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1. Introduction

Let $(M, g)$ be Riemannian manifold. By $R$ we denote the Riemannian curvature
tensor. By $T_{x}(M)$ we denote the tangent space to $M$ at $x$. Let $X,$ $Y\in T_{x}(M)$ . Then
$R(X, Y)$ operates on the tensor algebra as a derivation at each point $x$. In a locally $sym$ .
metric space $(\nabla R=0)$ , we have

$(*)$ $R(X, Y)\cdot R=0$ for any point $x\in M$ and $X,$ $Y\in T_{x}(M)$ .
We consider the converse under some additional conditions.
THEOREM A (S. Tanno [7]). Let $(M, g)$ be a complete and irreducible 3-dimensional

Riemannian manifold. If $(M, g)$ satisfies $(^{*})$ and the scalar curvature $S$ is positive and
bounded away from $0$ on $M$, then $(M, g)$ is of positive constant curvature.

THEOREM $B$ (K. Sekigawa [5]). Let $(M, g)$ be a compact and irreducible $3$-dimen-
sional Riemannian manifold of class $\alpha$ satisfying $(^{*})$ . If the rank of the Ricci tensor $R_{1}$ is
non-zero on $M$, then $(M, g)$ is of constant curvature.

In this note, we shall prove the followings
THEOREM $C$ Let $(M, g)$ be a compact and irreducible 3-dimensional Riemannian mani-

fold satisfying $(^{*})$ . If the scalar curvature $S$ is constant, then $(M, g)$ is of constant curvature.
THEOREM $D$ Let $(M, g)$ be a 3-dimensional homogeneous Riemanian manifold satisfying

$(^{*})$ . Then $(M, g)$ is either
(1) a space of constant curvature, $or$

(2) a locally product Riemannian manifold of a 2-dimensional
space of constant curvature and a real line.

It may be noticed that $(^{*})$ is equivalent to $(^{**})R(X, Y)\cdot R_{1}=0$ . In this note, $(M$,

g) is assumed to be connected and of class $C^{\infty}$.
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2. Preliminaries

Let $(M, g)$ be a 3-dimensional Riemannian manifold. Assume $(^{*})$ . $\dim M=3$

implies that

(2. 1) $R(X, Y)=R^{1}X\wedge Y+X\wedge R^{1}Y-(S/2)X\wedge Y$,

where $g(R^{1}X, Y)=R_{1}(X, Y)$ and $(X\wedge Y)Z=g(Y, Z)Y-g(X, Z)Y$.
Let $(K_{1}, K_{2}, K_{3})$ be eigenvalues of the Ricci transformation $R^{1}$ at a point $x$. Then

$(^{*})$ is equivalent to

(2. 2) $(Ki-Kj)(2(Ki+K_{j})-S)=0$ .

Therefore we have only three cases: $(K, K, K),$ $(K, K, 0)$ and $(0,0,0)$ at each point.
First, if $(K, K, K),$ $K\neq 0$ , holds at some point $x$ , then it folds on some open neighborhood
$U$ of $\chi$. Hence $U$ is an Einstein space, and $K$ is constant on $U$ and on $M$ Therefore $(M$,
g) is of constant curvature (cf. Takagi and Sekigawa [6]). From now we assume that
rank $R^{1}\leqq 2$ on $M$ Let $W=$ { $x\in M$; rank $R^{1}=2$ at $x$}. By $W_{0}$ we denote one component
of $W$ On $W_{0}$ we have two $C^{\infty}$-distributions $T_{1}$ and $T_{0}$ such that

$T_{1}=\{X:R^{1}X=KK\},$ $T_{0}=\{Z:R^{1}Z=0\}$ .
For $X,$ $Y\in T_{1}$ and $Z\in T_{0}$, by (2. 1) we have

(2. 3) $R(X, Y)=KK\wedge Y$,

$R(X, Z)=0$ .
This shows that $T_{0}$ is the nullity $distribu^{J}\overline{\iota}ion$ . Since the index of nullity at each

point of $M$ is 1 or 3, the nullity index of $M$ is 1. Thus integral curves of $T_{0}$ are geodesic
(and complete if $(M,$ $g)$ is complete) (cf. Clifton and Maltz [2], Abe [1], etc.).

Let $(E_{1}, E_{2}, E_{3})=(E)$ be a local field of orthonormal frame such that $E_{3}\in T_{0}$ (conse-

quently, $E_{1},$ $B\in T_{1}$) and

$\nabla_{E_{3}}Ei=0$ $i=1,2,3$ .
We call this $(E)$ an adapted frame field. If we put $\nabla_{E_{i}}Ej=\sum_{k=1}^{3}BijkEk$, then we get

$Bijk=-Bikj$ and

(2. 4) $B_{3}ij=0i,$ $j=1,2,3$ .
The second Bianchi identity and (2. 3) give

(2. 5) $E_{3}K+K(B_{131}+B_{\mathfrak{B}2})=0$ .
By (2. 4) and $R(Ei, E_{3})E_{3}=\nabla_{E_{j}}\nabla_{E_{3}}E_{3}-\nabla_{E_{3}}\nabla_{E;}E_{3}-\nabla_{[E_{i},E_{3}]}E_{3}=0$, we get

(2. 6) $E_{3}B_{131}+(B_{131})^{2}+B_{132}B_{231}=0$,

$E_{3}B_{132}+B_{131}B_{132}+B_{132}B_{232}=0$,
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$E_{3}B_{231}+B_{231}B_{131}+B_{232}B_{231}=0$,
$E_{3}B_{232}+(B_{232})^{2}+B_{231}B_{132}=0$ .

(2. 5) and $($2. $6)_{2},$ $(2.5)$ and $($2. $6)_{3},$ $(2.5)$ and $($2. $6)_{1,4}$ imply

(2. 7) $B_{132}=C_{1}(E)K$, $B_{231}=C_{2}(E)K$,

(2. 8) $B_{131}-B_{232}=D(E)K$,

where $C_{1}(E),$ $C_{2}(E)$ and $D(E)$ are functions defined on the same domain as $(E)$ such
that $E_{3}C_{1}(E)=E_{3}C_{2}(E)=E_{3}D(E)=0$ . By (2. 5) and (2. 8), we get

(2. 9) $2B_{131}=D(E)K-E_{3}K/K$

Now, let $\gamma_{x^{3}}(s)$ be an integral curve of $T_{0}$ through $x=\gamma_{x^{3}}(0)$ with arc-length para-
meter s. Then $($2. $6)_{1},$ $(2.7)$ and (2. 9) give

(2. 10) $\frac{1d}{2ds}(\frac{1}{K}\frac{dK}{ds})=HK^{2}+\frac{1}{4}(\frac{1}{K}\frac{dK}{ds})^{2}$,

where $H=H(E)=D(E)^{2}/4+C_{1}(E)C_{2}(E)$ . $(2. io)$ implies that $H$ is independent of the
choice of the adapted frame fields $(E)$ . Solving (2. 10), we get

(2. 11) $K=\gamma(forH=0)$ , or

(2. 12) $K=\pm 1/((\alpha s-\beta)^{2}-H\alpha^{2})$ (for $H\neq 0$),

where $\alpha,$ $\beta$, and $\gamma$ are constant along $\gamma_{x}^{3}(s)$ .
With respect to our problem, without loss of essentiality, we may assume that $M$ is

orientable. Let $(E)$ ae any adapted frame field which is compatible with the orientation.
We call it an oriented adapted frame field. Then we see that $f=(C_{1}(E)-C_{2}(E))K$ is
independent of the choice of oriented adapted frame fields, and hence $f$ is a $C^{\infty}$-function
on $W_{0}$. $f=0$ holds on an open set $U\subset W_{0}$, if and only if $T_{1}$ is integrable on $U$. This is a
geometric meaning of $f$

3. Proofs of theorem8 $C,$ $D$

In the proofs we can assume that $M$ is orientable. By the arguments of \S 2, we
assume that rank $R^{1}\leqq 2$ on $M$ The assumptions in theorems $C,$ $D$, follow that $S=2K$ is
constant. Then we see that rank $R^{1}=2$ on $M$ and $W=W_{0}=M$ $f$ is defined on $M$ Since
$K$ is constant on $M$, by (2. 11) and (2. 12), we have $H=0$ . If $f\neq 0$, that is, there exists a
point $x_{0}\in M$ such that $f(x_{0})\neq 0$ . We put $V=\{x\in M;f(x)\neq 0\}$ . Let $V_{0}$ be one component

of V. $H=H(E)=0$ implies $D(E)^{2^{\backslash }}=-4C_{1}(E)C_{2}(E)$ . Put $\cos 2\theta(E)=K(C_{1}(E)+$

$C_{2}(E))/f$ and $\sin 2\theta(E)=KD(E)/f$. Define $(E^{*})$ by $E_{3^{*}}=E_{3}$ and

$E_{1^{*}}=\cos\theta(E)E_{1}-\sin\theta(E)E_{2},$ $E_{2^{*}}=\sin\theta(E)E_{1}+\cos\theta(E)E_{2}$,

Then we have $D(E^{*})=0$ . Furthermore, for $(E)$ and $(E^{\prime})$ , we have $E_{1^{*}}(E^{\prime})$ and
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$E_{2}^{*}(E)=\pm E_{1}^{*}(E)=\pm E_{2}^{*}(E^{\prime})$ . $H=0$ and $D(E^{*})=0$ imply $C_{1}(E^{*})C_{2}(E^{*})=0$ . So we
can assume that $C_{2}(E^{*})=0$ (otherwise, change $(E_{1}^{*},$ $E_{2}^{*},$ $E_{3}^{*})\rightarrow(E_{2}^{*},$ $-E_{1}^{*},$ $E_{3}^{*})$).

Then we get

(3. 1) $B_{13?}^{*}\neq 0,$ $B_{231}^{*}=B_{1S1}^{*}=B_{2ae}^{*}=0$ .
$R(E_{1}^{*}, E_{2^{*}})E_{3^{*}}=0$ implies $B_{221}^{*}=0$ and

(3. 2) $E_{2^{*}}B_{132}^{*}+B_{1U}^{*}B_{121}^{*}=0$ .
$R(E_{1}^{*}, E_{2}^{*})E_{1}^{*}=-Kb^{*}$ implies

(3. 3) $E_{2^{*}}B_{121}^{*}+(B_{121}^{*})^{2}=-K$

By $B_{2}^{*}ij=0$, each trajectory of $E_{2}^{*}$ is a geodesic in $V_{0}$. Let $r_{x^{2}}(t)$ be a trajectory of
$E_{2^{*}}$ through $x$ and parametrized by arc-length parameter $t$ such that $\gamma_{x^{2}}(0)=x$. Put
$B_{121^{*}}=honV_{0}$. From (3. 2) and (3. 3), we have

(3. 4) $df/dt+h(t)f(t)=0$,

(3. 5) $dh/dt+h(t)^{2}=-K$.

From (3. 4) and (3. 5), we have

(3. 6) $d^{2}(1/f)/dt^{2}+K(1/f)=0$ .
By the fact of theorem $A$, in the proof of theorem $C$, it is sufficient to deal with the

case where $K$ is negative. Then, solving (3. 6), we get

(3. 7) $f(t)=1/(c_{1}\exp(\sqrt{-K}t)+c_{2}\exp(-\sqrt{-K}t))$ ,

where $c_{1}$ and $c_{2}$ are certain real numbers.
We put $L_{x^{2}}=\{\gamma_{x^{2}}(t)\in M;-\infty<t<\infty\}$ . Then, from (3. 7), we can see that $L_{x^{2}}\subset V_{0}$,

for any $x\in V_{0}$. Moreover, by the similar arguments as in [5], we can see that, for each
point $x\in V_{0},$ $L_{x^{2}}$ is a closed subset of $M$ and is a compact subset of $M$, since $M$ is compact.
Thus, there exist two different real numbers $t_{1},$ $t_{2}$ such that $(df/dt)(t_{a})=0,$ $a=1,2$. Thus,

from (3. 7), we get

$c_{1}\exp(\sqrt{-K}t_{1})-c_{2}\exp(-\sqrt{-K}t_{1})=0$,

$c_{2}\exp(\sqrt{-K}t_{2})-c_{2}\exp(-\sqrt{-K}t_{2})=0$ .

Since $\left|\begin{array}{l}exp(\sqrt{-K}t_{1}),-exp(-\sqrt{-K}t_{1})\\exp(\sqrt{-K}t_{2}),-exp(-\sqrt{-K}t_{2})\end{array}\right|=\exp(\sqrt{-K})(t_{2}-t_{1})-\exp(\sqrt{-K})(t_{1}-t_{2})$

$\neq 0$, we have $c_{1}=c_{2}=0$ . But, this is a contradiction. Therefore, we can conclude that $f$

is identically $0$ on $M$ This completes the proof of theorem $C$.
Next, we shall prove theorem D. Let $(M, g)$ be Riemannian homogeneous. Then,

the scalar curvature $S$ is constant on $M$ Of course, $(M, g)$ is complete. We assume that
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$(M, g)$ satisfies $(^{**})$ . Then, by the previous arguments, in this paper and the construc-
tion of $f$, we can see that $f$ is constant on $M$

If $f\neq 0$ , then, from (3. 4), we have $h(t)=0$ for all $t$. Thus, from (3. 5), it must
follow that $K=0$ . But, this is a contradiction. Therefore, $f$ must be $0$ on $M$ This com-
pletes the proof of theorem D.

4. A remark

Let $(M, g)$ be a 3-dimensional non-compact, complete, $non\cdot homogeneous$, irreducible
Riemannian manifold with constant scalar curvature $S$ satisfying $(^{*})$ (or $(^{**})$). Then,
$(M, g)$ is not always locally symmetric. Because, the following Riemannian manifold
$(M, g)$ is an example of such a Riemannian manifold (cf. K. Sekigawa [4]):

$M=R^{3}$ (3-dimensional real number space),

$(g);\left(\begin{array}{lll}1/\lambda^{2} & 0 & 0\\0 & l & 0\\0 & 0 & 1\end{array}\right)$ , with respect to the canonical coordinate system

$(u_{1}, u_{2}, u_{3})$ on $\mathbb{R}^{3}$, where

$1/\lambda=\exp(\sqrt{-S}/2t)$ , $t=(\cos u_{1})u_{2}+(-\sin u_{1})u_{3}$,

$S$ is a negative real number.
The scalar curvature of the above Riemannian manifold $(M, g)$ is $S$, and $\nabla R\neq 0$ for

$(M, g)$ .
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