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1. Introduction

Let $M(A)$ be the algebra of double centralizers of a Banach algebra $A$ . Let $A^{*}$ and
$A^{**}$ be the conjugate and the second conjugate spaces of $A$ , respectively. Let $\pi$ be the
canonical mapping of $A$ into $A^{**}$ and $Q(A)$ is the idealizer of $\pi(A)$ in $A^{**}$ . The purpose
of this paper is to generalize a fact that $Q(A)$ is isometrically *-isomorphic onto $M(A)$

when $A$ is a $c*$-algebra [8]. Suppose that $A$ is a Banach algebra without order. Then
there is a canonical map $\Phi$ [see \S 3] which is a norm-decreasing homomorphism of $Q(A)$

into $M(A)$ . Also $A$ has a weak bounded approximate identity if and only if $\Phi$ is onto.
Moreover, we shall investigate a condition for $Q(A)$ to be isometrically isomorphic onto
$M(A)$ . Finally, we shall construct two interesting examples.

2. Notations and preliminaries

Let $A$ be a Banach algebra. The two Arens products $*1and*_{2}$ are defined in stages
according to the following rules $[1, 4]$ . Let $x,$ $y\in A,$ $f\in A^{*}$ , and $F,$ $G\in A^{**}$ . Then we
have, by definition,

$(f*1x)(y)=f(xy),$ $(G*1f)(x)=G(f*1x),$ $(F*1G)(f)=F(G*1f)$ .

Then, $f*1x,$ $G*1f\in A^{*}$ and $F*1G\in A^{**}$ and $A^{**}$ is a Banach algebra with the Arens
$product*1$ . $A^{**}$ with the Arens $product*1$ is denoted by $(A^{**}, *_{1})$ . Similarly, we define

$(x*2f)(y)=f(yx),$ $(f*2F)(x)=F(x*2f),$ $(F*2G)(f)=G(f*2F)$ .
Then, $x*2f,$ $f*2F\in A^{*}$ and $F*2G\in A^{**}$ , and $A^{**}$ is a Banach algebra with the Arens

product $*_{2}$ . $A^{**}$ with the Arens products $*_{2}$ is denoted by $(A^{**}, *_{2})$ . Furthermore a
Banach algebra $A$ is said to be Arens regular if the two Arens products coincide on $A^{**}$ .

An ordered pair $(T_{1}, T_{2})$ of operators in $A$ is said to be a double centralizer on $A$ pro-
vided that $x(T_{1}y)=(T_{2}x)y$ for all $x,$ $y\in A$ . The set of all double centralizers of $A$ will be
denoted by $M(A)$ . We say that a Banach algebra $A$ has a weak approximate identity if
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there exists a net $\{e_{\alpha}\}_{\alpha\in\Lambda}$ in $A$ such that $\lim f(e_{\alpha}x-x)=\lim f(xe_{\alpha}-x)=0$ for every $x\in A$

and $f\in A^{*}$ . It is said to be bounded if there is some number $M$ such that $\Vert e_{\alpha}\Vert\leqq M$ for all
$\alpha\in\Lambda$ . We put $P=$ {$x\in A:xA=(O)$ or $Ax=(O)$ }.

We say that $A$ is without order when $P=(O)$ . This is the case, if $A$ either is semi-
simple or has a weak approximate identity. Throughout this paper, we use the standard
notations and terminologies from [7].

LEMMA I. $LetAbeaBanachalgebrawithoutorderandIet(T_{1}, T_{2})\in M(A)$ . Then
(i) $T_{1}$ and $T_{2}$ are continuous linear operators in $A$ ,
(ii) $T_{1}(xy)=(T_{1}x)y$ for all $x,$ $y\in A$ ,
(iii) $T_{2}(xy)=x(Tv)$ for all $x,$ $y\in A$ ,
(iv) if $(S_{1}, S_{2})\in M(A),$ $(T_{1}S_{1}, S_{2}T_{2}\in M(A)$ .
PROOF. The proof of these statments is almost the same as that of [2, proposition

2. 5 and Lemma 2. 9].

DEFINITION. Let $A$ be a Banach algebra without order and $(T_{1}, T_{2}),$ $(S_{1}, S_{2})\in M(A)$ ,
and let $\alpha$ be a complex number,

(i) $(T_{1}, T_{2})+(S_{1}, S_{2})=(T_{1}+S_{1}, T_{2}+S_{2})$,

(ii) $\alpha(T_{1}, T_{2})=(\alpha T_{1}, \alpha T_{2})$,
(iii) $(T_{1}. T_{2})(S_{1}, S_{2})=(T_{1}S_{1}, S_{2}T_{2})$,

(iv) $\Vert(T_{1}, T_{2})\Vert=\max(\Vert T_{1}\Vert, \Vert T_{2}\Vert)$ .
Then $M(A)$ is seen to be a Banach algebra under above operations and norm.
Furthermore, we define a map $\mu:A\rightarrow M(A)$ by the formula $\mu(x)=(L_{x}, R_{x})$ where

$L_{x}(y)=xy$ and $R_{x}(y)=yx$ for all $x,$ $y\in A$ . Then $\mu$ is an isomorphism from $A$ into $M(A)$

and $\mu(A)$ is a 2-sided ideal of $M(A)$ .
LEMMA 2. Let $A$ be a Banach algebra wilh a weak approximate identily $\{e_{\alpha}\}_{\alpha\in A}$ such

that $\Vert e_{a}\Vert\leq 1$ . Then we have

$\Vert x\Vert=\sup\Vert yx\Vert=\sup\Vert xy\Vert$ for all $x\in A$ .
$\Vert y\Vert\leqq 1$ $\Vert y\Vert\leqq 1$

PROOF. Let $\{e_{\alpha}\}$ be a weak approximate identity such that $\Vert e_{\alpha}\Vert\leqq 1$ and $x\in A$ . Then
we have

$f(x)=\lim f(xe_{a})=\lim f(e_{a}x)$ for all $f\in A^{*}$ ,

and so $\Vert x\Vert=\sup_{\alpha}\Vert xe_{a}\Vert=\sup_{\alpha}\Vert e_{\alpha}x\Vert$ . This shows the lemma.

LEMMA 3. Let $A$ be as in Lemma 2 and $(T_{1}, T_{2})\in M(A)$ . Then we have $\Vert T_{1}\Vert=\Vert T_{2}\Vert$ .
PROOF. By Lemma 2, the proof of this statement is almost the same as that of [2,

Lemma 2. 6].

If $A$ is a Banach $*$-algebra without order, then $M(A)$ can be made into a Banach
$*$-algebra, by defining an involution by $(T_{1}, T_{2})^{*}=(T_{2}^{*}, T_{1}^{*})$ , where $Ti^{*}(x)=(T_{i}(x^{*}))^{*}$

for all $x\in A$ and for $i=1,2$. Then $\mu$ is seen to be $a^{*}$-isomorphism from $A$ into $M(A)$ .
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3. The main theorems

Let $A$ be a Banach algebra. To simplify, we shall identify $A$ with $\pi(A)$ . Let $Q(A)$

be the idealizer of $A$ in $(A^{**}, *1)$ ; that is,

$Q(A)=$ {$F\in A^{**}:$ $x*1F$ and $F*1x\in A$ for all $x\in A$ }.

Then $Q(A)$ is a closed subalgebra of $(A^{**}, *1)$ . Now put

$L_{F}(x)=F*1x,$ $R_{F}(x)=x*1F$ for all $x\in A$ and $F\in Q(A)$ .
We have $(L_{F}, R_{F})\in M(A)$ . We define a map $\Phi;Q(A)\rightarrow M(A)$

by the formula $\Phi(F)=(L_{F}, R_{F})$ . Clearly $\Phi$ is the extension of $\mu$ to $Q(A)$ . Now put
$K=\{F\in A^{**} : A^{**}*1F=(0)\}$ .

THEOREM 1. Let $A$ be a Banach algebra without order. Then the map $\Phi$ is a norm-
decreasing homomorphism of $Q(A)$ into $M(A)$ with kernel $K_{\cap}Q(A)$ .

PROOF. It is clear that $\Phi$ is a norm-decreasing homomorphism. Thus we shall show
that $ker\Phi=K_{\cap}Q(A)$ . If $ F\in ker\Phi$, we have $R_{F}(x)=x*1F=0$ for all $x\in A$ .

By Goldstine’s theorem,

$A^{**}*1F=(0)$ .
That is, $F\in K_{\cap}Q(A)$ .
Conversely if $F\in K_{\cap}Q(A)$, we have $R_{F}(x)=x*1F=0$ for all $x\in A$ ,

and so $xL_{F}(y)=R_{F}(x)y=0$ for all $x,$ $y\in A$ .
Since $A$ is without order, $L_{F}(y)=0$, and so $ F\in ker\Phi$. This completes the $pr\infty f$.
REMARK 1. If $A$ is a commutative Banach algebra without order, then $K_{\cap}Q(A)=K$.
LEMMA 4. Let $A$ be a Banach such that $K_{\cap}Q(A)=(O)$ . Then the two Arens pnducts

coincide on $Q(A)$ . Furthermore, $A$ has a weak bounded approximate identity if and only if
$Q(A)$ has an identity.

PROOF. As was noted in [1], $F*1G$ is $w^{*}$-continuous in $F$ for fixed $G\in A^{**}$ . For any
$F,$ $G\in Q(A)$ and $x\in A$ , we have, by [4. Lemma 1. 5],

$\chi*1(F*1G)=(\chi*1F)*1G=(XIgF)*G=x;19(F*G)=x*1(F*9G)$ .
Hence, by Goldstine’s theorem,

$H*1(F*1G)=H*1(F*G)$ for all $H\in A^{**}$ .
By our assumption, $F*G=F*G$, so that the two Arens products coincide on $Q(A)$ .
Suppose now that $A$ has a weak bounded approximate identity $\{e_{\alpha}\}_{\alpha\in A}$ .
Since there is some number $M$ such that $\Vert e_{a}\Vert\leqq M$, the $w^{*}$-compactness of the ball of

radius $M$ in $A^{**}$ , implies the existence of a subnet $\{e\rho\}_{\beta\in\Lambda^{\prime}}$ such that $w^{*}-\lim e_{\beta}=I\in A^{**}$ .
By [3, Lemma 3. 8] $I$ is a right identity for $(A^{**}, *1)$ and a left identity for $(A^{**}, *)$ .
By [4, Lemma 1. 5], $I\in Q(A)$ . Since the two Arens products conincide on $Q(A),$ $I$ is the
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identity of $Q(A)$ . Conversely suppose that $Q(A)$ has an identity $I$. By Goldstine’s
theorem, there is a net $\{e_{a}\}_{a\in A}$, with $\Vert e_{a}\Vert\leqq\Vert I\Vert,$ $\alpha\in\Lambda$, and $w^{*}-\lim e_{\alpha}=I$. It is easy to
show that $\{e_{\alpha}\}$ is a weak bounded approximate identity of $A$ . This completes the proof.

REMARK 2. The element $I$ in the preceding proof is not necessarily an identity of
$(A^{**}, *_{1})$ . However if $A$ is Arens reguler, $I$ is an identity of $(A^{**}, *1)$

THEOREM 2. Let $A$ be a Banach algebra without order. Then $A$ has a weak bounded
approximale identity if and only if $\Phi$ is onto. Furthermore if $K\cap Q(A)=0$ and $A$ has a weak
approximate identity $\{e_{\alpha}\}_{a\in A}$ such that $\Vert e_{\alpha}\Vert\leqq 1,$ $\Phi$ is an isometnc isomorphism.

PROOF. Suppose that $A$ has a weak bounded approximate identity $\{e_{\alpha}\}_{\alpha\in A}$ . Let $T=$

$(T_{1}, T_{2})\in M(A)$ . Since $\{T_{1}e_{a}\}$ is bounded, it has $w^{*}$-limit points in $A^{**}$ by Alaoglu’s
theorem. Thus there is a subnet $\{T_{1}e_{\beta}\}_{\beta\in A^{\prime}}$ such that $w^{*}-\lim T_{1}e_{\beta}=F\in A^{**}$ . Since
$(T_{1}e_{\beta})x=T_{1}(e_{\beta}x)$ and $f\circ T_{1}\in A^{*}$ for any $f\in A^{*}$ , we have

$(F*1x)(f)=\lim(Te*x)(f)=\lim f(T_{1}(e\rho x))=\lim(f\circ T_{1})(e_{\beta}x)$

$=f(T_{1}x)=(T_{1}x)(f)$ .
Consequently $F*1x=T_{1}x$. Since $x(T_{1}y)=(T_{2}x)(y)$ for all $x,$ $y\in A$ , it follows that

$x*1F=T_{2}x$. Therefore there is an element $F\in Q(A)$ such that $\Phi(F)=T$. Hence $\Phi$ is onto.
Conversely suppose that $\Phi$ is onto. Since $M(A)$ has an identity $(E, E)$ where $Ex=x$ for
all $x\in A$ , there is an element $F\in Q(A)$ such that $\Phi(F)=(E, E)$ . By Goldstine’s theorem,

there is a net $\{e_{\alpha}\}$ , with $\Vert e_{\alpha}\Vert\leqq\Vert F\Vert,$ $\alpha\in\Lambda$, and $w^{*}-\lim e_{\alpha}=F$. It is not hard to show that
$\{e_{a}\}$ is a weak boundet approximate identity of $A$ . The first statement is thus proved.

Suppose that $K_{\cap}Q(A)=(O)$ and $A$ has a weak approximate identity $\{e_{\alpha}\}_{a\in\Lambda}$ such
that $\Vert e_{\alpha}\Vert\leqq 1$ for all $\alpha\in\Lambda$ . Now choose $I$ as in the proof of Lemma 4. Since $I$ is the iden.
tity of $Q(A)$ , we have

$w^{*}-\lim e_{\beta 1}*F=I*1F=F$ for all $F\in Q(A)$ .
This implies that

$\Vert F\Vert\leqq\sup_{\beta}\Vert e_{\beta 1}*F\Vert$
and therefore

$\Vert\Phi(F)\Vert=\Vert R_{F}\Vert=\sup_{||x||\leqq 1}\Vert_{X*1}F\Vert\geqq\sup_{\beta}\Vert e_{\beta*1}F\Vert\geqq\Vert F\Vert$ .

Since $\Phi$ is a norm-decreasing map, we have $\Vert\Phi(F)\Vert\leqq\Vert F\Vert$ , and so $\Vert\Phi(F)\Vert=\Vert F\Vert$ .
Hence $\Phi$ is an isometry. This completes the proof.

By Remark 2 and Therorem 2, we have the following;
COROLEARY 1. Let $A$ be an Arens regular Banach algebra with a weak bound approxi-

mate identity. Then $Q(A)$ is isomorphic onto $M(A)$ .
COROLLARY 2. Let $A$ be a Banach algebra with a weak apporximate identity $\{e_{\alpha}\}$ such

that w-$\lim f*1e_{\alpha}=f$ for all $f\in A^{**}$ .
Then $Q(A)$ is isomorphic onto $M(A)$ .
PROOF. ChooseI as the proof in Lemma4. ThenI is an identity of $(A^{**}, *1)$ by our

assumption. This completes the proof.
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In the remainder of this section, we shall study the case of a Banach *-algebra. Let
$A$ be a Banach $*$-algebra with a continuous involution $\chi\rightarrow x^{*}$ . Mapping $f\rightarrow f^{*}$ and
$F\rightarrow F^{*}$ are then defined on $A^{*}$ and $A^{**}$ , respectively, by

$f^{*}(x)=\overline{f(x^{*})}$ $(x\in A)$ ,

and $F^{*}(f)=\overline{F(f}$“) $(F\in A^{**})$ .
Itis clear that the correspondence $F\rightarrow F^{*}$ maps $A^{**}$ onto $A^{**}$ such that

$(\alpha F+\beta G)^{*}=\overline{\alpha}F^{*}+\overline{\beta}G^{*},$ $F^{**}=F$

for $F,$ $G\in A^{**}$ and for complex numbers $\alpha,$ $\beta$.
However it is not in general true that $(F*1G)^{*}=G^{*}*1F^{*}$ .
LEMMA 5. Let $A$ be a Banach *-algebra, with a continuous involution. If $K_{\cap}Q(A)=$

(0), then $Q(A)$ is a Banach ’-algebra.

PROOF. It is straightfoward to verify that

$(F*1G)^{*}=G^{*}*2F^{*}$ for $F,$ $G\in A^{**}$ .
By Lemma 4, the two Arens products coincide on $Q(A)$ and so

$(F*1G)^{*}=G*1F*$ for all $F,$ $G\in A^{**}$ .
The mapping $F\rightarrow F^{*}$ is therefore an involution on $Q(A)$ . This completes the proof.

THEOREM 3. Let $A$ be a Banach $*$-algebra with a continuous involution and with a weak
bounded appnximate identity $\{e_{a}\}_{\alpha\in\Lambda}$ . If $K_{\cap}Q(A)=(O)$ , then $\Phi$ is a $*$-isomorphism of
$Q(A)$ onto $M(A)$ . If, in addition, $\Vert e_{a}\Vert\leqq 1(\alpha\in\Lambda),$ $\Phi$ is an isometric $-isomophism$ .

PROOF. By Theorem 2, it is sufficient to show that $\Phi$ is $a^{*}$-preserving mapping.
Let $F\in Q(A)$ . We have

$\Phi(F)^{*}\equiv(L_{F}, R_{F})^{*}=((R_{F})^{*}, (L_{F})^{*})=(L_{F}*, R_{F}*)=\Phi(F^{*})$ .
Hence $\Phi$ is $a^{*}$-isomorphism. This completes the proof.

4. Examples

EXAMPLE 1. There is a semi.simple commutative Banach *-algebra $A$ such that
(i) $A$ has an approximate identity $\{e_{a}\}_{\alpha\in A}$ such that $\Vert e_{a}\Vert=1$ . $(\alpha\in\Lambda)$ .
(ii) $K_{\cap}Q(A)=K\neq(O)$ .

$CoNSTRUCTION$ . Let $G$ be a locally compact abelian group which is not discrete and
let $L(G)$ be the group algebra of $G$. Then $L(G)$ is a semi.simple commutative Banach
$*$-algebra with an approximate identity $\{e_{\alpha}\}_{\alpha\in\Lambda}$ such that $\Vert e_{\alpha}\Vert=1(\alpha\in\Lambda)$ . By Remark
1, $K_{\cap}Q(A)=K$ By the proof of [3, Theorem 3. 12], $K\neq(O)$ . So $\Phi$ is not an isomorphism

EXAMPLE 2. There is a semi-simple commutative Banach algebm $A$ such that
(i) $A$ has no weak approximate identity,



10 K. Saito

(ii) $A^{*}*1A=A^{*}$ and so $K=(O)$ ,
(iii) $Q(A)=A$ .

$CoNSTRUCTION$. Let $D$ denote the closed unit disc in the complex plane $\{z:|z|\leqq 1\}$ ,
and let $\Gamma$ denote the unit circle $\{z:|z|=1\}$ .

We denote by $B$ the collection of functions which are continuous on $D$ and analytic in
the interior of $D$ Now put $A=zB$. This Banach algebra $A$ has the required properties
(i), $(\ddot{u})$ and (iii).

(i) Suppose that $A$ has a weak approximate identity $\{e_{\alpha}\}_{\alpha\in A}$. Defining $f(x)=$

$t(O)$ , where $f$ is the derivative of $x\in A$ , we have $f\in A^{*}$ clearly. Therefore $\lim f(xe_{\alpha})=$

$f(x)=f(O)$ . Since $f(xe_{\alpha})=(xe_{\alpha})^{\prime}(O)=0$, we have $t(O)=0$ . This is a contradiction.
Hence $A$ has no weak approximate identity.
Let $(T_{1}, T_{2})\in M(A)$ . Since $A$ is commutative, $T_{1}=T_{2}$. So we may consider $M(A)$

such as

$M(A)=$ { $T:(Tx)y=x(Ty)$ for all $x,$ $y\in A$ }.

Defining $T_{y}(x)=yx(x\in A)$ for each $y\in B$, we have

$M(A)=\{T_{y}: y\in B\}$ .
Indeed, it is clear that $\{T_{y}:y\in B\}\subset M(A)$ .
For any $T\in M(A)$,

$(Tx)z=x(Tz)=(Tz)x$ for all $x\in A$ ,

then putting $y=Tz/z\in B$, we have $Tx=(Tz/z)x=T_{y}(x)$, and so

$M(A)=\{T_{y}:y\in B\}$ .
(ii) Let $C(\Gamma)$ be the space of call ontinuous functions on $\Gamma$ and let $M(\Gamma)$ be the

space of Radon measures on $\Gamma$ . Then $C(\Gamma)^{*}=M(\Gamma)$ . Since $A$ is the closed subalgebra
of $C(\Gamma)$ , we have, by Theorem of F. and M. Riesz [See 5],

$A^{*}=M(\Gamma)/H^{1}$,

where $H^{1}=\{\mu\in M(\Gamma):|_{-K}^{\pi}e^{in\theta}d\mu(\theta)=0, n=1,2,\ldots\}$ .

$Let\sim\Re$ the canonical map of $M(\Gamma)$ onto $M(\Gamma)/H^{1}$. Now putting $\nu(\cdot)=\mu(e^{i\theta}\cdot))$ for
each $\mu\in M(\Gamma)$ , we see that $\nu\in M(\Gamma)$ .

For all $x\in A$ , we have
$(\nu*1e^{i\theta})(x)=\nu(e^{\dot{l}\theta}x)=\nu(e^{\dot{\iota}\theta}x)=\mu(e^{-i\theta}e^{\dot{\iota}\theta}x)-\sim$

$=\mu(x)=\overline{\mu}(x)$ .
Thus $\overline{\nu}*1e^{i\theta}=\overline{\mu}$ and so $A^{*}*1e^{i\theta}=A^{*}$ .
Therefore $A^{*}*1A=A*$. Note that $K=(O)$ if and only if the linear span of { $f*1x$ :
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$f\in A^{*},$ $x\in A$ } is strongly dense in $A^{*}$ . Thus $K=(O)$ .
(iii) Since $A$ has no weak approximate identity and $K=(O),$ $\Phi$ is not onto and one-

to-one by Theorem 2. Hence we have $Q(A)=A$ . This completes the construction.
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