The epuivalence of two definitions of homotopy sets for Kan complexes

By

Eiitirô HONMA and Tetuo KANEKO

(Received December 20, 1959)

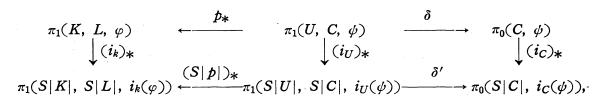
As we remarked in \$ 1 and 2 of [1], the following proposition holds. The purpose of this paper is to give its proof. Free use will be made of the definitions and notations of [1].

PROPOSITION 1. 1°. If (K, L) is a Kan pair with base point $\varphi \in L_0$, DEFINITIONS 1.7 and 1.10 in [1] of $\pi_n(K, L, \varphi)$ are equivalent for $n \ge 0$. 2°. If (K; L, M) is a Kan triad with base point $\varphi \in (L \cap M)_0$, DEFINITIONS 2.4 and 2.7 in [1] of $\pi_n(K; L, M, \varphi)$ are equivalent for $n \ge 2$. I.e. the natural embedding map $i_k: K \rightarrow S|K|$ given in [7] induces one-to-one onto maps $(i_k)_*: \pi_n(K, L, \varphi) \rightarrow \pi_n(S|K|, S|L|, i_k(\varphi))$ and $(i_k)_*: \pi_n(K; L, M, \varphi) \rightarrow \pi_n(S|K|; S|L|, S|M|, i_k(\varphi))$ where π_n means the set defined by DEFINITIONS 1.7 and 2.4 in [1].

Proof of 1°. The equivalence follows from THEOREM 7.3 in [1], REMARK 1 in [3, §4] and the five lemma for $n \ge 2$, and by their definitions for n=0.

To show that $(i_k)_*$ is one-to-one onto for n=1, consider $\pi_1(K, L, \varphi)$ and $\pi_1(S|K|, S|L|, i_k(\varphi))$. In this case we may assume that K is connected, i.e. $\pi_0(K, \varphi)=0$. Then we can construct the c.s.s. group $G(K;\varphi)$ which is a loop complex of K rel. φ [2, THEOREM 9.2]. Put $U=G(K;\varphi)\times_t K$, $C=G(K;\varphi)\times_t L$ and $\psi=(e_0,\varphi)\in U_0$ where t is a twisting function defined by $t\sigma=\overline{\sigma}$, e_0 is the identity element of the group $G(K;\varphi)_0$. By LEMMA 9.3 in [2] U is contractible. Let $p:U\rightarrow K$ be given by $p(\rho, \sigma)$ $=\sigma$ for $(\rho, \sigma)\in U$. Then p is a fibre map: $(U, C, \psi)\rightarrow (K, L, \varphi)$ and (U, C) is a Kan pair. By THEOREM 8.3-2) and PROPOSITION 8.2 in [1], $p_*:\pi_1(U, C, \psi)\rightarrow\pi_1(K, L, \varphi)$ and $(S|P|)_*:\pi_1(S|U|, S|C|, i_U(\psi))\rightarrow\pi_1(S|K|, S|L|, i_k(\varphi))$ are one-to-one onto.

Consider the following commutative diagram:



where δ and δ' are the boundary operations induced by the 0-th face operation, $(i_C)_*$ is one-to-one onto [3, §4 REMARK 1]. Therefore to show that $(i_k)_*$ is one-to-one

onto it sufficies to prove the following.

LEMMA 2. If (U, C) is a Kan pair with base point $\psi \in C_0$ and if U is contractible, then $\delta : \pi_1(U, C, \psi) \rightarrow \pi_0(C, \psi)$ is one-to-one onto.

(In this case, S|U| is also contractible and that δ' is one-to-one onto is verified by the same method.)

Proof. Since $\pi_0(U, \phi) = 0$ it is clear that δ is onto.

Now consider two simplices σ and $\tau \in \Gamma_1(U, C, \phi)$ such that $\sigma \varepsilon^0 \sim \tau \varepsilon^0$, i.e. there exists $\tau \in C_1$ with $\tau \varepsilon^0 = \sigma \varepsilon^0$ and $\tau \varepsilon^1 = \tau \varepsilon^0$. Let $\omega_1 \in U_2$ be a solvent of

```
(0) (1) (2) [7, \sigma, \Box]
```

and let $\sigma' = \omega_1 \varepsilon^2$. Let $\omega_2 \in U_2$ be a solvent of

(0) (1) (2)
$$[\sigma', \tau, \Box]$$

and let $\theta = \omega_2 \varepsilon^2$. we have $\theta \varepsilon^0 = \phi$ and $\theta \varepsilon^1 = \phi$. Since $\pi_1(U, \phi) = 0 = \{\phi \eta^0\}$, there exists $\omega_3 \in U_2$ such that $\omega_3 \varepsilon^0 = \omega_3 \varepsilon^1 = \phi \eta^0$, $\omega_3 \varepsilon^2 = \theta$. Let $\omega_4 \in U_2$ be a solution of

```
(0) (1) (2) (3) 
[\Box, \tau\eta^0, \omega_2, \omega_3]
```

and $\rho \in U_2$ be a solution of

(0) (1) (2) (3)
$$[\Box, \omega_1, \sigma\eta^0, \omega_4].$$

Then we have $\rho \varepsilon^0 = \tau \in C_1$, $\rho \varepsilon^1 = \sigma$, $\rho \varepsilon^2 = \tau$ and therefore $\rho : \sigma \sim \tau$ lsd. C.

Proof of 2°. The equivalence follows from THEOREM 7.1 in [1], THEOREM 1-1° and the five lemma for $n \ge 3$.

To show that $(i_K)_*$ is one-to-one onto for n=2, consider $\pi_2(K; L, M, \varphi)$ and $\pi_2(S|K|; S|L|, S|M|, i_K(\varphi))$ where we may assume that K is connected. Let U, C, φ , be those given in the proof of 1° and moreover let $D=G(K; \varphi)\times_t M$. Then (U; C, D) is a Kan triad with base point φ , and the following diagram is commutative:

$$\pi_{2}(K; L, M, \varphi) \xrightarrow{(i_{K})_{*}} \pi_{2}(S|K|; S|L|, S|M|, i_{K}(\varphi))$$

$$\uparrow p_{*} \qquad \uparrow (S|p|)_{*}$$

$$\pi_{2}(U; C, D, \psi) \xrightarrow{(i_{U})_{*}} \pi_{2}(S|U|; S|C|, S|D|, i_{U}(\psi)),$$

where $p: U \to K$ is the fibre map given in the proof of 1° and p_* and $(S|p|)_*$ are one-to-one onto (THEOREM 8.3-1 in [1]). Therefore to show that $(i_K)_*$ is one-to-one onto it sufficies to prove that $(i_U)_*$ is so.

To prove that $(i_U)_*$ is onto, consider an arbitrary simplex $f \in \Gamma_2(S|U|; S|C|, S|D|, i_U(\phi))$. f is a continuous map from Δ_2 into |U| where Δ_2 means the unit

2

simplex in euclidean space R^3 . Put $e=f\varepsilon^0\varepsilon^0(\varDelta_0) \in |C| \cap |D|$ for the sake of notational simplicity. It is clear that there exist a 1-simplex $g\in (S|C|\cap S|D|)_1$ and a 0-simplex $\theta\in (C\cap D)_0$ such that $g\varepsilon^0(\varDelta_0)=e$ and $g\varepsilon^1=i(\theta)$. Since S|C| and S|D| are Kan complexes, there exist solvents $h_0\in (S|C|)_2$ and $h_1\in (S|D|)_2$ of the following equations

(0) (1) (2) (0) (1) (2) $[g, f\varepsilon^0, \Box]$ and $[g, f\varepsilon^1, \Box]$ respectively.

We see that $h_0\varepsilon^2 \in \Gamma_1(S|C|, S|\psi \cup \theta|, i_C(\psi))$ and $(i_C)_*: \pi_1(C, \psi \cup \theta, \psi) \to \pi_1(S|C|, S|\psi \cup \theta|, i_C(\psi))$ is one-to-one onto $(T_{\text{HEOREM}} 1-1^\circ)$ where $\psi \cup \theta$ means the c.s. s. complex generated by ψ and θ . Therefore we have a simplex $\sigma_0 \in \Gamma_1(C, \psi \cup \theta, \psi)$ such that $\sigma_0\varepsilon^0 = \theta$ and $i_C(\sigma_0) \sim h_0\varepsilon^2$ lsd. $S|\psi \cup \theta|$. Donote this homotopy by $k_0 \in (S|C|)_2$. It is clear that $k_0\varepsilon^0 = i(\theta)\eta^0$. We have also a simplex $\sigma_1 \in \Gamma_1(D, \psi \cup \theta, \psi)$ such that $\sigma_1\varepsilon^0 = \theta$ and $i_D(\sigma_1) \sim h_1\varepsilon^2$ lsd. $S|\psi \cup \theta|$. Denote this homotopy by $k_1 \in (S|D|)_2$. We see that $k_1\varepsilon^0 = i_D(\theta)\eta^0$. Let $f_0 \in (S|C|)_2$ and $f_1 \in (S|D|)_2$ be solutions of the following equations

(0) (1) (2) (3) (0) (1) (2) (3)
$$[g\eta^0, \Box, h_0, k_0]$$
 and $[g\eta^0, \Box, h_1, k_1]$ respectively.

Then we have $f \sim f_3$ lsd. S|C|, S|D| where $f_3 \in (S|U|)_2$ is a solution of the following equation

(0) (1) (2) (3)
$$[f_0, f_1, f, \Box]$$
.

On the other hand, let $\gamma \in U_2$ be a solvent of the equation

(0) (1) (2)
$$[\sigma_0, \sigma_1, \Box]$$

and let $v = \Upsilon \varepsilon^2$. Then we have $v \varepsilon^0 = v \varepsilon^1 = \phi$, and since $\pi_1(U, \phi) = 0$ there exists a simplex $\Omega \in U_2$ such that $\Omega \varepsilon^0 = \Omega \varepsilon^1 = \phi \eta^0$ and $\Omega \varepsilon^2 = v$. A solution σ of the equation in U:

$$\begin{bmatrix} 0 & (1) & (2) & (3) \\ \sigma_0 \eta^0, & \Box, & \Upsilon, & \Omega \end{bmatrix}$$

is a simplex contained in $\Gamma_2(U; C, D, \phi)$, i.e. $\sigma \varepsilon^0 = \sigma_0$, $\sigma \varepsilon^1 = \sigma_1$ and $\sigma \varepsilon^2 = \phi \eta^0$. Let $F_3 \in (S|U|)_3$ be a solvent of the equation in S|U|:

$$\begin{bmatrix} (0) & (1) & (2) & (3) \\ i_U(\sigma_0)\eta^0, f_3, i_U(\sigma), \Box \end{bmatrix}$$

and let $f_4 = F_3 \varepsilon^3$. Then we have $f_4 \varepsilon^0 = f_4 \varepsilon^1 = f_4 \varepsilon^2 = i_U(\psi) \eta^0$, and since $\pi_2(S|U|, i_U(\psi)) = \pi_2(U, \psi) = 0$ there exists $F_4 \in (S|U|)_3$ such that $F_4 \varepsilon^0 = F_4 \varepsilon^1 = F_4 \varepsilon^2 = i_U(\psi) \eta^0 r^1$ and $F_4 \varepsilon^3 = f_4$. Let $F \in (S|U|)_3$ be a solution of the equation in S|U|:

 $\begin{matrix} {}^{(0)}_{[i_U(\sigma_0)\eta^0\eta^1, \ \Box, \ i_U(\sigma)\eta^1, \ F_3, \ F_4]} \end{matrix}$

and let $G \in (S|U|)_3$ be a solution of the equation in S|U|:

 $[i_U(\sigma_0)\eta^0\eta^2, i_U(\sigma)\eta^2, \Box, i_U(\sigma)\eta^1, F].$

Then we have $G\varepsilon^0 = i_U(\sigma_0)\eta^1 \in S|C|$, $G\varepsilon^1 = i_D(\sigma_1)\eta^1 \in S|D|$, $G\varepsilon^2 = i_U(\sigma)$ and $G\varepsilon^3 = f_3$, i.e. $i_U(\sigma) \sim f_3$ lsd. S|C|, S|D|. Thus we have $i_U(\sigma) \sim f$ lsd. S|C|, S|D|, i.e. $(i_U)_*$ is onto.

To show that $(i_U)_*$ is one-to-one, consider two simplices σ and $\tau \in \Gamma_2(U; C, D, \phi)$ such that there exists a homotopy $F \in (S|U|)_3: i_U(\sigma) \sim i_U(\tau)$ lsd. S|C|, S|D|, i.e. $F\varepsilon^0 \in S|C|$, $F\varepsilon^1 \in S|D|$, $F\varepsilon^2 = i_U(\sigma)$ and $F\varepsilon^3 = i_U(\tau)$. For the sake of simplicity, put $\psi_0 = \sigma\varepsilon^0\varepsilon^0$ and $\psi_1 = \tau\varepsilon^0\varepsilon^0$. Since $(i_{C\cap D})_*: \pi_1(C|D|, \psi_0 \cup \psi_1, \psi_1) \rightarrow \pi_1(S|C| \cap S|D|, S|\psi_0 \cup \psi_1|,$ $i(\psi_1)$) is one-to-one onto (THEOREM 1-1°) where $\psi_0 \cup \psi_1$ means the c.s. s. complex generated by ψ_0 and ψ_1 and since $F\varepsilon^0\varepsilon^0 \in \Gamma_1(S|C| \cap S|D|, S|\psi_0 \cup \psi_1|, i(\psi_1))$, there exists a simplex $\tau \in (C \cap D)_1$ such that $\tau \varepsilon^0 = \psi_0, \tau \varepsilon^1 = \psi_1$ and $i(\tau) \sim F\varepsilon^0\varepsilon^0$ lsd. $S|\psi_0 \cup \psi_1|$. Denote this homotopy by $g \in (S|C| \cap S|D|)_2$, i.e. $g\varepsilon^0 = i(\psi_0)\eta^0, g\varepsilon^1 = i(\tau)$ and $g\varepsilon^2 = F\varepsilon^0\varepsilon^0$. Let $h_0 \in (S|C|)_3$ and $h_1 \in (S|D|)_3$ be solvents of the following equations

Consider a solution $F' \in (S|U|)_3$ of the equation in S|U|:

Then we have $F' \varepsilon^0 = h_0 \varepsilon^2 \in S|C|$, $F' \varepsilon^1 = h_1 \varepsilon^2 \in S|D|$, $F' \varepsilon^2 = i_U(\sigma)$ and $F' \varepsilon^3 = i(\tau)$, i.e. $F' : i_U(\sigma) \sim i_U(\tau)$ lsd. S|C|, S|D|. Moreover we have $F' \varepsilon^0 \varepsilon^0 = h_0 \varepsilon^2 \varepsilon^0 = g \varepsilon^1 = i(\tau)$.

Let $\tau_0 \in C_3$ and $\tau_1 \in D_3$ be solvents of the following equations

(0) (1) (2) (0) (1) (2) $[\Upsilon, \Box, \tau \varepsilon^0]$ and $[\Upsilon, \Box, \tau \varepsilon^1]$ respectively.

Then $\tau \sim \tau'$ lsd. C, D where $\tau' \in \Gamma_2(U; C, D, \phi)$ is a solution of the following equation in U:

(0) (1) (2) (3)
$$[\tau_0, \tau_1, \Box, \tau].$$

Therefore, to complete this proof it sufficies to show that $\tau' \sim \sigma$ lsd. C, D. Let $k \in (S|C|)_2$ be a solution of the equation in S|C|:

$$[i_{\mathcal{C}}^{(0)}(\gamma)\eta^{1}, \Box, F'\varepsilon^{0}, i_{\mathcal{C}}^{(3)}(\tau_{0})].$$

Then we have $k\varepsilon^0 = i_C(\psi_0)\eta^0$, $k\varepsilon^1 = i_C(\sigma\varepsilon^0)$, $k\varepsilon^2 = i_C(\tau'\varepsilon^0)$. Therefore $i_C(\sigma\varepsilon^0) \sim i_C(\tau'\varepsilon^0)$

Isd. $i_C(\psi_0)$. Hence we have $\sigma\varepsilon^0 \sim \tau'\varepsilon^0$ lsd. $\psi \cup \psi_0$, for $(i_C)_*: \pi_1(C, \psi \cup \psi_0, \psi) \to \pi_1(S|C|, S|\psi \cup \psi_0|, i_C(\psi))$ is one-to-one onto. Namely there exists a simplex $\rho_0 \in C_2$ such that $\rho_0\varepsilon^0 = \psi_0\eta^0$, $\rho_0\varepsilon^1 = \sigma\varepsilon^0$ and $\rho_0\varepsilon^2 = \tau'\varepsilon^0$. Similarly we have a simplex $\rho_1 \in D_2$ such that $\rho_1\varepsilon^0 = \psi_0\eta^0$, $\rho_1\varepsilon^1 = \sigma\varepsilon^1$ and $\rho_1\varepsilon^2 = \tau'\varepsilon^1$. Then $\tau' \sim \tau''$ lsd. C, D where $\tau'' \in \Gamma_2(U; C, D, \psi)$ is a solution of the equation in U:

(0) (1) (2) (3)
$$[\rho_0, \rho_1, \Box, \tau'].$$

On the other hand, for a solvent $E \in U_3$ of the following equation in U:

$$\begin{bmatrix} 0 & (1) & (2) & (3) \\ [\sigma, \tau'', \sigma \varepsilon^1 \eta^0, \Box], \end{bmatrix}$$

each face of $\xi = \Xi \varepsilon^3$ degenerates at ψ . Therefore there exists a simplex $\Omega \in U_3$ such that $\Omega \varepsilon^0 = \Omega \varepsilon^2 = \Omega \varepsilon^3 = \psi \eta^0 \eta^1$ and $\Omega \varepsilon^1 = \xi$, for $\pi_2(U, \psi) = 0$. Let $\rho \in U_3$ be a solution of the equation in U:

$$\begin{bmatrix} (0) & (1) & (2) & (3) & (4) \\ \begin{bmatrix} \Box, \tau'' \eta^2, \zeta, \tau'' \eta^0, \rho' \end{bmatrix}$$

where $\rho' \in U_3$ is a solution of the equation in U:

 $\begin{bmatrix} (0) & (1) & (2) & (3) & (4) \\ [\square, \ \Xi, \ \tau'' \eta^0, \ \sigma \varepsilon^1 \eta^0 \eta^1, \ \Omega \end{bmatrix}$

and $\zeta \in D_3$ is a solvent of the equation in D:

$$\begin{bmatrix} 0 & (1) & (2) & (3) \\ \Box, \tau'' \eta^2 \varepsilon^1, \tau'' \eta^0 \varepsilon^2, \sigma \varepsilon^1 \eta^0 \end{bmatrix}.$$

Then we have $\rho \varepsilon^0 = \tau'' \varepsilon^0 \eta^1 \in C$, $\rho \varepsilon^1 = \zeta \varepsilon^0 \in D$, $\rho \varepsilon^2 = \tau''$ and $\rho \varepsilon^3 = \sigma$. Thus we have $\sigma \sim \tau'' \sim \tau' \sim \tau$ lsd. C, D.

References

- [1] K. Aoki, E. Honma and T. Kaneko: Homotopy theory of c. s. s. pairs and triads. J. Faculty Sci. Niigata Univ., Ser I, Vol. 2, No. 2(1959), 67-95.
- [2] D. M. Kan: A combinatorial definition of homotopy groups, Ann. Math., 67(1958) 282-312.
 [3] J. Milnor: The geometric realization of a semi-simplicial complex, Ann. Math., 65(1957). 357-362.

Department of Mathematics Niigata University

