqq 13)$.

For example $C P_{n}$ and Q_{n} are homologically kählerian. Let M be a simply connected homologically kählerian manifold with the second Betti number $b_{2}(M)=1$. Let G be a compact connected Lie group acting almost effectively on M with $\operatorname{dim} G=N(M)$. We may assume that G is a product $\operatorname{Tr} \times G_{1} \times \cdots \times G_{s}$ of a torus and simple compact connected Lie group $G_{i}{ }^{\prime}$ s.

First consider the case where G acts transitively on M. Since $\pi_{1}(M)=0$ the restricted action of a maximal torus of G has at least one fixed point (see [3] chap. XII.). Then the unique isotropy subgroup H is of maximal rank and connected. Hence we have $M=$ $G / H=G_{1} / H_{1} \times \cdots G_{s} / H_{s}$, where H_{i} is a subgroup of G_{i} of maximal rank. The following lemma implies that $M=G / H$, where G is a simple compact connected Lie group and H is a subgroup of maximal rank.

Lemma 1. 1 Let $X=X_{1} \times X_{2}$ be a simply connected homologically kählerian manifold with $b_{2}(X)=b_{2}\left(X_{1}\right)=1$. Then X_{2} is a point.

We have the following
Proposition 1. Let G / H be a simply connected homogeneous space of a simple compact connected Lie group G with $b_{2}(G / H)=1$. Assume G / H is homologically kählerian and dim $G \geqq(1 / 2)\left(n^{2}+3 n+2\right)(2 n=\operatorname{dim} G / H)$. Then possible pair (G, H) is $(\mathrm{SO}(n+2), \mathrm{SO}(2) \times$ $S O(n)),(S U(n+1), N(S U(n), S U(n+1))$ or $\operatorname{Sp}((n+1) / 2), T \times S p((n-1) / 2))$.

Next consider the case where G acts non-transitively on M. Then we have dim $G / H \leqq 2 n-1$, where H denotes a principal isotropy subgroup and hence we have dim $G \geqq 1(/ 2)\left(n^{2}+3 n+2\right)>(1 / 8)(2 n+7) \operatorname{dim} G / H$. By a result in [8], there exists a simple normal subgroup, say G_{1} of G satifying

$$
\begin{equation*}
\operatorname{dim} G_{1}+\operatorname{dim} N\left(H_{1}, G_{1}\right) / H_{1}>(1 / 8)(2 n+7) \operatorname{dim} G_{1} / H_{1} \tag{1.2}
\end{equation*}
$$

and
(1. 3)

$$
\operatorname{dim} H_{1}>((2 n-9) /(2 n-1)) \operatorname{dim} G_{1},
$$

where $H_{1}=\left(H_{\cap} \mathrm{G}_{1}\right)^{0}$ and $N\left(H_{1}, G_{1}\right)$ is the normalizer of H_{1} in G_{1}.
We have the following
Proposition 2. Possible pairs (G_{1}, H_{1}) satifying (1.2), (1.3) and dim $G_{1} / H_{1} \leqq 2 n-1$ are followings;
(i) $(S p(m) S p(m-1))(n<2 m-1)$
(ii) $(S p(m), S p(m-1) \times T)(n<2 m-1)$
(iii) $(S p(m), S p(m-1) \times S p(1))(n<2 m)$
(Iv) $(S O(m), S O(m-1))(n<2 m)$
(v) $(S U(m), N(S U(m-1), S U(m)))(n \leqq 2 m-2)$
(vi) $\operatorname{SU}(m), S U(m-1))(n<2 m-2)$.

We consider the following six cases.
Case 1. ($S p(m), S p(m-1))$.
By assumption, we have that dim $G_{1} / H_{1} \leqq 2 n-1$ and hence $2 m<n$, which contradicts to the fact $n<2 m-1$.
Case 2. $(S p(m), S p(m-1) \times T)$.
By the same arguments as in case 1 , it is verified that this case is impossible.
Case 3. $(S p(m), S p(m-1) \times S p(1))$.
Since the resticted action of G_{1} on M has principal isotropy subgroup which is locally isomorphic to $S p(m-1) \times S p(1)$ and this is a maximal subgroup of G_{1}, all orbits $G_{1}(x)$ have cohomology groups $H^{i}\left(G_{1}(x) ; Q\right)=0$ for $0<i<4$. Hence it follows from the Vie-toris-Begle theorem that $\pi^{*}: H^{i}\left(M / G_{1} ; Q\right) \longrightarrow H^{i}(M ; Q)$ is isomorphic for $i \leqq 3$, where π : $M \longrightarrow M / G_{1}$ is the orbit map. Thus the generator a of $H^{2}(M ; Q)$ is in the image of π^{*}, i. e. $a=\pi^{*} b, b \in H^{2}\left(M / G_{1}: Q\right)$. Since $\operatorname{dim} M / G_{1}=\operatorname{dim} M-\operatorname{dim} G_{1} / H_{1}<2 n$, we have $b^{n}=0$ and hence we have $a^{n}=0$, which is a contradiction.
Case 4. $(S O(m), S O(m-1))$.
The same arguments as in case 3 show that this case is impossible.
Case 5. $(S U(m), N(S U(m-1), S U(m)))$.
In this case there is no fixed point for the restricted action of G_{1}. In fact assume that there is a fixed point. Then a result in [3] ([3], chap. XIV) and the fact that the normalizer of $N(S U(m-1), S U(m))$ in $S U(m)$ is $N(S U(m-1), S U(m))$ show that G_{1} / H_{1} is a sphere, which is clearly impossible. Thus G_{1} acts on M with only one type of orbit $C P_{m-1}$, and hence $M=C P_{m-1} \times M / G_{1}$. By lemma (1.1), M / G_{1} is a point, which contradicts to our assumption.
Case 6. ($S U(m), S U(m-1))$.
Subcase 1. There is no orbit of type $C P_{m-1}$.
In this case possible orbits are rational homology spheres or points. The same argument as in case 3 shows that this case is impossible.

Subcase 2. There is at least one orbit of type $C P_{m-1}$ and no fixed point.
Put $N=N(S U(m-1), S U(m))$. Since there is no fixed point, there is a biggest conjugate class (N) of isotropy subgroups. Here we mean "biggest" in the following sense: the conjugate class (U) is smaller than (V) if every element of (U) is contained in some element of (V). It is not difficult to see that if $g S U(m-1) g^{-1} \leqq N$, then $g \varepsilon N$. Let H_{1} be a prinicipal isotropy subgroup. This implies that every element of $\left(H_{1}\right)$ is contained in exactly one element of (N). Since $\left(H_{1}\right)$ is the smallest class of conjugate class of isotropy subgroups, the subspace $F=F\left(H_{1}, M\right)$ meets every orbit. In fact, for any point $x \in M,\left(G_{1}, x\right) \geqq\left(H_{1}\right)$, i. e. $H_{1} \cong g G_{1, x} g^{-1}$ for some $g \varepsilon G_{1}$. This implies that $g x \varepsilon F \cap$ $G_{1}(x)$. LLet $x \in M, x_{0} \in F \cap G_{1}(x)$ and g be such that $g x_{0}=x$. We show that such a g is uniquely determined modolo N. In fact it is sufficient to show that for any $x \varepsilon M$, if $g_{1} x$,
$g_{2} x \varepsilon F$, then $g_{1}{ }^{-1} g_{2} \varepsilon N$: in other words, if $y, z \varepsilon F, y=g z$, then $g \varepsilon N$. But this is clear because every element of (H_{1}) is contained in exactly one element of (N). Now we define a map $f: M \longrightarrow G_{1} / N=C P_{m-1}$ by $f(x)=g o$, where o is the coset of e in G_{1} / N. It is not difficult to see that f is continuous and equivariant. Let $M_{(N)}=\left\{x \in M ; G_{1, x} \in(N)\right\}$. The normalizer on N in $S U(m)$ being N itself, we have $M_{(N)}=G_{1} / N \times F\left(N, M_{(N)}\right)$. Since the restriction of f to $M_{(N)}$ is clearly the projection $M_{(N)} \longrightarrow G_{1} / N$, the homomorphism $f^{*}: H^{*}\left(C P_{m-1}: Z\right) \longrightarrow H^{*}(M ; Z)$ is injective. Let b be a generator of $H^{2}\left(C P_{m-1} ; Z\right)$ such that $f^{*} b=a$. Since $\operatorname{dim} C P_{m-1}<\operatorname{dim} M$, we have $b^{n}=0$ and hence we have $a^{n}=0$, which is a contradiction.

The above arguments are valid for any homologically kählerian manifolds.

Subcase 3. There is at least one orbit of type $C P_{m-1}$ and fixed point.

First let M be a homotopy complex quadric. Let F be the fixed point set of G_{1}-action. Since the action of G_{1} on $M-F$ has $S U(m-1)$ as a principal isotropy subgroup and no fixed point, the argument as in subcase 2 shows that there exists a map $f: M-F \longrightarrow$ $C P_{m-1}$ such that $f^{*}: H^{i}\left(C P_{m-1} ; Z\right) \longrightarrow H^{i}(M-F ; Z)$ is injective. Since $\operatorname{dim} F \leqq 2 n-2 m$, we have $H^{i}(M . M-F ; Z)=0$ for $i<2 m$. Let T be a maximal torus of G_{1}. From a result in [3] (chap. XII), the fixed point set $F(T, M)$ has torsion free cohomology and vanihsing odd Betti numbers. Since any component of F is a component of $F(T, M), H^{i}(M, M$ $-F: Z)=0$ for odd i. Thus we have isomorphism $H^{2 i}(M ; Z) \approx H^{2 i}(M-F ; Z)$ for $i=0, \ldots$, $m-1$. Let $j: M-F \longrightarrow M, i: C P_{m-1} \longrightarrow M-F$ be inclusions. Then $i=j \bullet i_{1}$. Let a be a generator of $H^{2}(M ; Z)$. We may assume $i^{*} a=b$ is a generator of $H^{2}\left(C P_{m-1} ; Z\right)$. It is not difficult to see that $i^{*}: H^{k}(M ; Z) \longrightarrow H^{k}\left(C P_{m_{-1}} ; Z\right)$ is surjective for $k<2 m$. Recall that the cohomology ring of M is given as follows; for $H^{*}(M ; Z)$, there can be chosen an additive basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ in the case $n=2 k+1$ and $\left\{e_{0}, \ldots e_{n}, e_{k}{ }^{\prime}\right\}$ in the case $n=2 k$ so that
i) for $n=2 k+1, e_{i} \varepsilon H^{2 i}(M ; Z)$ and $H^{*}(M ; Z)=Z e_{0}+\cdots \cdots+Z e_{n}$

$$
\text { for } n=2 k, e_{i}, e_{i}^{\prime} \varepsilon H^{2 i}(M ; Z) \text { and } H^{*}(M ; Z)=Z e_{0}+\cdots \cdots+Z e_{k}+Z e_{k}{ }^{\prime}+\cdots \cdots+Z e_{n} .
$$

ii) $e_{i} \cup e_{n-i}=e_{n}$ if $n=2 k+1$ and $n=2 k, i \neq k$.
iii) if $n=2 k, e_{k} \cup e_{k}=e_{k}{ }^{\prime} \cup e_{k}{ }^{\prime}= \begin{cases}e_{n} & k \text {; even } \\ 0 & k \text {; odd }\end{cases}$

$$
e_{k} \cup e_{k}^{\prime}= \begin{cases}0 & k ; \text { even } \\ e_{n} & k ; \text { odd }\end{cases}
$$

iv) if $n=2 k+1, e_{1}^{r}= \begin{cases}e_{r} & r \leqq k \\ 2 e_{r} & r>k\end{cases}$

$$
\text { if } n=2 k \quad e_{1}^{r}= \begin{cases}e_{r} & r<k \\ e_{k}+e_{k}^{\prime} & r=k \\ 2 e_{r} & r>k\end{cases}
$$

First consider the case when $n=2 k+1$. Since $n<2 m-2$, we have $k \leqq m-2$. Put $i^{*}\left(e_{k+1}\right)$ $=A b^{k+1}(A \in Z)$. Since $i^{*}(a)=b$, we have $i^{*}\left(a^{k+1}\right)=b^{k+1}$ and hence $b^{k+1}=2 i^{*}\left(e_{k+1}\right)=2 A b^{k+1}$., which is clearly impossible. By similar arguments, we can deduce a contradiction when
$n=2 k$.
Thus we have the following
Proposition 3. Let M be a closed differentiable manifold of dimension $2 n$ which is homotopy equivalent to Q_{n}. If $N(M) \geqq 1 / 2\left(n^{2}+3 n+2\right),(n \geqslant 13)$, then any compact connected Lie group G which acts almost effectively on M with $\operatorname{dim} G=N(M)$ acts transitively on M.

From proposition 1, it follows the following
Theorem 1. $N\left(Q_{n}\right)=1 / 2\left(n^{2}+3 n+2\right)=\operatorname{dim} S O(n+2)$.
Next let M be a homotopy complex projective space. We have the following
Proposition 4. Let M be a closed differentiable manifold which is homotopy equivalent to complex projective space $C P_{n}$. Assume $S U(m)(2 m-2>n)$ act on M with $F(S U(m), M) \neq \phi$, $M_{(N)} \neq \phi$ and $S U(m-1)$ as identity component of principal isotropy subgroup, where N denotes the normalizer of $S U(m-1)$ in $S U(m)$. Then M is diffeomorphic to $C P_{n}$.

Thus we have the following
Theorem 2. Let M be a closed differentiable manifold of dim. $2 n$ which is homotopy equivalent to $C P_{n}$. If $N(M) \geqq 1 / 2\left(n^{2}+3 n+2\right),(n \geqslant 13)$, then M is diffeomorphic to $C P_{n}$.

2. Some properties of homologically kählerian manifolds

In this section, X denotes a simply connected homologically kählerian manifold of dimension $2 n$ and a an element of $H^{2}(X ; Q)$ such that the multiplication by $a^{n-s}(s=0$, $1, \ldots, n)$ is an isomorphism of $H^{s}(X ; Q)$.
PROOF of lemma 1.1. Let X_{1} be $2 m$ - manifold. Since $b_{2}\left(X_{2}\right)=0, a$ is written as $a_{1} \otimes 1$, $a_{1} \in H^{2}\left(X_{1} ; Q\right)$. If $\operatorname{dim} X_{2}>0, a^{n}=0$ and hence $a^{n}=0$, which is a contradiction. Q.E.D.

Let G / H be a simply connected homogeneous space of simple compact connetced Lie group G. Assume that G / H is homologically kählerian with $b_{2}(G / H)=1$ and $\operatorname{dim} G \geqq(1 / 2)$ $\left(n^{2}+3 n+2\right)(2 n=\operatorname{dim} G / H)$. Let T be a maximal torus of G. From a result in [3] ([3], chap. XII), it follows that the restricted action of T has at least one fixed point. Thus H has the same rank as G. Since $\operatorname{dim} G \geqq(1 / 2)\left(n^{2}+3 n+2\right)$, we have $\operatorname{dim} G>(1 / 4)(n+3)$ $\operatorname{dim} G / H$. From this, it follows that $(\operatorname{dim} G)^{2}-2(\operatorname{dim} G)(\operatorname{dim} H)+(\operatorname{dim} H)^{2}-2 \operatorname{dim}$ $G-6 \operatorname{dim} H<0$ and hence we have
(2. 1)

$$
\operatorname{dim} G+3-\sqrt{8 \operatorname{dim} G+9}<\operatorname{dim} H<\operatorname{dim} G+3+\sqrt{8 \operatorname{dim} G+9}
$$

Let U be the maximal subgroup of G which contains H. We consider the following two cases.
Case 1. $H=U$.
In this case, the pair (G, H) may be divided into following three cases ([1]).
(1) H is the connected centralizer of an element of order 2 , which generates its center.
(2) H is the centralizer of a one dimensional torus S, and S is the identity component of the center of H.
(3) H is the connected centralizer of an element of order 3 or 5 which generates its center.

Since $H^{2}(G / H ; Q) \neq 0, H$ is not semi-simple. Hence H is of the case (2) and the coset space G / H is an irreducible hermitian symmetric space. It is not difficult to see that the irreducible hermitian space satisfying (2.1) is $S U(n+1) / S(U(1) \times U(n))=C P_{n}$ and $S O(n+2) / S O(2) \times S O(n)=Q_{n}$.
Case 2. $H \mp U$.
Consider the fibration $U / H \longrightarrow G / H \longrightarrow G / U$. Since odd Betti number of U / H and G / U are all zero, it follows that $b_{2}(G / U)=1$ and $b_{2}(U / H)=0$ or $b_{2}(G / U)=0$ and $b_{2}(U / H)=1$. Consider the first case. Let b be a generator of $H^{2}(G / U: Q)$. Then we may assume that $\pi^{*} b=a$. Since $\operatorname{dim} G / U<\operatorname{dim} G / H$, we have $a^{n}=0$, which is a contradiction. Next consider the second case. It is well known than U is semi-simple (see [1]).
Subcase 1. $G=A_{m}$.
All maximal subgroups of G with maximal rank are not semi-simple. ([2])
Subcase 2. $G=B_{m}$.
From (2.1), it follows that $\operatorname{dim} H>2 m^{2}-3 m+1$. From the table in [2] ([2]. p. 219), only possibility for U is D_{m}. Since $b_{2}(U / H)=1, H$ is of the form $T \times H_{1}$, where dim $H_{1}<\operatorname{dim} D_{m-1}$, which does not satisfy (2.1).
Subcase 3. $G=C_{m}$.
Among maximal subgroups $C_{i} \times C_{m-i}$ with maximal rank, $C_{1} \times C_{m-1}$ is the only subgroup which satifies (2.1). Hence H is locally isomorphic to $H_{1} \times H_{2}$, where H_{1} or H_{2} is a subgroup of C_{1} or C_{m-1} respectively of maximal rank. It is easy to see that H must be $T \times C_{m-1}$. From the Gysin sequence of the fibration $T \longrightarrow S p(m) / S p(m-1) \longrightarrow S p(m) / H$, it follows that $S p(m) / H$ is a homologically kählerian manifold. It is clear that $S p(m) / H$ satisfies (2.1).
Subcase 4. $G=D_{m}$.
Since $U=D_{i} \times D_{m-i}(i=2,3, \ldots, \mathrm{~m}-1)$, no semi-simple maximal subgroup U doen not satisfy (2.1).
Subcase 5. $G=$ exceptional.
From dimensional considerations, it follows immeadiately that there exists no subgroup H which satifies (2.1).

Thus we have completed the proof of Proposition 1 in section 1.

3. Large subgroups of simple Lie groups

In this section, we shall find subgroup H of simple Lie group G which satifies the following conditions

$$
\begin{equation*}
\operatorname{dim} G / H \leqq 2 n-1 \tag{3.1}
\end{equation*}
$$

(3. 2)
$\operatorname{dim} H \geqq((2 n-9) /(2 n-1)) \operatorname{dim} \mathrm{G}(n \geqq 13)$
and
(3. 3) $\operatorname{dim} G+\operatorname{dim} N(H, G) / H>(1 / 8)(2 n+7) \operatorname{dim} G / H$.

We consider the following two cases.
Case 1. G is exceptional.
(i) $G=G_{2}$. From (3.2), it follows that $\operatorname{dim} H>9$. There exists no subgroup H with $\operatorname{dim} H \geqq 10$.
(ii) $G=F_{4}$. Only possibility for H which satifies (3.2) is Spin (9). Since Spin (9) is maximal, $\operatorname{dim} N(H, G) / H=0$ and hence (3.3) implies that $52=\operatorname{dim} G 1 / 8(2 n+7) \operatorname{dim}$ $G / H \geqq 66$, which is impossible.
(iii) $G=E_{6}, E_{7}, E_{8}$. In this case, it is not difficult to see that there is no subgroup satisfying above conditions.
Case 2. G is classical.
Let $G=C L(m)$, where $C L$ denotes $S U, S O, S p$. From a result in [8] and the fact dim $G / H<1 / 3 \operatorname{dim} G$, it follows that there exists a normal subgroup H_{1} of H which is conjugate to a standardly embedded $C L(k)$ with $k>m / 2$. Moreover in cases of $G=S O(m)$ and $S p(m), H$ is conjugate to $C L(k) \times K \subseteq C L(k) \times C L(m-k)$, where $K \subseteq C L(m-k)$. One needs restrictions on $m: m \geqq 9, m \geqq 11$ and $m \geqq 8$ accordingly to $C L=S U, S O$ and S_{p} respectively.

Lèmma 3. 4. $\operatorname{dim} N(H, G) / H \leqq \operatorname{dim} C L(m-k)+d$, where $d=0,1,3$ according to $C L=S O$, $S U, S p$ respectively.

Proof. We shall prove only the case of $G=S U(m)$. We may assume that $S U(k) \cong H$. Since the identity component $N_{0}(S U(k), S U(m))$ of the normalizer of $S U(k)$ in $S U(m)$ is $S(U(k) \times U(m-k)), S U(k) \cong H \subseteq S(U(k) \times U(m-k))$. It follows that $N(H, S U(m)) \subseteq$ $S(U(k) \times U(m-k))$. Hence we have $\operatorname{dim} N(H, S U(m)) \leqq \operatorname{dim} S U(k)+\operatorname{dim} S U(m-k)+1$. Thus we have $\operatorname{dim} N(H, S U(m)) / H \leqq \operatorname{dim} S U(m-k)+1$.
Q.E.D.

We consider the case in which $G=S U(m)$ and $H \subsetneq S(U(k) \times U(m-k)), G=S O(m)$ or $G=S p(m)$. In this case, since $\operatorname{dim} G / H \geqq \operatorname{dim} C L(m)-\operatorname{dim} C L(k)-\operatorname{dim} C L(m-k)$, we have
(3. 5) $\operatorname{dim} C L(m)+\operatorname{dim} C L(m-k)+d>1 / 8(2 n+7)(\operatorname{dim} C L(m)-\operatorname{dim} C L(k)-$ $\operatorname{dim} C L(m-k))$.

It follows from (3.1) that
$2 n \geqq \operatorname{dim} C L(m)-\operatorname{dim} C L(k)-\operatorname{dim} C L(m-k)+1$.
Thus we have
(3. 7) $\operatorname{dim} C L(m)+\operatorname{dim} C L(m-k)+d>1 / 8(\operatorname{dim} C L(m)-\operatorname{dim} C L(k)-$

$$
\operatorname{dim} C L(m-k)+8)(\operatorname{dim} C L(m)-\operatorname{dim} C L(k)-\operatorname{dim} C L(m-k))
$$

We shall show that $k=m-1$. Put $A=$ the left hand side of (3.7) and $B=8$ (the right hand side of (3.7)) and $F(k)=B-8 A$. It is to show that $F(k)<0$ holds only when $k=$ $m-1$. Since the computations for three cases of $G=S U, S O$ and $S p$ are parallel, we consider only the case of $G=S O(m)(m \geqq 11)$. In this case we have $F(k)=k^{4}-2 m k^{3}+k^{2}\left(m^{2}-\right.$ 12) $+k(16 m-2)-8 m^{2}+8 m$. It is not difficult to see that $F(k)<0$ holds only when $k=$ $m-1$ (Note $k<m$). It is also easy to see that the same result holds when $G=\operatorname{SU}(m)$ and $H=S(U(k) \times U(m-k))$. By dimensional considerations, we can show that when m is smaller than 11, the same result holds.

From (3.1) and (3.3), it follows immeadiately that the inequalities between m and n must hold. Thus we have completed the proof of Proposition 1 in section 2.

4. Proof of Proposition 4

Let M be a closed differentiable manifold of dimension $2 n$ which is homotopy equivalent to $C P_{n}$. Assume that $S U(m)$ acts on M in the following way: the identity component of any principal isotropy subgroup H is conjugate to $S U(m-1)$, there exists at least one fixed point and an orbit of type $C P_{m-1}$.

Put $F=F(S U(m), M)$ and $N=N(S U(m-1), S U(m))$. Let T be a maximal torus of $S U(m)$ such that $T \subset N$. From the fact that there is a fixed point, it follows that any pricipal isotropy subgroup is conjugate to $S U(m-1)$

Lemma 4. 1. $F(T, M) \cap M_{(N)}=(N(T, S U(m)) / N(T, S U(m)) \cap N) \times F\left(N, M_{(N)}\right)$. Proof. It is well known that $M_{(N)}=S U(m) / N \times F\left(N, M_{(N)}\right)$. It is clear that

$$
\begin{aligned}
F(T, M) \cap M_{(N)} & =\left\{g y \in M_{(N)} ; g \in S U(m), y \in F\left(N, M_{(N)}\right), g^{-1} T g \subset N\right\} \\
& =\left\{g y \in M_{(N)} ; y \in F\left(N, M_{(N)}\right), n^{-1} g \in N \text { for some } n \in N(T, S U(m))\right\} .
\end{aligned}
$$

Hence we have

$$
F(T, M)_{\cap} M_{(N)}=\{n N \in S U(m) / N ; n \in N(T, S U(m))\} \times F\left(N, M_{(N)}\right) . \quad \text { This proves }
$$ the lemma.

Remark. $\quad N(T, S U(m)) / N(T, S U(m)) \cap N$ consists exactly m elements.
Lemma 4. 2. There exists only one orbit of type $C P_{m_{-1}}$ and the fixed point set F is connected.

Proof. Since there exists an equivariant closed neighborhood of U of F such that int $U_{\cap} M_{(N)}=\phi$, any component of F is a component of $F(T, M)$. Thus we have $F(T$, $M)=F_{\cap}\left(F(T, M) \cap M_{(N)}\right)$. From lemma (4.1), it follows that the euler characteristic of $\left.F(T, M) \cap M_{(N)}\right)$ is $m e\left(F\left(N, M_{(N)}\right)\right)$. If $\operatorname{dim} F\left(N, M_{(N)}\right)>0$ or $F\left(N, M_{(N)}\right)$ is disconnected, then $e\left(F\left(N, M_{(N)}\right)\right) \geqq 2$. Hence we have $n+1=e(M)=e(F(T, M))=e(F)+m e$ ($F\left(N, M_{(N)}\right)>2 m>n+2$, which is a contradiction.

Thus $\operatorname{dim} F\left(N, M_{(N)}\right)=0$ and $F\left(N, M_{(N)}\right)$ is connected; in other words $F\left(N, M_{(N)}\right)$ is point. This means that there exists only one orbit of type $C P_{m_{-1}}$. Considering the local representation at any fixed point, it can be shown that any component of F has dimension $2 n-2 m$. From results in [6] (chap. VII), it follows that any component of F has integral cohomology ring of $C P_{n_{-} m}$, and hence $e(F) \geqq n-m+1$. Then F must be connected.
Q. E. D.

Remark. The inclusion $i: F \longrightarrow M$ induces isomorphism $i^{*}: H^{k}(M ; Z) \longrightarrow H^{k}(F ; Z)$ for $k \leqq 2 n-2 m$.

Let U be a closed equivariant tubular neighborhood of F in M and $P=F(S U(m-1)$, M int U). From the similar arguments in [9] (see [9], section 3), it follows the following

Lemma 4. 3. $\quad M=S^{2 m-1} \times P \cup D^{2 m} \times b P$, identified along $S^{2 m-1} \times b P$ and the orbit space can be given by $M / S U(m)=\stackrel{S^{1}}{P} / S^{1} \cup[0,1] \times b P / S^{1}$ with $\{1\} \times b P / S^{1} \subset[0,1] \times b P / S^{1}$ attached to $b P / S^{1} \subset P / S^{1}$.
Remark. The orbit $C P_{m-1}$ corresponds to a point in $F\left(S^{1}, P\right)$ and hence $F\left(S^{1}, P\right)$ consists of a single point.

Lemma 4. 4. The inclusion $j: C P_{m-1} \longrightarrow M$-int U is a homotopy eqivalence.
Proof. Since both of $C P_{m-1}$ and M-int U are simply connected, it is sufficient to show that j induces isomorphisms of cohomology groups. By the arguments as in subcase 2 of case 6 in section 1, there exists a map $f: M$-int $U \longrightarrow C P_{m_{-1}}$. such that $f \circ j=i d$. Hence $j^{*}: H^{k}(M-\operatorname{int} U ; Z) \longrightarrow H^{k}\left(C P_{m_{-1}} ; Z\right)$ is surjective for all k and in particular j^{*} is isomorphism for $k \leqq 2 m-2$. We shall show that $H^{k}(M-$ int $U ; Z)=0$ for $k \geqq 2 m-1$. Consider the cohomology exact sequence of the pair (M, U);

Since i^{*} is isomorphism for $k \leqq 2 n-2 m$ and $H^{\text {odd }}(M ; Z)=0, H^{k}(M, U ; Z)=0$ for $k \leqq 2 n-2 m+1$ and hence $H_{k}(M ; U ; Z)=0$ for $k \leqq 2 n-2 m+1$. From the isomorphsm $H^{k}(M-\operatorname{int} U ; Z)=H^{k}(M-U ; Z)=H_{2 n-k}(M, U ; Z)$, it follows that $H^{k}(M-$ int $U ; Z)=0$ for $k \geqq 2 m-1$.
Q. E. D.

Lemma 4. 5. $\quad P$ is acyclic over integers.
Proof. Consider the action of $S U(m-1)$ on M-int U. It is not difficult to see that principal isotropy subgroup of the action is conjugate to $\operatorname{SU}(m-2)$. Put $N^{\prime}=N(S U(m-$ 2), $S U(m-1)$. We show that $(M-\operatorname{int} U)_{\left(N^{\prime}\right) \neq \phi . ~ A s s u m e ~ t h e ~ c o n t r a r y . ~ T h e n ~ a l l ~}^{\text {. }}$ orbits K of the $S U(m-1)$-action have cohomology groups $H^{k}(K ; Q)=0$ for $0<k<2 m-3$. and hence the Vietoris-Begle theorem implies that the homomorphism $p^{*}: H^{k}(M-\operatorname{int} U /$ $S U(m-1) ; Q) \longrightarrow H^{k}(M-\operatorname{int} U ; Q)$ is isomorphism for $k<2 m-3$, where $P: M-\operatorname{int} U$ $\longrightarrow M$-int $U / S U(m-1)$ is the orbit map. Therefore a generator a of $H^{2}(M-$ int $U ; Q)$
is in the image of p^{*}, i.e. $a=p^{*} b, b \in H^{2}(M-\operatorname{int} U / S U(m-1)$; Q). Since $\operatorname{dim}(M-\operatorname{int} U /$ $S U(m-1))=2 n-2 m+3<2 m-2, a^{m-1}=0$, which is a contradiction. Since $M-$ int U has the cohomology ring of $C P_{m-1}$, the same arguments as in lemma 4.2 show that P has the cohomology ring of a point. This proves the lemma.

Since $F\left(S^{1}, P\right)$ consists of a single point, the results in [6] (7.2 and 7.3 in chap. IV) imply that S^{1} acts semi-freely on P.

Lemma 4.6. P is contractible.

Proof. It is sufficient to show that P ia simply connected. Let W be a disk nbhd. of $x_{0} \in F\left(S^{1}, P\right)$ in P. Clearly P / S^{1} is homotopy equivalent to $M / S U(m)$ and hence simply connected. From van Kampen theorem, it follows that P / S^{1}-int W / S^{1} is simply connected. Note that W / S^{1} is simply connected (see [6], chap. II (6.2)). Consider the homotopy exact sequence of the fibration $S^{1} \longrightarrow P$-int $W \longrightarrow(P$-int $W) / S^{1}$;

$$
\left.\longrightarrow \pi_{2}(P-\text { int } W) \longrightarrow \pi_{2}(P-\text { int } W) / S^{1}\right) \longrightarrow \pi_{1}\left(S^{1}\right) \longrightarrow \rightarrow \pi_{1}(P-\text { int } W) \longrightarrow 0 .
$$

From this, it follows that $\pi_{1}\left(P\right.$-int W) is an abelian group. Since $H_{1}(P$-int $W ; Z)=0$, we have $\pi_{1}(P$-int $W)=0$.
Q. E. D.

Since $M=b\left(D^{2 m} \times P\right) / S^{1}$, proposition 4 follows from the following
Proposition 5. Let $\left(S^{1}, X\right)$ be a differentiable circle action on a contractible manifold X of dimension $(2 n+2)$ with $b X \neq \phi$. Assume ($S^{1}, b X$) is free. Then $b X / S^{1}$ is a manifold having the same integral cohomology as $C P_{n}$. Moreover $b X$ is simply connected and $n \geqq 3$, then $b X / S^{1}$ is diffeomorphic to $C P_{n}$.

We omit the proof since it is completely analoguous to the proof of the result (2.4) in [9].

Niggata University

References

[1] Borel, A and Hirzebruch, F.: Characteristic classes and homogeneous spaces I. Amer. J. Math., 80 (1958), 485-538.
[2] Borel, A and Siebenthal, J.: Sur les sous-groupes fermes de rank maximum des groupes de Lie compacts connexes. Comm. Math. Helv., 23 (1949), 200-221.
[3] Borel, A.: Seminar on Transformation groups. Ann. of Math. Studies 46. Princeton Univ. Press 1960.
[4] Bredon, G. E.: Sheaf theory. McGraw-Hill, New York 1967.
[5] Conner, P, E.: Orbits of uniform dimension. Michigan Math. J., 6 (1965), 25-32.
[6] Bredon, G. E.: Introduction to compact Transformation Groups. Academic Press.
[7] Hsiang, W. C. and Hsiang, W. Y.: Differntiable action of compact connected classical groups I. Amer. J. Math., 89 (1966), 705-786.
[8] Hsiang, W. Y.: On the degree of symmetry and the structure of highly symmetric manifolds. Tankamg J. of Math., 2 (1971), 1-22.
[9] Ku. H. T., Mann, L. N., Sick, J. L. and Su, J. C.: Degree of symmetry of a homotopy real projective space. Trans. Amer. Math. Soc., 161 (1971), Nov. 51-61.

