Some 3-dimensional Riemannian manifolds with constant scalar curvature

By
Kouei Sekigawa

(Received October 24, 1973)

1. Introduction

Let (M, g) be Riemannian manifold. By R we denote the Riemannian curvature tensor. By $T_{x}(M)$ we denote the tangent space to M at x. Let $X, Y \in T_{x}(M)$. Then $R(X, Y)$ operates on the tensor algebra as a derivation at each point x. In a locally symmetric space $(\nabla R=0)$, we have

$$
R(X, Y) \cdot R=0 \text { for any point } x \in M \text { and } X, Y \in T_{x}(M)
$$

We consider the converse under some additional conditions.
Theorem A (S. Tanno [7]). Let (M, g) be a complete and irreducible 3-dimensional Riemannian manifold. If (M, g) satisfies (*) and the scalar curvature S is positive and bounded away from 0 on M, then (M, g) is of positive constant curvature.

Theorem B (K. Sekigawa [5]). Let (M, g) be a compact and irreducible 3-dimensional Riemannian manifold of class C^{ω} satisfying (*). If the rank of the Ricci tensor R_{1} is non-zero on M, then (M, g) is of constant curvature.

In this note, we shall prove the followings
Theorem C Let (M, g) be a compact and irreducible 3-dimensional Riemannian manifold satisfying (*). If the scalar curvature S is constant, then (M, g) is of constant curvature.

Theorem D Let (M, g) be a 3-dimensional homogeneous Riemanian manifold satisfying (*). Then (M, g) is either
(1) a space of constant curvature, or
(2) a locally product Riemannian manifold of a 2-dimensional space of constant curvature and a real line.

It may be noticed that (*) is equivalent to (**) $R(X, Y) \cdot R_{1}=0$. In this note, (M, g) is assumed to be connected and of class C^{∞}.

2. Preliminaries

Let (M, g) be a 3-dimensional Riemannian manifold. Assume (*). $\operatorname{dim} M=3$ implies that
(2. 1)

$$
R(X, Y)=R^{1} X \wedge Y+X \bigwedge R^{1} Y-(\mathrm{S} / 2) X \bigwedge Y
$$

where $g\left(R^{1} X, Y\right)=R_{1}(X, Y)$ and $(X \wedge Y) Z=g(Y, Z) Y-g(X, Z) Y$.
Let $\left(K_{1}, K_{2}, K_{3}\right)$ be eigenvalues of the Ricci transformation R^{1} at a point x. Then (*) is equivalent to
(2. 2)

$$
\left(K_{i}-K_{j}\right)\left(2\left(K_{i}+K_{j}\right)-S\right)=0 .
$$

Therefore we have only three cases: $(K, K, K),(K, K, 0)$ and ($0,0,0$) at each point. First, if $(K, K, K), K \neq 0$, holds at some point x, then it folds on some open neighborhood U of x. Hence U is an Einstein space, and K is constant on U and on M. Therefore (M, g) is of constant curvature (cf. Takagi and Sekigawa [6]). From now we assume that $\operatorname{rank} R^{1} \leqq 2$ on M. Let $W=\left\{x \in M\right.$; rank $R^{1}=2$ at $\left.x\right\}$. By W_{0} we denote one component of W. On W_{0} we have two C^{∞}-distributions T_{1} and T_{0} such that

$$
T_{1}=\left\{X: R^{1} X=K X\right\}, T_{0}=\left\{Z: R^{1} Z=0\right\}
$$

For $X, Y \in T_{1}$ and $Z \in T_{0}$, by (2.1) we have
(2. 3)

$$
\begin{aligned}
& R(X, Y)=K X \wedge Y \\
& R(X, Z)=0
\end{aligned}
$$

This shows that T_{0} is the nullity distribution. Since the index of nullity at each point of M is 1 or 3 , the nullity index of M is 1 . Thus integral curves of T_{0} are geodesic (and complete if (M, g) is complete) (cf. Clifton and Maltz [2], Abe [1], etc.).

Let $\left(E_{1}, E_{2}, E_{3}\right)=(E)$ be a local field of orthonormal frame such that $E_{3} \in T_{0}$ (consequently, $E_{1}, E_{2} \in T_{1}$) and

$$
\nabla_{E_{3}} E_{i}=0 \quad i=1,2,3 .
$$

We call this (E) an adapted frame field. If we put $\nabla_{E_{i}} E_{j}=\sum_{k=1}^{3} B_{i j k} E_{k}$, then we get $B_{i j k}=-B_{i k j}$ and
(2. 4) $\quad B_{3 i j}=0 i, j=1,2,3$.

The second Bianchi identity and (2.3) give
(2. 5) $\quad E_{3} K+K\left(B_{131}+B_{232}\right)=0$.

By (2.4) and $\left.R\left(E_{i}, E_{3}\right) E_{3}=\nabla_{E_{i}} \nabla_{E_{3}} E_{3}-\nabla_{E_{3}} \nabla E_{i} E_{3}-\nabla_{\left[E_{i}\right.}, E_{3}\right] E_{3}=0$, we get

$$
\begin{align*}
& E_{3} B_{131}+\left(B_{131}\right)^{2}+B_{132} B_{231}=0, \tag{2.6}\\
& E_{3} B_{132}+B_{131} B_{132}+B_{132} B_{232}=0,
\end{align*}
$$

$$
\begin{aligned}
& E_{3} B_{231}+B_{231} B_{131}+B_{232} B_{231}=0, \\
& E_{3} B_{23}+\left(B_{232}\right)^{2}+B_{231} B_{132}=0 .
\end{aligned}
$$

(2.5) and (2. 6) $2,(2.5)$ and (2.6) $)_{3}$, (2.5) and (2.6) $)_{1,4}$ imply
(2. 7) $\quad B_{132}=C_{1}(E) K, \quad B_{231}=C_{2}(E) K$,
(2. 8) $\quad B_{131}-B_{23}=D(E) K$,
where $C_{1}(E), C_{2}(E)$ and $D(E)$ are functions defined on the same domain as (E) such that $E_{3} C_{1}(E)=E_{3} C_{2}(E)=E_{3} D(E)=0$. By (2.5) and (2.8), we get

$$
\begin{equation*}
2 B_{131}=D(E) K-E_{3} K / K . \tag{array}
\end{equation*}
$$

Now, let $\gamma_{x}{ }^{3}(s)$ be an integral curve of T_{0} through $x=\gamma_{x}{ }^{3}(0)$ with arc-length parameter s. Then (2.6),(2.7) and (2.9) give

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d s}\left(\frac{1}{K} \frac{d K}{d s}\right)=H K^{2}+\frac{1}{4}\left(\frac{1}{K} \frac{d K}{d s}\right)^{2} \tag{2.10}
\end{equation*}
$$

where $H=H(E)=D(E)^{2} / 4+C_{1}(E) C_{2}(E)$. (2. 10) implies that H is independent of the choice of the adapted frame fields (E). Solving (2.10), we get

$$
\begin{equation*}
K=r(\text { for } H=0), \quad \text { or } \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
K= \pm 1 /\left((\alpha s-\beta)^{2}-H \alpha^{2}\right) \quad(\text { for } H \neq 0) \tag{2.12}
\end{equation*}
$$

where α, β, and γ are constant along $\gamma_{x}{ }^{3}(s)$.
With respect to our problem, without loss of essentiality, we may assume that M is orientable. Let (E) ae any adapted frame field which is compatible with the orientation. We call it an oriented adapted frame field. Then we see that $f=\left(C_{1}(E)-C_{2}(E)\right) K$ is independent of the choice of oriented adapted frame fields, and hence f is a C^{∞}-function on $W_{0} . \quad f=0$ holds on an open set $U \subset W_{0}$, if and only if T_{1} is integrable on U. This is a geometric meaning of f.

3. Proofs of theorems C, D

In the proofs we can assume that M is orientable. By the arguments of $\S 2$, we assume that rank $R^{1} \leqq 2$ on M. The assumptions in theorems C, D, follow that $S=2 K$ is constant. Then we see that rank $R^{1}=2$ on M and $W=W_{0}=M$. f is defined on M. Since K is constant on M, by (2.11) and (2.12), we have $H=0$. If $f \neq 0$, that is, there exists a point $x_{0} \in M$ such that $f\left(x_{0}\right) \neq 0$. We put $V=\{x \in M ; f(x) \neq 0\}$. Let V_{0} be one component of V. $H=H(E)=0$ implies $D(E)^{2}=-4 C_{1}(E) C_{2}(E)$. Put $\cos 2 \theta(E)=K\left(C_{1}(E)+\right.$ $\left.C_{2}(E)\right) / f$ and $\sin 2 \theta(E)=K D(E) / f$. Define $\left(E^{*}\right)$ by $E_{3}{ }^{*}=E_{3}$ and

$$
E_{1}^{*}=\cos \theta(E) E_{1}-\sin \theta(E) E_{2}, E_{2}^{*}=\sin \theta(E) E_{1}+\cos \theta(E) E_{2},
$$

Then we have $D\left(E^{*}\right)=0$. Furthermore, for (E) and $\left(E^{\prime}\right)$, we have $E_{1}{ }^{*}\left(E^{\prime}\right)$ and
$E_{2}^{*}(E)= \pm E_{1}^{*}(E)= \pm E_{2}^{*}\left(E^{\prime}\right) . \quad H=0$ and $D\left(E^{*}\right)=0$ imply $C_{1}\left(E^{*}\right) C_{2}\left(E^{*}\right)=0$. So we can assume that $C_{2}\left(E^{*}\right)=0$ (otherwise, change $\left(E_{1}{ }^{*}, E_{2}{ }^{*}, E_{3}{ }^{*}\right) \longrightarrow\left(E_{2}{ }^{*},-E_{1}{ }^{*}, E_{3}{ }^{*}\right)$). Then we get
(3. 1)
$B^{*}{ }_{132} \neq 0, B^{*}{ }_{21}=B^{*}{ }_{131}=B^{*}{ }_{2}{ }_{32}=0$.
$R\left(E_{1}{ }^{*}, E_{2}{ }^{*}\right) E_{3}{ }^{*}=0$ implies $B^{*}{ }_{21}=0$ and
(3. 2)
$E_{2}{ }^{*} B^{*}{ }_{132}+B^{*}{ }_{132} B^{*}{ }_{121}=0$.
$R\left(E_{1}{ }^{*}, E_{2}{ }^{*}\right) E_{1}{ }^{*}=-K E_{2}{ }^{*}$ implies
(3. 3)
$E_{2}{ }^{*} B^{*}{ }_{121}+\left(B^{*}{ }_{121}\right)^{2}=-K$.
By $B^{*}{ }_{2}{ }^{i j}=0$, each trajectory of $E_{2}{ }^{*}$ is a geodesic in V_{0}. Let $\gamma_{x}{ }^{2}(t)$ be a trajectory of $E_{2}{ }^{*}$ through x and parametrized by arc-length parameter t such that $\gamma_{x}{ }^{2}(0)=x$. Put $B_{121}{ }^{*}=h$ on V_{0}. From (3.2) and (3.3), we have
(3. 4) $d f / d t+h(t) f(t)=0$,
(3. 5) $d h / d t+h(t)^{2}=-K$.

From (3.4) and (3.5), we have
(3. 6) $\quad d^{2}(1 / f) / d t^{2}+K(1 / f)=0$.

By the fact of theorem A, in the proof of theorem C , it is sufficient to deal with the case where K is negative. Then, solving (3.6), we get

$$
\begin{equation*}
f(t)=1 /\left(c_{1} \exp (\sqrt{-K} t)+c_{2} \exp (-\sqrt{-K} t)\right) \tag{3.7}
\end{equation*}
$$

where c_{1} and c_{2} are certain real numbers.
We put $L x^{2}=\left\{r_{x}{ }^{2}(t) \in M ;-\infty<t<\infty\right\}$. Then, from (3.7), we can see that $L_{x^{2} \subset V_{0}}$, for any $x \in V_{0}$. Moreover, by the similar arguments as in [5], we can see that, for each point $x \in V_{0}, L_{x}{ }^{2}$ is a closed subset of M and is a compact subset of M, since M is compact. Thus, there exist two different real numbers t_{1}, t_{2} such that $(d f / d t)\left(t_{a}\right)=0, a=1,2$. Thus, from (3. 7), we get

$$
\begin{aligned}
& c_{1} \exp \left(\sqrt{-K} t_{1}\right)-c_{2} \exp \left(-\sqrt{-K} t_{1}\right)=0, \\
& c_{2} \exp \left(\sqrt{-K} t_{2}\right)-c_{2} \exp \left(-\sqrt{-K} t_{2}\right)=0
\end{aligned}
$$

Since $\left|\begin{array}{l}\exp \left(\sqrt{-K} t_{1}\right),-\exp \left(-\sqrt{-K} t_{1}\right) \\ \exp \left(\sqrt{-K} t_{2}\right),-\exp \left(-\sqrt{-K} t_{2}\right)\end{array}\right|=\exp (\sqrt{-K})\left(t_{2}-t_{1}\right)-\exp (\sqrt{-K})\left(t_{1}-t_{2}\right)$ $\neq 0$, we have $c_{1}=c_{2}=0$. But, this is a contradiction. Therefore, we can conclude that f is identically 0 on M. This completes the proof of theorem C.

Next, we shall prove theorem D. Let (M, g) be Riemannian homogeneous. Then, the scalar curvature S is constant on M. Of course, (M, g) is complete. We assume that
(M, g) satisfies (**). Then, by the previous arguments, in this paper and the construction of f, we can see that f is constant on M.

If $f \neq 0$, then, from (3.4), we have $h(t)=0$ for all t. Thus, from (3.5), it must follow that $K=0$. But, this is a contradiction. Therefore, f must be 0 on M. This completes the proof of theorem D.

4. A remark

Let (M, g) be a 3-dimensional non-compact, complete, non-homogeneous, irreducible Riemannian manifold with constant scalar curvature S satisfying (*) (or (**)). Then, (M, g) is not always locally symmetric. Because, the following Riemannian manifold (M, g) is an example of such a Riemannian manifold (cf. K. Sekigawa [4]):

$$
M=\mathbb{R}^{3} \text { (3-dimensional real number space), }
$$

$(g) ;\left(\begin{array}{ccc}1 / \lambda^{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, with respect to the canonical coordinate system
(u_{1}, u_{2}, u_{3}) on \mathbb{R}^{3}, where

$$
1 / \lambda=\exp (\sqrt{-S / 2} t), \quad t=\left(\cos u_{1}\right) u_{2}+\left(-\sin u_{1}\right) u_{3},
$$

S is a negative real number.
The scalar curvature of the above Riemannian manifold (M, g) is S, and $\nabla R \neq 0$ for (M, g).

Niggata University

References

[1] K . Abe: A characterization of totally geodesic submanifolds in S^{N} and $C P^{N}$ by an inequality. Tôhoku Math. Journ., 23 (1971), 219-244.
[2] Y. H. Clifton and R. Maltz: The K-nullity of the curvature operator. Michigan Math. Journ., 17 (1970), 85-89.
[3] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. Journ., 20 (1968), 46-59.
[4] K. Sekigawa: On some 3-dimensional Riemannian manifolds. Hokkaidô Math. Journ., 2 (1973), 259-270.
[5] K. Sekigawa: On some 3-dimensional compact Riemannian manifolds, to appear.
[6] H. Takagi and K. Sekigawa: On 3-dimensional Riemannian manifolds satisfying a certain condition on the curvature tensor. Sci. Rep. Niigata Univ., 7 (1969), 23-27.
[7] S. Tanno: 3-dimensional Riemannian manifolds satisfying $R(X, Y) \cdot R=0$, to appear.

