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Let $M^{2n}$ be a simply connected differentiable manifold, and let $\xi\in\pi_{n}(M^{2n})$ be
a given homotopy class of maps: $S^{n}\rightarrow M^{2n}$ . It is known that if $n>2$ the class $\xi$

can be represented by a differentiable imbedding $f:S^{n}\rightarrow M^{2n}$ and that if $n=2$ some
classes cannot be represented.

Kervaire and Milnor have pointed out in [1] that some element of $H_{2}(M^{4})$

cannot be reprsented by any differentiable imbedding $f$ : $S^{2}\rightarrow M^{4}$ , accordingly the
corresponding homotopy class cannot be represented, too.

In this paper we consider an orientable closed surface $M$ with genus $m$ , and
study whether $\xi\in H_{1}$ $(M ; Z)$ can be represented by a differentiably imbedded
l-sphere or not. (It is well known that $M$ has a unique differentiable structure.)

\S 1. The case of $m=1$

Let $T$ be $S^{1}\times S^{1}$ , and $\alpha,$ $\beta\in H_{1}$ $(T ; Z)$ be the standard generators.
THEOREM 1. The non-zero homology class $ p\alpha+q\beta$ can be represented by a differe-

ntiably imbedded l-sphere if and only if G. C. M. $(p, q)=1$ .
Proof. $T=S^{1}\times S^{1}$ can be represented by $(x, y)$ -plane identifying $(x, y)$ with

$(x+i, y+j),$ $(i, j=0, \infty-\llcorner 1, \pm 2,\ldots.)$ . Putting the base point at $(0,0),$ $ p\alpha+q\beta$ is repre-
sented by a curve runs from $(0,0)$ to $(p, q)$ .

If G. C. M. $(p, q)=1$ , the segment which runs from $(0,0)$ to $(p, q)$ is an image
of a differentiable mapping of a $1-$-sphere and has no self intersection. Thus our
condition is sufficiant.

When $p=q\geqq 2$, let $g$ be an arbitrary curve which runs from $(0,0)$ to $(p, p)$ .
By the identiflcation mentioned in the first part of this proof, the curve $g$ which is
translated from $g$ in parallel with the line $y=x$ by $\sqrt{2}$ represent $g$ itself. To prove

$g$ is not an image of an imbedding we assume that $g$ has no self intersection.
Then $g$ and $g^{\prime}$ have no intersection in the $(x, y)$ -plane without identification.

Now we extend $g$ and $g^{\prime}$ by translating them parallel with the line $y=x$ by
$\sqrt{2}np(n=0, \pm 1, \pm 2,\ldots.)$ , and denote them by $G$ and $G^{\prime}$ . Then $G$ and $G^{\prime}$ have no
intersection, accordingly $G$ is contained in an open component of $(x, y)$-plane
separated by $G^{\prime}$ . Therefore the maximum lengh of oriented perpendiculars from
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points of $G$ to $y=x$ is different to that related to $G^{\prime}$ . This contradicts to the fact

that $g^{\prime}$ represent $g$.
This shows that $ p_{X}+q\beta$ cannot be represented by an imbedded l-sphere.

When G. C. M. $(p, q)=m$ , let $p=mp^{\prime}$ and $q=mq^{\prime}$ . Then we can use the rectan-
gles with faces of length $p^{\prime}$ and $q^{\prime}$ , in place of the unit squares in the preceding

paragraph, and similarly prove that $p_{\alpha+q\beta}$ cannot be represented by an imbedded

l-sphere.

\S 2. The graphic representations

In this section we give some graphic representations of $p\alpha+q\beta\in H_{1}$ $(T ; Z)$ ,

where $\alpha,$ $\beta$ and $T$ are those given in \S 1.
We construct $T^{J}$ , the connected sum of $T$ and $S^{2}$ , as follows; take away the

neighborhood $U$ of the base point in $T$ and the interior of a disk $D$ in $S^{2}$ and
identify the boundary of $U$ with the boundary $K$ of $D$ . Then $T^{\prime}$ is homeomorphic

to $T$, accordingly [2] diffeomorphic to $T$.
We regard $T-U$ to be inside of $K$ and $S^{2}-D$ to be outside of $K$, and indicate by

vectors which lie across $K$ the differentiable curves which lie across $K$ and have no
self intersection and no mutual intersection in $T-U$.

If this graphic representation is consist of $p$ parallel vectors and $q$ other vectors
which are orthogonal to the formers, we
call it a graph of type $(p, q)$ . (Fig. 1).

We put the base point $x_{0}$ of $T^{\prime}$ outside

$I^{P}$ $weobtainarepresentationofsomee1e- casewesaythatthee1ementisrepre- sentedbyagraphoftype(p,q)initia1andendpointsofa11ve.ctorstox_{0}ofK,i.e.inS^{2}-D,thencombiningeverymentofH_{l}(T’;Z)=H_{1}(T;Z).Inthis$

LEMMA 1. When G. C. M. $(p,q)=r,$ $p\alpha+$

$ q\beta$ can be represented by a graph of fype
$(r, 0)$ .

Proof. As easily seen, $ p\alpha+q\beta$ is re-
Fig. 1. presented by a graph of type $(p,q)$ . (Fig. 2).

At first we assume that $p>q>0$, and
let $p=qq_{1}+p_{\perp}(0\leqq p_{1}<q)$ . Combine the end points of $q$ vertical vectors with the
initial points of upper $q$ horizontal vectors as indicated in Fig. 3.

Using the theorem in appendix, Fig. 3 may be transformed into Fig. 4,
accordingly into Fig. 5, without changing the homology class represented by it.
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Fig. 2.

Fig. 3.

$q$

Fig. 4. Fig. 5.
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Repeating similar operations, Fig. 1 may be transformed into the graph of
type $(p_{1}, q)$ .

Such transformation corresponds to the first step of Euclidean algorithm.
Corresponding to each step of Euclidean algorithm, there is a transformation of the
graph. Hence we can transform the graph of type $(p, q)$ into the graph of type
$(r, 0)$ without changing the homology class. (Note that the graph of type $(0, r)$

may be considered to be that of type $(r, 0))$ .
Thus $ p\alpha+q\beta$ can be represented by a graph of type $(r, 0)$ .
In the cases when the above condition $p>q>0$ does not hold, the proofs are

similar or trivial.
LEMMA 2. When G. C. M. $(p, q)=r,$ $ p\alpha+q\beta$ can be represented by a graph of type

$(r, r)$ .
Proof. When $p=0$ and $q=r$ (or $p=r$ and $q=0$), $ p_{\alpha}+q\beta=r\beta$ (or $ r\alpha$) is naturally

represented by a graph of type $(r, 0)$ and it can be transformed into a graph of

Fig. 6.

type $(r, r)$ without changing the corre-
sponding class as indicated in Fig. 6.

When $p\neq 0$ and $q\neq 0$, we have passed
through the graph of type $(r, r)$ in the
process of the transformation of the graph
which is considered in the proof of lemma
1.

LEMMA 3. When G. C. M. $(p, q)=1$, for
any integer $n,$ $ p\alpha+q\beta$ can be $re\psi esented$

by a graph of type $(n+1/n, 1),$ $i$. $e$. the
graph indicated in Fig. 7.

Fig. 7.
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Proof. In the graph of type $(1, 1)$ obtained in lemma 2, give $n$ curves along
the curve which is represented by the horizontal vector and give other $n$ curves
along them with inverse orientation. Then the graph becomes of type $(n+1/n, 1)$

and the corresponidng homology class does not change.

\S 3. The general case

Let $M$ be an orientable closed surface with genus $m$ , and let $\alpha t$ $\beta_{i}(i=1,\ldots,m)$

be the standard generators of $H_{1}(M;Z)$ .
THEOREM 2. The non-zero homology class $\xi=\sum_{i-1}^{m}(p;\alpha;+q;\beta;)$ can be represented by

a differentiably imbedded l-sphere if G. C. M. $(p;, q;)=1$ for some $i$ .
Proof. We may consider $M$ to be as follows. Let $K$; $(i=1,\ldots,m)$ be circles

which have mutually no intersection and stand side by side along the equator on $S^{2}$ .
At each $K_{i}$ , we take away the interior and attach to it a holed torus $T$ ; by the

way used in \S 2. Then the resulting connected sum $M$ is an orientable closed
surface with genus $m$ , and has an unique differentiable structure.

Let $r_{i}=0$ if $p;=q_{i}=0$ and $r_{i}=G$. C. M. $(p;, q_{i})$ otherwise, and let $\max_{i}r;=n$ .
Now we assume $r_{1}=1$ . At each $K(i=2,\ldots.,m)$ , we represent $ p_{t\alpha_{i}}+q_{l}\beta$ ; by a

graph of type $(r;, 0)$ by lemma 1. At $K_{1}$ , we represent $p_{1}\alpha_{1}+q_{1}\beta_{1}$ by a graph of
type $(n/n-1,1)$ by lemma 3.

Putting the base point $x_{0}$ of $M$ at the north pole of $S^{2}$ , we give a differentiably
imbedded l-sphere which combines $x_{0}$ and all vectors as follows. (Fig. 8).

We start from $x_{0}$ and pass through uppermost horizontal vectors of $K$;

$(i=1,\ldots,m)$ in order, if $r_{i}=0$ go round the south side of $K;$ . After going round one
time, we go towards the initial point of
the second vector of $K_{1}$ and pass through

all second vectors as above.
After repeating such process $n$ times,

we turn towards the initial point of the
$(n+1)-th$ vector of $K_{1}$ through the south
hemisphere.

Then we path through the $(n-1)$

inversely oriented vectors spirally as in
Fig. 8, and return to $x_{0}$ through the only
vertical vector.

Fig. 8.

As easily seen, these process may be
carried out such as the resulting curve has
no self intersection.
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By the theorem in appendix this curve may be made differentiable. Thus we
have represented $\xi$ by a differentiably
imbedded l-sphere.

THEOREM 3. $\xi$ can be represented by a
$di$fferentiably imbedded l-sphere if $rj=1+rk$

for some $j$ and $k$, where $r;(i=1,\ldots,m)$ is

defined as in the proof of theorem 2.

Proof. Let $ s=\max$ $(0, (\max_{i\neq j.k}ri-rk))$ .
We represent $ p;\alpha;+q\iota\beta\iota$ by a graph of

type $(r;, 0)$ for $i\neq j,$ $k$.
For $i=j$ or $k$ we represent them by

the graphs of type $(rj+s/s, rJ)$ and that of
type $(r_{k}+s/s, 0/r_{k})$ respectively. Then
passing through the course indicated inFig. 9.
Fig. 9 we obtain the required l-sphere.

Appendix

Using the function given by Eelles, we obtain the following theorem.
THEOREM. A polygonal line which has finite vertices and no self intersection may

be approximated by a differentiable curve which has no seif intrsection.
Proof. When two half lines $y=mx(x\leqq 0)$ and $y=m(\epsilon-x)(x\geqq\epsilon>0)$ are given,

we can differentiably connect them as follows.
Define $y=g(x)(0\leqq x\leqq\epsilon)$ by

$g(x)=\left\{\begin{array}{ll}m(1-f(\frac{2x}{\epsilon})) & (0\leqq x\leqq\frac{\epsilon}{2})\\-mf(\frac{2x}{\epsilon}-1) & (\frac{\epsilon}{2}<x\leqq\epsilon)\end{array}\right.$

where

Let

$h(x)=\left\{\begin{array}{ll}mx & (x\leqq 0)\\\int_{0}^{x}g(t)dt & (0<x<\epsilon)\\m(\epsilon-x) & (x\geqq\epsilon)\end{array}\right.$
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Then $y=h(x)(-\infty<x<\infty)$ is differentiable as desired.
Using this fact each angle of our polygonal line may be replaced by a differenti-

able curve with no self intersection in arbitrary small neighborhood of the vertix.
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