A characterization of double centralizer algebras of Banach algebras

By

Kichisuke SAITO

(Received June 2, 1973)

1. Introduction

Let M(A) be the algebra of double centralizers of a Banach algebra A. Let A^* and A^{**} be the conjugate and the second conjugate spaces of A, respectively. Let π be the canonical mapping of A into A^{**} and Q(A) is the idealizer of $\pi(A)$ in A^{**} . The purpose of this paper is to generalize a fact that Q(A) is isometrically *-isomorphic onto M(A) when A is a C*-algebra [8]. Suppose that A is a Banach algebra without order. Then there is a canonical map φ [see §3] which is a norm-decreasing homomorphism of Q(A) into M(A). Also A has a weak bounded approximate identity if and only if φ is onto. Moreover, we shall investigate a condition for Q(A) to be isometrically isomorphic onto M(A). Finally, we shall construct two interesting examples.

2. Notations and preliminaries

Let A be a Banach algebra. The two Arens products $*_1$ and $*_2$ are defined in stages according to the following rules [1, 4]. Let x, $y \in A$, $f \in A^*$, and F, $G \in A^{**}$. Then we have, by definition,

$$(f*_1 x)(y) = f(xy), (G*_1 f)(x) = G(f*_1 x), (F*_1 G)(f) = F(G*_1 f).$$

Then, $f_{*_1}x$, $G_{*_1}f \in A^*$ and $F_{*_1}G \in A^{**}$ and A^{**} is a Banach algebra with the Arens product $*_1$. A** with the Arens product $*_1$ is denoted by $(A^{**}, *_1)$. Similarly, we define

$$(x*_{2}f)(y)=f(yx), (f*_{2}F)(x)=F(x*_{2}f), (F*_{2}G)(f)=G(f*_{2}F)$$

Then, $x*_2 f$, $f*_2 F \in A^*$ and $F*_2 G \in A^{**}$, and A^{**} is a Banach algebra with the Arens product $*_2$. A^{**} with the Arens products $*_2$ is denoted by $(A^{**}, *_2)$. Furthermore a Banach algebra A is said to be Arens regular if the two Arens products coincide on A^{**} .

An ordered pair (T_1, T_2) of operators in A is said to be a *double centralizer on* A provided that $x(T_1y)=(T_2x)y$ for all $x, y \in A$. The set of all double centralizers of A will be denoted by M(A). We say that a Banach algebra A has a *weak approximate identity* if

there exists a net $\{e_{\alpha}\}_{\alpha \in A}$ in A such that $\lim f(e_{\alpha}x-x) = \lim f(xe_{\alpha}-x)=0$ for every $x \in A$ and $f \in A^*$. It is said to be bounded if there is some number M such that $||e_{\alpha}|| \leq M$ for all $\alpha \in A$. We put $P = \{x \in A : xA = (0) \text{ or } Ax = (0)\}$.

We say that A is without order when P=(0). This is the case, if A either is semisimple or has a weak approximate identity. Throughout this paper, we use the standard notations and terminologies from [7].

LEMMA 1. Let A be a Banach algebra without order and let $(T_1, T_2) \in M(A)$. Then

(i) T_1 and T_2 are continuous linear operators in A,

(ii) $T_1(xy) = (T_1x)y$ for all $x, y \in A$,

(iii) $T_2(xy) = x(T_2y)$ for all $x, y \in A$,

(iv) if $(S_1, S_2) \in M(A)$, $(T_1S_1, S_2T_2 \in M(A))$.

PROOF. The proof of these statuents is almost the same as that of [2, proposition 2.5 and Lemma 2.9].

DEFINITION. Let A be a Banach algebra without order and (T_1, T_2) , $(S_1, S_2) \in M(A)$, and let α be a complex number,

(i) $(T_1, T_2)+(S_1, S_2)=(T_1+S_1, T_2+S_2),$

- (ii) $\alpha(T_1, T_2) = (\alpha T_1, \alpha T_2),$
- (iii) $(T_1, T_2)(S_1, S_2) = (T_1S_1, S_2T_2),$
- (iv) $||(T_1, T_2)|| = \max(||T_1||, ||T_2||).$

Then M(A) is seen to be a Banach algebra under above operations and norm.

Furthermore, we define a map $\mu: A \longrightarrow M(A)$ by the formula $\mu(x) = (L_x, R_x)$ where $L_x(y) = xy$ and $R_x(y) = yx$ for all $x, y \in A$. Then μ is an isomorphism from A into M(A) and $\mu(A)$ is a 2-sided ideal of M(A).

LEMMA 2. Let A be a Banach algebra with a weak approximate identity $\{e_{\alpha}\}_{\alpha \in A}$ such that $||e_{\alpha}|| \leq 1$. Then we have

$$\|x\| = \sup_{\|y\| \le 1} \|y\| = \sup_{\|y\| \le 1} \|xy\| \text{ for all } x \in A.$$

PROOF. Let $\{e_{\alpha}\}$ be a weak approximate identity such that $||e_{\alpha}|| \leq 1$ and $x \in A$. Then we have

$$f(x) = \lim f(xe_{\alpha}) = \lim f(e_{\alpha}x)$$
 for all $f \in A^*$,

and so $||x|| = \sup_{\alpha} ||xe_{\alpha}|| = \sup_{\alpha} ||e_{\alpha}x||$. This shows the lemma.

LEMMA 3. Let A be as in Lemma 2 and $(T_1, T_2) \in M(A)$. Then we have $||T_1|| = ||T_2||$.

PROOF. By Lemma 2, the proof of this statement is almost the same as that of [2, Lemma 2.6].

If A is a Banach *-algebra without order, then M(A) can be made into a Banach *-algebra, by defining an involution by $(T_1, T_2)^* = (T_2^*, T_1^*)$, where $T_i^*(x) = (T_i(x^*))^*$ for all $x \in A$ and for i=1, 2. Then μ is seen to be a *-isomorphism from A into M(A).

3. The main theorems

Let A be a Banach algebra. To simplify, we shall identify A with $\pi(A)$. Let Q(A) be the idealizer of A in $(A^{**}, *_1)$; that is,

$$Q(A) = \{F \in A^{**}: x_1F \text{ and } F_{*1}x \in A \text{ for all } x \in A\}.$$

Then Q(A) is a closed subalgebra of $(A^{**}, *_1)$. Now put

$$L_F(x) = F *_1 x, R_F(x) = x *_1 F$$
 for all $x \in A$ and $F \in Q(A)$.

We have $(L_F, R_F) \in M(A)$. We define a map $\Phi: Q(A) \longrightarrow M(A)$

by the formula $\Phi(F) = (L_F, R_F)$. Clearly Φ is the extension of μ to Q(A). Now put $K = \{F \in A^{**}: A^{**} *_1 F = (0)\}.$

THEOREM 1. Let A be a Banach algebra without order. Then the map Φ is a normdecreasing homomorphism of Q(A) into M(A) with kernel $K_{\bigcap}Q(A)$.

PROOF. It is clear that Φ is a norm-decreasing homomorphism. Thus we shall show that ker $\Phi = K_{\bigcap}Q(A)$. If $F \in \ker \Phi$, we have $R_F(x) = x *_1 F = 0$ for all $x \in A$.

By Goldstine's theorem,

 $A^{**}_{1}F = (0).$

That is, $F \in K_{\bigcap}Q(A)$.

Conversely if $F \in K_{\bigcap}Q(A)$, we have $R_F(x) = x*_1F = 0$ for all $x \in A$, and so $xL_F(y) = R_F(x)y = 0$ for all $x, y \in A$.

Since A is without order, $L_F(y)=0$, and so $F \in \ker \Phi$. This completes the proof.

REMARK 1. If A is a commutative Banach algebra without order, then $K_{\bigcap}Q(A) = K$. LEMMA 4. Let A be a Banach such that $K_{\bigcap}Q(A) = (0)$. Then the two Arens products coincide on Q(A). Furthermore, A has a weak bounded approximate identity if and only if Q(A) has an identity.

PROOF. As was noted in [1], $F*_1G$ is w*-continuous in F for fixed $G \in A^{**}$. For any $F, G \in Q(A)$ and $x \in A$, we have, by [4. Lemma 1.5],

$$x*_1(F*_1G) = (x*_1F)*_1G = (x*_2F)*_2G = x*_2(F*_2G) = x*_1(F*_2G).$$

Hence, by Goldstine's theorem,

 $H_{*_1}(F_{*_1}G) = H_{*_1}(F_{*_2}G)$ for all $H \in A^{**}$.

By our assumption, $F_{*_1}G = F_{*_2}G$, so that the two Arens products coincide on Q(A).

Suppose now that A has a weak bounded approximate identity $\{e_{\alpha}\}_{\alpha \in A}$.

Since there is some number M such that $||e_{\alpha}|| \leq M$, the w*-compactness of the ball of radius M in A^{**} , implies the existence of a subnet $\{e_{\beta}\}_{\beta \in A'}$ such that w*-lim $e_{\beta} = I \in A^{**}$. By [3, Lemma 3.8] I is a right identity for $(A^{**}, *_1)$ and a left identity for $(A^{**}, *_2)$. By [4, Lemma 1.5], $I \in Q(A)$. Since the two Arens products conincide on Q(A), I is the identity of Q(A). Conversely suppose that Q(A) has an identity *I*. By Goldstine's theorem, there is a net $\{e_{\alpha}\}_{\alpha \in A}$, with $||e_{\alpha}|| \leq ||I||$, $\alpha \in A$, and w*-lim $e_{\alpha} = I$. It is easy to show that $\{e_{\alpha}\}$ is a weak bounded approximate identity of *A*. This completes the proof.

REMARK 2. The element I in the preceding proof is not necessarily an identity of $(A^{**}, *_1)$. However if A is Arens reguler, I is an identity of $(A^{**}, *_1)$

THEOREM 2. Let A be a Banach algebra without order. Then A has a weak bounded approximate identity if and only if Φ is onto. Furthermore if $K \cap Q(A) = 0$ and A has a weak approximate identity $\{e_{\alpha}\}_{\alpha \in A}$ such that $||e_{\alpha}|| \leq 1$, Φ is an isometric isomorphism.

PROOF. Suppose that A has a weak bounded approximate identity $\{e_{\alpha}\}_{\alpha \in A}$. Let $T = (T_1, T_2) \in M(A)$. Since $\{T_1 e_{\alpha}\}$ is bounded, it has w*-limit points in A^{**} by Alaoglu's theorem. Thus there is a subnet $\{T_1 e_{\beta}\}_{\beta \in A'}$ such that w*-lim $T_1 e_{\beta} = F \in A^{**}$. Since $(T_1 e_{\beta})x = T_1(e_{\beta}x)$ and $f \circ T_1 \in A^*$ for any $f \in A^*$, we have

$$(F*_{1}x)(f) = \lim(T_{1}e_{\beta}*_{1}x)(f) = \lim f(T_{1}(e_{\beta}x)) = \lim(f \circ T_{1})(e_{\beta}x)$$

= $f(T_{1}x) = (T_{1}x)(f).$

Consequently $F_{*1}x = T_1x$. Since $x(T_1y) = (T_2x)(y)$ for all $x, y \in A$, it follows that $x_{*1}F = T_2x$. Therefore there is an element $F \in Q(A)$ such that $\Phi(F) = T$. Hence Φ is onto. Conversely suppose that Φ is onto. Since M(A) has an identity (E, E) where Ex = x for all $x \in A$, there is an element $F \in Q(A)$ such that $\Phi(F) = (E, E)$. By Goldstine's theorem, there is a net $\{e_{\alpha}\}$, with $||e_{\alpha}|| \leq ||F||$, $\alpha \in A$, and w*-lim $e_{\alpha} = F$. It is not hard to show that $\{e_{\alpha}\}$ is a weak boundet approximate identity of A. The first statement is thus proved.

Suppose that $K_{\bigcap}Q(A)=(0)$ and A has a weak approximate identity $\{e_{\alpha}\}_{\alpha\in A}$ such that $||e_{\alpha}|| \leq 1$ for all $\alpha \in A$. Now choose I as in the proof of Lemma 4. Since I is the identity of Q(A), we have

w*-lim
$$e_{\beta}*_1F = I*_1F = F$$
 for all $F \in Q(A)$.

This implies that $||F|| \leq \sup_{\beta} ||e_{\beta}*_1F||$ and therefore

$$\| \Phi(F) \| = \| R_F \| = \sup_{\|x\| \leq 1} \|x_1 F\| \ge \sup_{\beta} \|e_{\beta} *_1 F\| \ge \|F\|.$$

Since Φ is a norm-decreasing map, we have $\|\Phi(F)\| \leq \|F\|$, and so $\|\Phi(F)\| = \|F\|$. Hence Φ is an isometry. This completes the proof.

By Remark 2 and Therorem 2, we have the following;

COROLEARY 1. Let A be an Arens regular Banach algebra with a weak bound approximate identity. Then Q(A) is isomorphic onto M(A).

COROLLARY 2. Let A be a Banach algebra with a weak apporximate identity $\{e_{\alpha}\}$ such that w-lim $f*_1e_{\alpha}=f$ for all $f \in A^{**}$.

Then Q(A) is isomorphic onto M(A).

PROOF. Choose I as the proof in Lemma 4. Then I is an identity of $(A^{**}, *_1)$ by our assumption. This completes the proof.

In the remainder of this section, we shall study the case of a Banach *-algebra. Let A be a Banach *-algebra with a continuous involution $x \longrightarrow x^*$. Mapping $f \longrightarrow f^*$ and $F \longrightarrow F^*$ are then defined on A^* and A^{**} , respectively, by

$$f^*(x) = \overline{f(x^*)} \quad (x \in A),$$

and

 $F^*(f) = \overline{F(f^*)}$ ($F \in A^{**}$).

It is clear that the correspondence $F \longrightarrow F^*$ maps A^{**} onto A^{**} such that

$$(\alpha F + \beta G)^* = \overline{\alpha} F^* + \overline{\beta} G^*, F^{**} = F$$

for F, $G \in A^{**}$ and for complex numbers α , β .

However it is not in general true that $(F_{*1}G)^* = G^{*}_{*1}F^*$.

LEMMA 5. Let A be a Banach *-algebra, with a continuous involution. If $K \cap Q(A) =$ (0), then Q(A) is a Banach *-algebra.

PROOF. It is straightfoward to verify that

$$(F*_1G)^* = G^**_2F^*$$
 for $F, G \in A^{**}$.

By Lemma 4, the two Arens products coincide on Q(A) and so

$$(F*_1G)^* = G^**_1F^*$$
 for all $F, G \in A^{**}$.

The mapping $F \longrightarrow F^*$ is therefore an involution on Q(A). This completes the proof. THEOREM 3. Let A be a Banach *-algebra with a continuous involution and with a weak bounded approximate identity $\{e_{\alpha}\}_{\alpha \in A}$. If $K \cap Q(A) = (0)$, then Φ is a *-isomorphism of Q(A) onto M(A). If, in addition, $||e_{\alpha}|| \leq 1(\alpha \in A)$, Φ is an isometric *-isomophism.

PROOF. By Theorem 2, it is sufficient to show that φ is a *-preserving mapping. Let $F \in Q(A)$. We have

$$\Phi(F)^* \equiv (L_F, R_F)^* = ((R_F)^*, (L_F)^*) = (L_F^*, R_F^*) = \Phi(F^*).$$

Hence ϕ is a *-isomorphism. This completes the proof.

4. Examples

EXAMPLE 1. There is a semi-simple commutative Banach *-algebra A such that

(i) A has an approximate identity $\{e_{\alpha}\}_{\alpha \in \Lambda}$ such that $||e_{\alpha}|| = 1$. $(\alpha \in \Lambda)$.

(ii) $K \cap Q(A) = K \neq (0).$

CONSTRUCTION. Let G be a locally compact abelian group which is not discrete and let L(G) be the group algebra of G. Then L(G) is a semi-simple commutative Banach *-algebra with an approximate identity $\{e_{\alpha}\}_{\alpha \in A}$ such that $||e_{\alpha}|| = 1$ ($\alpha \in A$). By Remark 1, $K \cap Q(A) = K$. By the proof of [3, Theorem 3.12], $K \neq (0)$. So φ is not an isomorphism

EXAMPLE 2. There is a semi-simple commutative Banach algebra A such that

(i) A has no weak approximate identity,

- (ii) $A^**_1A = A^*$ and so K = (0),
- (iii) Q(A) = A.

CONSTRUCTION. Let D denote the closed unit disc in the complex plane $\{z: |z| \leq 1\}$, and let Γ denote the unit circle $\{z: |z| = 1\}$.

We denote by B the collection of functions which are continuous on D and analytic in the interior of D. Now put A=zB. This Banach algebra A has the required properties (i), (ii) and (iii).

(i) Suppose that A has a weak approximate identity $\{e_{\alpha}\}_{\alpha \in A}$. Defining f(x) = x'(0), where x' is the derivative of $x \in A$, we have $f \in A^*$ clearly. Therefore $\lim f(xe_{\alpha}) = f(x) = x'(0)$. Since $f(xe_{\alpha}) = (xe_{\alpha})'(0) = 0$, we have x'(0) = 0. This is a contradiction.

Hence A has no weak approximate identity.

Let $(T_1, T_2) \in M(A)$. Since A is commutative, $T_1 = T_2$. So we may consider M(A) such as

$$M(A) = \{T: (Tx)y = x(Ty) \text{ for all } x, y \in A\}.$$

Defining $T_y(x) = yx(x \in A)$ for each $y \in B$, we have

 $M(A) = \{T_y: y \in B\}.$

Indeed, it is clear that $\{T_y: y \in B\} \subset M(A)$.

For any $T \in M(A)$,

$$(Tx)z = x(Tz) = (Tz)x$$
 for all $x \in A$,

then putting $y=Tz/z \in B$, we have $Tx=(Tz/z)x=T_y(x)$, and so

$$M(A) = \{T_y: y \in B\}.$$

(ii) Let $C(\Gamma)$ be the space of call ontinuous functions on Γ and let $M(\Gamma)$ be the space of Radon measures on Γ . Then $C(\Gamma)^* = M(\Gamma)$. Since A is the closed subalgebra of $C(\Gamma)$, we have, by Theorem of F. and M. Riesz [See 5],

$$A^* = M(\Gamma)/H^1,$$

where $H^1 = \{ \mu \in M(\Gamma) : \int_{-\pi}^{\pi} e^{in\theta} d\mu(\theta) = 0, n = 1, 2, ... \}.$

Let ~ be the canonical map of $M(\Gamma)$ onto $M(\Gamma)/H^1$. Now putting $\nu(\cdot) = \mu(e^{i\theta} \cdot)$ for each $\mu \in M(\Gamma)$, we see that $\nu \in M(\Gamma)$.

For all $x \in A$, we have

$$(\tilde{\nu} *_1 e^{i\theta})(x) = \tilde{\nu} (e^{i\theta} x) = \nu (e^{i\theta} x) = \mu (e^{-i\theta} e^{i\theta} x)$$
$$= \mu(x) = \tilde{\mu}(x).$$

Thus $\tilde{\nu} *_1 e^{i\theta} = \tilde{\mu}$ and so $A^**_1 e^{i\theta} = A^*$.

Therefore $A^**_1A = A^*$. Note that K = (0) if and only if the linear span of $\{f_{*_1}x:$

 $f \in A^*$, $x \in A$ is strongly dense in A^* . Thus K = (0).

(iii) Since A has no weak approximate identity and K=(0), Φ is not onto and one-to-one by Theorem 2. Hence we have Q(A)=A. This completes the construction.

NIIGATA UNIVERSITY

References

- 1. R. ARENS: The adjoint of a bilinear operation. Proc. Amer. Math. Soc., 2 (1951), 839-848.
- 2. R. C. BUSBY: Double centralizers and extension of C*-algebra. Trans. Amer. Math. Soc., 132 (1968), 79–99.
- 3. P. CIVIN and B. YOOD: The second conjugate space of a Banach algebras as a algebra. Pacific. J. Math., 11 (1961), 847-870.
- 4. J. HENNEFELD: A note on the Arens products. Pacific. J. Math., 26(1968), 115-119.
- 5. K. HOFFMAN: Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs N. J. (1962).
- 6. B. E. JOHNSON: An introduction to the theory of centralizers. Proc. London. Math. Soc., 14 (1964), 299-320.
- 7. C. K. RIEKART: General theory of Banach algebras, D. Van Nostrand, 1960.
- 8. P. K. WONG: On the Arens product and annihilator algebras. Proc. Amer. Math. Soc., 30 (1971), 79-83.