RING HOMOMORPHISMS ON COMMUTATIVE REGULAR BANACH ALGEBRAS

TAKESHI MIURA, SIN-EI TAKAHASI, AND NORIO NIWA

Abstract

We give a partial representation of a ring homomorphism, which need not be continuous nor surjective, from a semisimple commutative regular Banach algebra into a semisimple commutative Banach algebra. As a corollary to our main theorem, we prove that there are no surjective ring homomorphism from $C_{0}(\mathbb{R})$ onto $C_{0}(\mathbb{D})$.

1. Introduction and the statement of results

Let \mathcal{A} and \mathcal{B} be algebras over the complex number field \mathbb{C}. A mapping $\rho: \mathcal{A} \rightarrow \mathcal{B}$ is a ring homomorphism provided that

$$
\begin{aligned}
\rho(f+g) & =\rho(f)+\rho(g) \quad(f, g \in \mathcal{A}) \\
\rho(f g) & =\rho(f) \rho(g) \quad(f, g \in \mathcal{A}) .
\end{aligned}
$$

If, in addition, ρ preserves scalar multiplication, that is, $\rho(\lambda f)=\lambda \rho(f)$ for every $f \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, then ρ is an ordinary homomorphism. The zero mapping $\rho(z)=0(z \in \mathbb{C})$, the identity mapping $\rho(z)=z(z \in \mathbb{C})$ and the complex conjugate $\rho(z)=\bar{z}(z \in \mathbb{C})$ are typical examples of ring homomorphisms on \mathbb{C}. These are called trivial ring homomorphisms on \mathbb{C}, or in short trivial. It is obvious that the trivial ring homomorphisms on \mathbb{C} are continuous. The converse is also valid, that is, a continuous ring homomorphism is trivial. Moreover, the following is well-known, so we omit a proof (For a proof, see, for example [9, Proposition 2.1]).

Proposition A. If ρ is a ring homomorphism on \mathbb{C}, each of the following two statements implies the other:
(a) ρ is trivial.
(b) There exist $\alpha_{0}, \beta_{0}>0$ such that $|z|<\alpha_{0}$ implies $|\rho(z)| \leq \beta_{0}$.

One might expect that ring homomorphisms on \mathbb{C} are necessarily trivial. Unfortunately, this is not true. In fact, there exists a non-trivial ring homomorphism on

[^0]\mathbb{C}. By Proposition A, we see that a ring homomorphism τ on \mathbb{C} is non-trivial if and only if the following are satisfied:
(*) for each $\alpha, \beta>0$, there exists $z \in \mathbb{C}$ with $|z|<\alpha$ but $|\tau(z)|>\beta$.

We shall use (*) in Lemma 3.3. It seems that the existence of a non-trivial ring homomorphism had been investigated by C. Segre [14] and M. H. Lebesgue [6] (see [5]). H. Kestelman [5] had given many different ways to construct a non-trivial ring homomorphism under the axiom of choice, or one of some equivalent propositions, say the well-ordering theorem of Zermelo, or Zorn's lemma. By its construction, we see that there are infinitely many non-trivial ring homomorphisms on \mathbb{C}. More explicitly, M. Charnow [2] proved that if G is the set of all ring automorphisms on an algebraically closed field k, then $\sharp G=\sharp 2^{k}$, where $\sharp S$ denotes the cardinal number of a set S. In particular, there are $\sharp 2^{\mathbb{C}}$ ring automorphisms on \mathbb{C}. Moreover, ring homomorphic image is very complicated. Let $H(\Omega)$ be the algebra of all holomorphic functions on a region $\Omega \subset \mathbb{C}$. In [9], it is proved that there exists an injective ring homomorphism from $H(\Omega)$ into \mathbb{C}, that is, we may regard $H(\Omega)$ as a subring of \mathbb{C}. Ring homomorphisms are studied by many authors (cf. [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 15, 17]).

In this paper, we will consider a ring homomorphism ρ from a semisimple commutative regular complex Banach algebra A into a semisimple commutative complex Banach algebra B; Neither the continuity nor the surjectivity of ρ are assumed. The maximal ideal spaces of A and B are denoted by M_{A} and M_{B}, respectively. We will give a representation of such a ring homomorphism. For simplicity, we will denote the Gelfand transform of a by the same letter a; This will cause no confusion. Recall that A is regular if and only if for each pair (F, K) of closed subset F and compact subset K of M_{A} with $F \cap K=\emptyset$, there exists $a \in A$ such that $a(F)=0$ and $a(K)=1$ (cf. [16, Theorem 27.2]). Note that we do not assume that A and B are with unit. We will denote by A_{e} the commutative Banach algebra obtained by adjunction of a unit element e to A. Recall that P is a prime ideal of A if P is a proper ideal satisfying that $f g \in P$ implies $f \in P$ or $g \in P$. In particular, every maximal modular ideal is a prime ideal. Although we are concerned with ring homomorphisms, by an ideal we mean an algebra ideal.

Now we are ready to state our main result.

Theorem 1.1. Let A be a semisimple commutative regular complex Banach algebra and B a semisimple commutative complex Banach algebra with maximal ideal spaces M_{A} and M_{B}, respectively. If $\rho: A \rightarrow B$ is a ring homomorphism, then there exist a decomposition $\left\{M_{-1}, M_{0}, M_{1}, M_{d}\right\}$ of M_{B} and a continuous mapping $\varphi: M_{B} \backslash M_{0} \rightarrow$
$M_{A_{e}}$ such that

$$
\rho(f)(y)= \begin{cases}\overline{f(\varphi(y))} & y \in M_{-1} \tag{1.1}\\ 0 & y \in M_{0} \\ f(\varphi(y)) & y \in M_{1} \\ \tau_{y}\left(q_{y}(f)\right) & y \in M_{d}\end{cases}
$$

for every $f \in A$, where q_{y} is the quotient mapping from a prime ideal P_{y} of A onto A / P_{y} and τ_{y} is a nonzero field homomorphism from the quotient field of P_{y} into \mathbb{C}.

For a subset S of B, we say that S is separating if to each $y_{1}, y_{2} \in M_{B}$ with $y_{1} \neq y_{2}$ there corresponds $b_{1} \in S$ such that $b_{1}\left(y_{1}\right) \neq b_{1}\left(y_{2}\right)$. If, for every $y \in M_{B}$, there exists $b_{2} \in S$ such that $b_{2}(y) \neq 0$, then we say that S vanishes nowhere.

Corollary 1.2. Let $\rho: A \rightarrow B$ be a ring homomorphism. If the range $\rho(A)$ contains a subalgebra B_{0} of B such that B_{0} is separating and vanishes nowhere, then there exist a decomposition $\left\{M_{-1}, M_{1}, M_{d}\right\}$ of M_{B} and an injective, continuous and closed mapping $\varphi: M_{B} \rightarrow M_{A}$ with the following property: To each $y \in M_{d}$ there corresponds a non-trivial ring automorphism τ_{y} from \mathbb{C} onto itself such that

$$
\rho(f)(y)= \begin{cases}\overline{f(\varphi(y))} & y \in M_{-1} \tag{1.2}\\ f(\varphi(y)) & y \in M_{1} \\ \tau_{y}(f(\varphi(y))) & y \in M_{d}\end{cases}
$$

for all $f \in A$. In particular, B is necessarily regular.

2. Construction of the mapping φ

Recall that we never assume that A and B are with unit. Let $A_{e}=\{f+\lambda e: f \in$ $A, \lambda \in \mathbb{C}\}$ be the Banach algebra obtained by adjunction of a unit element e to A. Note that A_{e} is well-defined even for unital A. The maximal ideal space $M_{A_{e}}$ of A_{e} is the one-point compactification of M_{A}. We see that A_{e} is regular since so is A. If $\left\{x_{\infty}\right\}=M_{A_{e}} \backslash M_{A}$, then $f\left(x_{\infty}\right)=0$ for every $f \in A$.

In this section, ρ will be a ring homomorphism from A into B, and ρ_{y} for $y \in M_{B}$ will be the induced ring homomorphism from A into \mathbb{C} defined by

$$
\rho_{y}(f)=\rho(f)(y) \quad(f \in A)
$$

We define a subset M_{0} of M_{B} by

$$
M_{0}=\left\{y \in M_{B}: \rho_{y} \text { is identically } 0\right\}
$$

Lemma 2.1. Let $y \in M_{B} \backslash M_{0}$.
(a) ρ_{y} can be extended to a unique ring homomorphism $\tilde{\rho}_{y}$ of A_{e}.
(b) Let $f+\lambda e \in A_{e}$. Then $f+\lambda e \in \operatorname{ker} \tilde{\rho}_{y}$ if and only if $f a+\lambda a \in \operatorname{ker} \rho_{y}$ for every $a \in A$ with $\rho_{y}(a) \neq 0$.

Proof. (a) Take $a \in A$ with $\rho_{y}(a) \neq 0$. If we define $\tilde{\rho}_{y}: A_{e} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\tilde{\rho}_{y}(f+\lambda e)=\rho_{y}(f)+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)} \quad\left(f+\lambda e \in A_{e}\right) \tag{2.1}
\end{equation*}
$$

then it is obvious to verify that $\tilde{\rho}_{y}$ is additive and $\left.\tilde{\rho}_{y}\right|_{A}=\rho_{y}$. By the equations

$$
\begin{equation*}
\rho_{y}(\nu h)=\rho_{y}(h) \frac{\rho_{y}(\nu a)}{\rho_{y}(a)} \quad(\nu \in \mathbb{C}, h \in A) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\rho_{y}(\lambda \mu a)}{\rho_{y}(a)}=\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)} \frac{\rho_{y}(\mu a)}{\rho_{y}(a)} \quad(\lambda, \mu \in \mathbb{C}) \tag{2.3}
\end{equation*}
$$

we have, for each $f+\lambda e, g+\mu e \in A_{e}$, that

$$
\begin{align*}
& \tilde{\rho}_{y}((f+\lambda e)(g+\mu e))=\tilde{\rho}_{y}(f g+\mu f+\lambda g+\lambda \mu e) \\
&= \rho_{y}(f g+\mu f+\lambda g)+\frac{\rho_{y}(\lambda \mu a)}{\rho_{y}(a)} \quad \quad(\text { by }(2.1)) \tag{2.1}\\
&= \rho_{y}(f) \rho_{y}(g)+\rho_{y}(f) \frac{\rho_{y}(\mu a)}{\rho_{y}(a)}+\rho_{y}(g) \frac{\rho_{y}(\lambda a)}{\rho_{y}(a)} \\
& \quad+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)} \frac{\rho_{y}(\mu a)}{\rho_{y}(a)} \quad \quad(\text { by }(2.2) \text { and (2.3)) } \\
&=\left\{\rho_{y}(f)+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}\right\}\left\{\rho_{y}(g)+\frac{\rho_{y}(\mu a)}{\rho_{y}(a)}\right\} \\
&= \tilde{\rho}_{y}(f+\lambda e) \tilde{\rho}_{y}(g+\mu e),
\end{align*}
$$

which proves that $\tilde{\rho}_{y}$ is multiplicative. We have now proved that there exists a ring homomorphism $\tilde{\rho}_{y}$ from A_{e} into \mathbb{C} such that $\left.\tilde{\rho}_{y}\right|_{A}=\rho_{y}$.

It remains to be proved that $\tilde{\rho}_{y}=\rho_{y}{ }^{*}$, whenever $\rho_{y}{ }^{*}$ is another ring homomorphism with $\left.\rho_{y}{ }^{*}\right|_{A}=\rho_{y}$. So, take $f+\lambda e \in A_{e}$ arbitrarily. Since

$$
\begin{equation*}
\rho_{y}(\lambda a)=\rho_{y}^{*}(\lambda a)=\rho_{y}^{*}(\lambda e) \rho_{y}(a) \tag{2.4}
\end{equation*}
$$

it follows from (2.1) and (2.4) that

$$
\rho_{y}^{*}(f+\lambda e)=\rho_{y}^{*}(f)+\rho_{y}^{*}(\lambda e)=\rho_{y}(f)+\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)}=\tilde{\rho}_{y}(f+\lambda e)
$$

and the uniqueness is proved. In particular, $\tilde{\rho}$ does not depend on a choice of $a \in A$ with $\rho_{y}(a) \neq 0$.
(b) By the uniqueness, $\tilde{\rho}_{y}$ is of the form (2.1) for any $a \in A$ with $\rho_{y}(a) \neq 0$. Now it is obvious that $f+\lambda e \in \operatorname{ker} \tilde{\rho}_{y}$ if and only if $f a+\lambda a \in \operatorname{ker} \rho_{y}$ for every $a \in A$ with $\rho_{y}(a) \neq 0$. The proof is complete.

From now on, the letter $\tilde{\rho}_{y}$ will denote the unique ring homomorphism from A_{e} to \mathbb{C} with $\left.\tilde{\rho}_{y}\right|_{A}=\rho_{y}$ for $y \in M_{B} \backslash M_{0}$.

Definition 2.1. For $y \in M_{B} \backslash M_{0}$, we define a nonzero ring homomorphism $\sigma_{y}: \mathbb{C} \rightarrow$ \mathbb{C} by

$$
\sigma_{y}(\lambda)=\tilde{\rho}_{y}(\lambda e) \quad(\lambda \in \mathbb{C})
$$

By a simple calculation, we see that $\sigma_{y}(r)=r$ for every $y \in M_{B} \backslash M_{0}$ and rational real number r. It follows from the equation

$$
\rho_{y}(\lambda f)=\tilde{\rho}_{y}(\lambda f)=\tilde{\rho}_{y}(\lambda e) \rho_{y}(f) \quad(\lambda \in \mathbb{C}, f \in A)
$$

that

$$
\begin{equation*}
\rho_{y}(\lambda f)=\sigma_{y}(\lambda) \rho_{y}(f) \quad(\lambda \in \mathbb{C}, f \in A) \tag{2.5}
\end{equation*}
$$

for every $y \in M_{B} \backslash M_{0}$. Thus (2.1) and (2.5) give

$$
\begin{equation*}
\tilde{\rho}_{y}(f+\lambda e)=\rho_{y}(f)+\sigma_{y}(\lambda) \quad\left(f+\lambda e \in A_{e}\right) \tag{2.6}
\end{equation*}
$$

for all $y \in M_{B} \backslash M_{0}$.
Lemma 2.2. Let $y \in M_{B} \backslash M_{0}$. Then
(a) the kernel $\operatorname{ker} \rho_{y}$ is a prime ideal of A, which is contained in at most one maximal modular ideal of A,
(b) ker $\tilde{\rho}_{y}$ is contained in a unique maximal ideal of A_{e}, and
(c) if $\operatorname{ker} \rho_{y}$ is a maximal modular ideal of A, then $\operatorname{ker} \tilde{\rho}_{y}$ is a maximal ideal of A_{e}.

Proof. (a) By (2.5), we see that ker ρ_{y} is an algebra ideal of A. Now it is obvious that $\operatorname{ker} \rho_{y}$ is a prime ideal.

Suppose that ker ρ_{y} is contained in a maximal modular ideal of A, that is, there exists $x_{1} \in M_{A}$ such that

$$
\begin{equation*}
\operatorname{ker} \rho_{y} \subset\left\{f \in A: f\left(x_{1}\right)=0\right\} \tag{2.7}
\end{equation*}
$$

Take $x_{2} \in M_{A} \backslash\left\{x_{1}\right\}$ arbitrarily. We will show that $\operatorname{ker} \rho_{y}$ is not contained in the maximal modular ideal $\left\{f \in A: f\left(x_{2}\right)=0\right\}$. Choose an open neighborhood V_{j} of x_{j}, for $j=1,2$, so that $V_{1} \cap V_{2}=\emptyset$. The regularity of A therefore shows the existence of $f_{j} \in A$ such that

$$
\begin{equation*}
f_{j}\left(x_{j}\right)=1 \quad \text { and } \quad f_{j}\left(M_{A} \backslash V_{j}\right)=0 \quad(j=1,2) \tag{2.8}
\end{equation*}
$$

Hence $f_{1} f_{2}=0$ on M_{A}, and so $\rho_{y}\left(f_{1}\right) \rho_{y}\left(f_{2}\right)=0$. It follows from (2.7) and (2.8) that $\rho_{y}\left(f_{1}\right) \neq 0$, and hence $f_{2} \in \operatorname{ker} \rho_{y} \backslash\left\{f \in A: f\left(x_{2}\right)=0\right\}$. Since $x_{2} \in M_{A} \backslash\left\{x_{1}\right\}$. was arbitrary, ker ρ_{y} is contained in at most one maximal modular ideal.
(b) Note that ker $\tilde{\rho}_{y}$ is a proper ideal of a unital commutative Banach algebra A_{e} since $\left.\tilde{\rho}_{y}\right|_{A}=\rho_{y}$ is nonzero. Thus ker $\tilde{\rho}_{y}$ is contained in at least one maximal ideal of A_{e}. We see that the proof of (a) can be applied to A_{e} and ker $\tilde{\rho}_{y}$, and so ker $\tilde{\rho}_{y}$ is contained in at most one maximal ideal of A_{e}. We thus conclude that ker $\tilde{\rho}_{y}$ is contained in a unique maximal ideal of A_{e}.
(c) Suppose that

$$
\begin{equation*}
\operatorname{ker} \rho_{y}=\left\{f \in A: f\left(x_{0}\right)=0\right\} \tag{2.9}
\end{equation*}
$$

for some $x_{0} \in M_{A}$. Take $a \in A$ with $a\left(x_{0}\right) \neq 0$. Then $\rho_{y}(a) \neq 0$ by (2.9). If $g+\mu e \in \operatorname{ker} \tilde{\rho}_{y}$, then $g a+\mu a \in \operatorname{ker} \rho_{y}$ by (b) of Lemma 2.1, and hence (2.9) implies $\left(g\left(x_{0}\right)+\mu\right) a\left(x_{0}\right)=0$. Since $a\left(x_{0}\right) \neq 0$, we have $g+\mu e \in\left\{\tilde{f} \in A_{e}: \tilde{f}\left(x_{0}\right)=0\right\}$. Thus $\operatorname{ker} \tilde{\rho}_{y} \subset\left\{\tilde{f} \in A_{e}: \tilde{f}\left(x_{0}\right)=0\right\}$.

Take $a^{\prime} \in A$ with $\rho_{y}\left(a^{\prime}\right) \neq 0$. Since $\left(g\left(x_{0}\right)+\mu\right) a^{\prime}\left(x_{0}\right)=0$ for every $g+\mu e \in\{\tilde{f} \in$ $\left.A_{e}: \tilde{f}\left(x_{0}\right)=0\right\}$, we have $g a^{\prime}+\mu a^{\prime} \in \operatorname{ker} \rho_{y}$ by hypothesis. Thus (b) of Lemma 2.1 shows $g+\mu e \in \operatorname{ker} \tilde{\rho}_{y}$, which implies that $\left\{\tilde{f} \in A_{e}: \tilde{f}\left(x_{0}\right)=0\right\}=\operatorname{ker} \tilde{\rho}_{y}$. We thus conclude that $\operatorname{ker} \tilde{\rho}_{y}$ is a maximal ideal whenever $\operatorname{ker} \rho_{y}$ is a maximal modular ideal.

Definition 2.2. By (b) of Lemma 2.2, for each $y \in M_{B} \backslash M_{0}$, ker $\tilde{\rho}_{y}$ is contained in a unique maximal ideal of A_{e}. So, there exists a mapping $\varphi: M_{B} \backslash M_{0} \rightarrow M_{A_{e}}$ such that $\operatorname{ker} \tilde{\rho}_{y} \subset\left\{\tilde{f} \in A_{e}: \tilde{f}(\varphi(y))=0\right\}$ for every $y \in M_{B} \backslash M_{0}$.

Lemma 2.3. Let $y \in M_{B} \backslash M_{0}$ and let r be a rational real number. If $\tilde{h} \in A_{e}$ satisfies $\tilde{h}(\tilde{G})=r$ for some open neighborhood $\tilde{G} \subset M_{A_{e}}$ of $\varphi(y)$, then $\tilde{\rho}_{y}(\tilde{h})=r$.
Proof. Put $\tilde{h}_{r}=\tilde{h}-r e \in A_{e}$, and so $\tilde{h}_{r}=0$ on \tilde{G}. By the regularity of A_{e}, there exists $\tilde{g} \in A_{e}$ such that $\tilde{g}(\varphi(y))=1$ and $\tilde{g}\left(M_{A_{e}} \backslash \tilde{G}\right)=0$. Then $\tilde{g} \tilde{h}_{r}=0$ on $M_{A_{e}}$, and hence $\tilde{\rho}_{y}(\tilde{g}) \tilde{\rho}_{y}\left(\tilde{h}_{r}\right)=0$. Since $\tilde{g}(\varphi(y))=1$, we have by the definition of φ that $\tilde{\rho}_{y}(\tilde{g}) \neq 0$, and hence $\tilde{\rho}_{y}\left(\tilde{h}_{r}\right)=0$. Since $\tilde{\rho}_{y}(r e)=\sigma_{y}(r)=r$, we have $\tilde{\rho}_{y}(\tilde{h})=r$.
Definition 2.3. We introduce the following notation

$$
\begin{aligned}
M_{-1} & =\left\{y \in M_{B} \backslash M_{0}: \sigma_{y}(\lambda)=\bar{\lambda}, \quad(\lambda \in \mathbb{C})\right\} \\
M_{1} & =\left\{y \in M_{B} \backslash M_{0}: \sigma_{y}(\lambda)=\lambda \quad(\lambda \in \mathbb{C})\right\}
\end{aligned}
$$

where σ_{y} is as in Definition 2.1. Put

$$
M_{d}=\left\{y \in M_{B} \backslash M_{0}: \sigma_{y} \text { is non-trivial }\right\}
$$

Then M_{-1}, M_{0}, M_{1} and M_{d} are (possibly empty) pairwise disjoint subsets of M_{B} with $M_{B}=M_{-1} \cup M_{0} \cup M_{1} \cup M_{d}$.

It should be mentioned that we can define the quotient field of an integral domain R, commutative ring which has no zero divisor, even if R has no unit: For if $a \in$
$R \backslash\{0\}$, then the equivalence class a / a, with respect to the usual equivalence relation, is a unit. Moreover, we can identify $b \in R$ with $b a / a$.

Lemma 2.4. Let $y \in M_{B} \backslash M_{0}$ and $q_{y}: A \rightarrow A / \operatorname{ker} \rho_{y}$ be the quotient mapping. If F_{y} is the quotient field of $q_{y}(A)$, then there exists a unique nonzero field homomorphism $\tau_{y}: F_{y} \rightarrow \mathbb{C}$ such that
(a) $\rho_{y}=\tau_{y} \circ q_{y}$,
(b) $\tau_{y} \mid \mathbb{C}=\sigma_{y}$, and
(c) $\tau_{y}=\sigma_{y}$ whenever $\operatorname{ker} \rho_{y}$ is a maximal modular ideal of A.

Proof. Note first that the quotient field F_{y} of $q_{y}(A)$ is well-defined since $q_{y}(A)$ is an integral domain by (a) of Lemma 2.2. We define a mapping $\tau_{y}: F_{y} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\tau_{y}\left(q_{y}(f) / q_{y}(g)\right)=\frac{\rho_{y}(f)}{\rho_{y}(g)} \quad\left(q_{y}(f) / q_{y}(g) \in F_{y}\right) \tag{2.10}
\end{equation*}
$$

A simple calculation shows that τ_{y} is a well-defined nonzero field homomorphism on F_{y}. Take $a \in A$ with $\rho_{y}(a) \neq 0$.
(a) As noted above, we may identify $q_{y}(f)$ with $q_{y}(f a) / q_{y}(a)$ for every $f \in A$. Under this identification, we have by (2.10) that

$$
\rho_{y}(f)=\frac{\rho_{y}(f a)}{\rho_{y}(a)}=\tau_{y}\left(q_{y}(f a) / q_{y}(a)\right)=\tau_{y}\left(q_{y}(f)\right)
$$

for every $f \in A$, proving $\rho_{y}=\tau_{y} \circ q_{y}$.
(b) The identification $\lambda \in \mathbb{C}$ with $q_{y}(\lambda a) / q_{y}(a) \in F_{y}$ shows that

$$
\tau_{y}(\lambda)=\tau_{y}\left(q_{y}(\lambda a) / q_{y}(a)\right)=\frac{\rho_{y}(\lambda a)}{\rho_{y}(a)} \quad(\lambda \in \mathbb{C})
$$

From (2.5) it follows that $\rho_{y}(\lambda a) / \rho_{y}(a)=\sigma_{y}(\lambda)$ for every $\lambda \in \mathbb{C}$, and hence $\tau_{y} \mid \mathbb{C}=\sigma_{y}$.
(c) Suppose that ker ρ_{y} is a maximal modular ideal of A. Then $q_{y}(A)=A / \operatorname{ker} \rho_{y}$ is isomorphic to \mathbb{C}. Thus we may assume $F_{y}=\mathbb{C}$, and hence $\tau_{y}=\sigma_{y}$ by (b).

3. Topological properties of the decomposition of M_{B}

In this section, $\left\{M_{-1}, M_{0}, M_{1}, M_{d}\right\}$ will stand for the decomposition of M_{B} as in Definition 2.3.

Lemma 3.1. M_{0} is a closed subset of M_{B}.
Proof. Let $\left\{y_{\alpha}\right\} \subset M_{0}$ be a net converging to a point $y_{0} \in M_{B}$. Take $f \in A$ arbitrarily. Then $\rho(f)\left(y_{\alpha}\right)=\rho_{y_{\alpha}}(f)=0$ by definition. Since $\rho(f)$ is a continuous function on M_{B}, we have $\rho_{y_{0}}(f)=0$. Since $f \in A$ was arbitrary, we have $y_{0} \in M_{0}$, proving M_{0} closed.

Lemma 3.2. Both $M_{-1} \cup M_{0}$ and $M_{0} \cup M_{1}$ are closed subsets of M_{B}.

Proof. Since M_{0} is closed, it is enough to show that $\operatorname{cl}\left(M_{j}\right) \subset M_{0} \cup M_{j}$ for $j= \pm 1$. Here and after, $\mathrm{cl}(S)$ denotes the closure of a set S. It will cause no confusion if we use the same letter to designate a closure in M_{A} and M_{B}.

For $j= \pm 1$, take $y_{0} \in \operatorname{cl}\left(M_{j}\right)$ and a net $\left\{y_{\alpha}\right\} \subset M_{j}$ converging to y_{0}. If $y_{0} \notin M_{0}$, then there exists $a \in A$ such that $\rho_{y_{0}}(a) \neq 0$. Since $\rho_{y_{\alpha}}(a)=\rho(a)\left(y_{\alpha}\right)$ converges to $\rho_{y_{0}}(a) \neq 0$, without loss of generality we may assume $\rho_{y_{\alpha}}(a) \neq 0$ for all α. It follows from (2.5) that

$$
\sigma_{y_{\alpha}}(\lambda)=\frac{\rho_{y_{\alpha}}(\lambda a)}{\rho_{y_{\alpha}}(a)} \rightarrow \frac{\rho_{y_{0}}(\lambda a)}{\rho_{y_{0}}(a)}=\sigma_{y_{0}}(\lambda) \quad(\lambda \in \mathbb{C})
$$

On the other hand, since $\left\{y_{\alpha}\right\} \subset M_{j}$, we have $\sigma_{y_{0}}(\lambda)=\bar{\lambda}$ if $j=-1$, and $\sigma_{y_{0}}(\lambda)=\lambda$ if $j=1$. Thus $y_{0} \in M_{j}$ for $j= \pm 1$. We thus obtain $\operatorname{cl}\left(M_{j}\right) \subset M_{0} \cup M_{j}$, and the proof is complete.

Lemma 3.3. The range $\varphi\left(M_{d}\right) \subset M_{A_{e}}$ is at most finite.
Proof. Assume, to get a contradiction, that $\varphi\left(M_{d}\right)$ contains a countable subset $\left\{w_{n}\right\}_{n \in \mathbb{N}}$. We may assume that $\left\{w_{n}\right\}_{n \in \mathbb{N}} \subset M_{A}$. We first assert that there exists a subset $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ of $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ with the following property: To each $k \in \mathbb{N}$ there corresponds an open neighborhood U_{k} of x_{k} such that $\left\{\mathrm{cl}\left(U_{k}\right)\right\}_{k \in \mathbb{N}}$ is a pairwise disjoint family; If each w_{k} is an isolated point of $\left\{w_{n}\right\}_{n \in \mathbb{N}}$, then it is obvious that there is such an open neighborhood U_{k} of w_{k}, and so we will consider the case where there is a limit point, say w_{1}, in $\left\{w_{n}\right\}_{n \in \mathbb{N}}$. Take $x_{1} \in\left\{w_{n}\right\}_{n \in \mathbb{N}}$ with $x_{1} \neq w_{1}$ arbitrarily. There exists an open neighborhood U_{1} of x_{1} such that $w_{1} \notin \operatorname{cl}\left(U_{1}\right)$. Since w_{1} is assumed to be a limit point in $\left\{w_{n}\right\}_{n \in \mathbb{N}}$, there exists $x_{2} \in\left(M_{A} \backslash \operatorname{cl}\left(U_{1}\right)\right) \cap\left\{w_{n}\right\}_{n \in \mathbb{N}}$ such that $x_{2} \neq w_{1}$. Choose an open neighborhood U_{2} of x_{2} so that $\operatorname{cl}\left(U_{2}\right) \cap\left(\operatorname{cl}\left(U_{1}\right) \cup\left\{w_{1}\right\}\right)=\emptyset$. Inductively, for each $k \in \mathbb{N}$ with $k \geq 2$ there exists $x_{k} \in\left\{w_{n}\right\}_{n \in \mathbb{N}}$ and an open neighborhood U_{k} of x_{k} such that

$$
\begin{equation*}
\operatorname{cl}\left(U_{k}\right) \cap\left(\cup_{n=1}^{k-1} \operatorname{cl}\left(U_{n}\right) \cup\left\{w_{1}\right\}\right)=\emptyset \tag{3.1}
\end{equation*}
$$

From (3.1) it is obvious that each U_{k} is an open neighborhood of x_{k} such that $\left\{\operatorname{cl}\left(U_{k}\right)\right\}_{k \in \mathbb{N}}$ is a pairwise disjoint family.
For each $k \in \mathbb{N}$, take an open neighborhood V_{k} of x_{k}, with compact closure $\operatorname{cl}\left(V_{k}\right)$, such that $\operatorname{cl}\left(V_{k}\right) \subset U_{k}$. The regularity of A shows that there exists $g_{k} \in A$ such that $g_{k}\left(\operatorname{cl}\left(V_{k}\right)\right)=1$ and $g_{k}\left(M_{A} \backslash U_{k}\right)=0$. Take $y_{k} \in M_{d}$ with $x_{k}=\varphi\left(y_{k}\right)$. Since $\sigma_{y_{k}}$ is non-trivial, it follows from (*) (see Proposition A) that there exists $\lambda_{k} \in \mathbb{C}$ such that

$$
\begin{equation*}
\left|\lambda_{k}\right|<\frac{1}{2^{k}\left\|g_{k}\right\|} \quad \text { and } \quad\left|\sigma_{y_{k}}\left(\lambda_{k}\right)\right|>2^{k} \tag{3.2}
\end{equation*}
$$

Set $f_{k}=\lambda_{k} g_{k} \in A$. It follows from (3.2) that $\left\|f_{k}\right\|<2^{-k}$, and so the series $\sum_{k=1}^{\infty} f_{k}$ converges in the norm of A, say f_{0}. Then $f_{0}=f_{k}$ on U_{k} since $g_{m}\left(M_{A} \backslash U_{m}\right)=0$ for
every $m \in \mathbb{N}$. By Lemma 2.3, applied to an open $U_{k} \subset M_{A_{e}}$ and $f_{0}-f_{k} \in A_{e}$, we have $\rho_{y_{k}}\left(f_{0}-f_{k}\right)=0$, and so $\rho_{y_{k}}\left(f_{0}\right)=\rho_{y_{k}}\left(f_{k}\right)$. Another application of Lemma 2.3 yields $\rho_{y_{k}}\left(g_{k}\right)=1$ since $g_{k}\left(V_{k}\right)=1$. By (2.5), we have

$$
\rho_{y_{k}}\left(f_{k}\right)=\sigma_{y_{k}}\left(\lambda_{k}\right) \rho_{y_{k}}\left(g_{k}\right)=\sigma_{y_{k}}\left(\lambda_{k}\right)
$$

It follows from (3.2) that

$$
\left|\rho\left(f_{0}\right)\left(y_{k}\right)\right|=\left|\rho_{y_{k}}\left(f_{0}\right)\right|=\left|\rho_{y_{k}}\left(f_{k}\right)\right|=\left|\sigma_{y_{k}}\left(\lambda_{k}\right)\right|>2^{k}
$$

We now arrived at a contradiction since $\rho\left(f_{0}\right)$ is bounded on M_{B}, and hence we have proved that the range $\varphi\left(M_{d}\right)$ is at most finite.

Lemma 3.4. Set $M_{d}(x) \stackrel{\text { def }}{=}\left\{y \in M_{d}: \varphi(y)=x\right\}$ for $x \in M_{A_{e}}$.
(a) Each $y_{0} \in M_{j}$ is an interior point of $M_{j} \cup M_{d}\left(\varphi\left(y_{0}\right)\right)$ for $j= \pm 1$.
(b) Each $y_{0} \in M_{d}$ is an interior point of $M_{d}\left(\varphi\left(y_{0}\right)\right)$. In particular, $M_{d}\left(\varphi\left(y_{0}\right)\right)$ is an open subset of M_{B}.

Proof. For $j= \pm 1$, take $y_{0} \in M_{j} \cup M_{d}$ and set $x_{0}=\varphi\left(y_{0}\right)$. There exist open neighborhoods $\tilde{U}, \tilde{V} \subset M_{A_{e}}$ of x_{0} such that $\operatorname{cl}(\tilde{V}) \subset \tilde{U}, \operatorname{cl}(\tilde{V})$ compact and

$$
\begin{equation*}
\varphi\left(M_{d}\right) \backslash\left\{x_{0}\right\} \subset M_{A_{e}} \backslash \operatorname{cl}(\tilde{U}) \tag{3.3}
\end{equation*}
$$

This would be possible since $\varphi\left(M_{d}\right)$ is at most finite by Lemma 3.3. Since A_{e} is regular, there exists $\tilde{f} \in A_{e}$ such that

$$
\begin{equation*}
\tilde{f}(\operatorname{cl}(\tilde{V}))=1 \quad \text { and } \quad \tilde{f}\left(M_{A_{e}} \backslash \tilde{U}\right)=0 \tag{3.4}
\end{equation*}
$$

By Lemma 2.3, applied to \tilde{f} and \tilde{V}, we have

$$
\begin{equation*}
\tilde{\rho}_{y_{0}}(\tilde{f})=1 \tag{3.5}
\end{equation*}
$$

Since $\tilde{f}\left(M_{A_{e}} \backslash \operatorname{cl}(\tilde{U})\right)=0$ by (3.4), another application of Lemma 2.3 shows that

$$
\begin{equation*}
\tilde{\rho}_{y}(\tilde{f})=0 \quad \text { for every } y \in \varphi^{-1}\left(M_{A_{e}} \backslash \operatorname{cl}(\tilde{U})\right) \tag{3.6}
\end{equation*}
$$

Recall that $\tilde{f} \in A_{e}$ is of the form $\tilde{f}=f+\lambda e$ for some $f \in A$ and $\lambda \in \mathbb{C}$. Let $\left\{x_{\infty}\right\}=M_{A_{e}} \backslash M_{A}$. If $x_{0}=x_{\infty}$, then by (3.4) we have that $1=\tilde{f}\left(x_{0}\right)=f\left(x_{0}\right)+\lambda$, and hence $\lambda=1$ since $f \in A$ vanishes at infinity. If $x_{0} \neq x_{\infty}$, assume, without loss of generality, that $\tilde{U}, \tilde{V} \subset M_{A}$ and $\operatorname{cl}(\tilde{U})$ compact in M_{A}. It follows from (3.4), with $x_{\infty} \in M_{A_{e}} \backslash \operatorname{cl}(\tilde{U})$, that $0=\tilde{f}\left(x_{\infty}\right)=\lambda$. In each case, \tilde{f} is of the form $f+r e$, where $r=0$ or $r=1$. Thus (2.6) gives

$$
\tilde{\rho}_{y}(\tilde{f})=\rho_{y}(f)+r \quad\left(y \in M_{B} \backslash M_{0}\right)
$$

It follows from (3.5) and (3.6) that $\rho_{y_{0}}(f)=1-r$ and that

$$
\begin{equation*}
\rho_{y}(f)=-r \quad \text { for every } y \in \varphi^{-1}\left(M_{A_{e}} \backslash \operatorname{cl}(\tilde{U})\right) \tag{3.7}
\end{equation*}
$$

Since $\rho(f)$ is continuous, there exists an open neighborhood $O \subset M_{B}$ of y_{0} such that

$$
\begin{equation*}
\left|\rho_{y}(f)-1+r\right|<\frac{1}{2} \quad(y \in O) \tag{3.8}
\end{equation*}
$$

Since $M_{j} \cup M_{d}$ is open by Lemma 3.2, we may assume $O \subset M_{j} \cup M_{d}$. It follows from (3.7) and (3.8) that $\varphi\left(y^{\prime}\right) \in \operatorname{cl}(\tilde{U})$ for every $y^{\prime} \in O \cap M_{d}$, and so $\varphi\left(y^{\prime}\right)=x_{0}$ by (3.3). This implies that $O \subset M_{j} \cup M_{d}\left(x_{0}\right)$, that is, if $y_{0} \in M_{j}$, then $y_{0} \in O \subset M_{j} \cup M_{d}\left(x_{0}\right)$, proving (a); If $y_{0} \in M_{d}$, then $y_{0} \in O \cap M_{d} \subset M_{d}\left(x_{0}\right)$ as proved above, which proves (b) since M_{d} is open by Lemma 3.2. This completes the proof.

4. A proof of results and remarks

Proof of Theorem 1.1. Let $\rho: A \rightarrow B$ be a ring homomorphism and $\left\{M_{-1}, M_{0}, M_{1}, M_{d}\right\}$ the decomposition of M_{B} as in Definition 2.3. Let q_{y} be the quotient mapping of A onto $A / \operatorname{ker} \rho_{y}$ for every $y \in M_{B} \backslash M_{0}$. By (a) of Lemma 2.4, for every $y \in M_{B} \backslash M_{0}$ there exists a nonzero field homomorphism τ_{y} from the quotient field F_{y} of $A / \operatorname{ker} \rho_{y}$ into \mathbb{C} such that $\rho_{y}=\tau_{y} \circ q_{y}$: If $f \in A$, then $\rho(f)(y)=0$ for every $y \in M_{0}$, and $\rho(f)(y)=\tau_{y}\left(q_{y}(f)\right)$ for every $y \in M_{B} \backslash M_{0}$.

Let $y \in M_{B} \backslash M_{0}$ and φ the mapping as in Definition 2.2. Suppose that ker ρ_{y} is a maximal modular ideal of A. Then (c) of Lemma 2.2 shows that ker $\tilde{\rho}_{y}$ is a maximal ideal of A_{e}. By the definition of φ, we have $\operatorname{ker} \tilde{\rho}_{y}=\left\{\tilde{f} \in A_{e}: \tilde{f}(\varphi(y))=0\right\}$, which implies that $f-f(\varphi(y)) e \in \operatorname{ker} \tilde{\rho}_{y}$ for every $f \in A$. It follows from (2.6) that

$$
\begin{equation*}
\rho_{y}(f)=\sigma_{y}(f(\varphi(y))) \quad(f \in A) \tag{4.1}
\end{equation*}
$$

whenever ker ρ_{y} is a maximal modular ideal. By (2.5), if $y \in M_{-1}\left(y \in M_{1}\right)$, then $\overline{\rho_{y}}$ (resp. ρ_{y}) is a nonzero complex homomorphism on A. So, ker ρ_{y} is a maximal modular ideal of A for every $y \in M_{-1} \cup M_{1}$. By the definition of M_{-1} and M_{1} with (4.1), we have for each $f \in A$ that $\rho(f)(y)=\overline{f(\varphi(y))}$ for $y \in M_{-1}$ and $\rho(f)(y)=f(\varphi(y))$ for $y \in M_{1}$. We thus conclude that ρ is of the form (1.1).

Finally, we shall prove the continuity of $\varphi: M_{B} \backslash M_{0} \rightarrow M_{A_{e}}$. Take $y_{0} \in M_{B} \backslash M_{0}$, and set

$$
M_{d}\left(\varphi\left(y_{0}\right)\right)=\left\{y \in M_{d}: \varphi(y)=\varphi\left(y_{0}\right)\right\}
$$

If $y_{0} \in M_{d}$, it follows from (b) of Lemma 3.4 that $M_{d}\left(\varphi\left(y_{0}\right)\right)$ is open, and hence φ is continuous on M_{d}. So, we need consider only the case where $y_{0} \in M_{-1} \cup M_{1}$. Suppose that $y_{0} \in M_{1}$ and choose a net $\left\{y_{\alpha}\right\} \subset M_{B} \backslash M_{0}$ converging to y_{0}. By (a) of Lemma 3.4, y_{0} is an interior point of $M_{1} \cup M_{d}\left(\varphi\left(y_{0}\right)\right)$. Thus, we may assume that $y_{\alpha} \in M_{1} \cup M_{d}\left(\varphi\left(y_{0}\right)\right)$ for every α. By (4.1) and the definition of $M_{d}\left(\varphi\left(y_{0}\right)\right)$, we have

$$
f\left(\varphi\left(y_{\alpha}\right)\right)= \begin{cases}\rho_{y_{\alpha}}(f) & y_{\alpha} \in M_{1} \\ f\left(\varphi\left(y_{0}\right)\right) & y_{\alpha} \in M_{d}\left(\varphi\left(y_{0}\right)\right)\end{cases}
$$

for every $f \in A$. Since $\rho_{y_{0}}(f)=f\left(\varphi\left(y_{0}\right)\right)$, it follows that

$$
\left|f\left(\varphi\left(y_{\alpha}\right)\right)-f\left(\varphi\left(y_{0}\right)\right)\right| \leq\left|\rho_{y_{\alpha}}(f)-\rho_{y_{0}}(f)\right| \quad(f \in A)
$$

for every α. Since $\rho(f)$ is continuous, $\rho_{y_{\alpha}}(f)=\rho(f)\left(y_{\alpha}\right)$ converges to $\rho_{y_{0}}(f)$. Hence $f\left(\varphi\left(y_{\alpha}\right)\right)$ converges to $f\left(\varphi\left(y_{0}\right)\right)$ for every $f \in A$, that is, $\tilde{f}\left(\varphi\left(y_{\alpha}\right)\right)$ converges to $\tilde{f}\left(\varphi\left(y_{0}\right)\right)$ for every $\tilde{f} \in A_{e}$. By the definition of the Gelfand topology, we see that $\varphi\left(y_{\alpha}\right)$ converges to $\varphi\left(y_{0}\right)$. This implies the continuity of φ on M_{1}. In the same way, we see that φ is continuous on M_{-1}. The proof is complete.

Proof of Corollary 1.2. Under the notation of Theorem 1.1, $M_{0}=\emptyset$ since B_{0} vanishes nowhere on M_{B}, and hence $\varphi: M_{B} \rightarrow M_{A_{e}}$ is a continuous mapping. We first show that $\operatorname{ker} \rho_{y}$ is a maximal modular ideal of A for every $y \in M_{B}$. To prove this, take $y \in M_{B}$ and $f \notin \operatorname{ker} \rho_{y}$ arbitrarily. Since the subalgebra B_{0} of B vanishes nowhere, there exists $b \in B_{0}$ such that $b(y)=1 / \rho_{y}(f)$. Because $B_{0} \subset \rho(A)$, there exists $a \in A$ such that $\rho(a)=b$, and so $\rho_{y}(f) \rho_{y}(a)=1$. It follows from (2.6) that $f a-e \in \operatorname{ker} \tilde{\rho}_{y}$. By the definition of φ, we have $f(\varphi(y)) a(\varphi(y))-1=0$, and so $f(\varphi(y)) \neq 0$. This implies that $\{f \in A: f(\varphi(y))=0\} \subset \operatorname{ker} \rho_{y}$. Hence, $\operatorname{ker} \rho_{y}=\{f \in A: f(\varphi(y))=0\}$ for every $y \in M_{B}$. Since $M_{0}=\emptyset$, we have $\varphi\left(M_{B}\right) \subset M_{A}$. So, we may regard φ as a mapping from M_{B} into M_{A}.

Since ker ρ_{y} is a maximal modular ideal of A for every $y \in M_{B}$, (4.1) holds for every $y \in M_{B}$. If $y \in M_{d}$, then (c) of Lemma 2.4 and the definition of M_{d} imply that $\tau_{y}=\sigma_{y}$ is non-trivial. We thus conclude that ρ is of the form (1.2) for all $f \in A$. Since $\rho(A)$ contains a subalgebra B_{0} which vanishes nowhere, we see that τ_{y} is surjective: For if $y \in M_{d}$ and $\lambda \in \mathbb{C}$, then there exists $a^{\prime} \in A$ such that $\rho_{y}\left(a^{\prime}\right)=\lambda$, and so by (1.2) we have that $\tau_{y}\left(a^{\prime}(\varphi(y))\right)=\lambda$, proving τ_{y} surjective.

We next show that φ is injective. Let $y_{1}, y_{2} \in M_{B}$ with $y_{1} \neq y_{2}$. Since B_{0} is a separating subalgebra, there exists $b_{0} \in B_{0}$ such that $b_{0}\left(y_{1}\right)=0$ and $b_{0}\left(y_{2}\right)=1$. Choose $a_{0} \in A$ so that $\rho\left(a_{0}\right)=b_{0}$. Then $\rho\left(a_{0}\right)\left(y_{1}\right)=0$ and $\rho\left(a_{0}\right)\left(y_{2}\right)=1$. Thus (1.2) gives $a_{0}\left(\varphi\left(y_{1}\right)\right)=0$ and $a_{0}\left(\varphi\left(y_{2}\right)\right)=1$, proving φ injective.

In the following step, we show that φ is a closed mapping. If B is unital then φ is a closed mapping since φ is a continuous mapping from a compact space into a Hausdorff space. We thus consider the case where B is without unit. In this case, A is also without unit: For if A has a unit e, it follows from (1.2) that $\rho(e)(y)=1$ for every $y \in M_{B}$, and hence $\rho(e)$ is a unit of B because B is assumed to be semisimple. We define a mapping $\tilde{\varphi}: M_{B_{e}} \rightarrow M_{A_{e}}$ by

$$
\tilde{\varphi}(y)= \begin{cases}\varphi(y) & y \in M_{B} \\ x_{\infty} & y=y_{\infty}\end{cases}
$$

where $\left\{x_{\infty}\right\}=M_{A_{e}} \backslash M_{A}$ and $\left\{y_{\infty}\right\}=M_{B_{e}} \backslash M_{B}$. Then $\tilde{\varphi}$ is continuous: In fact, it is enough to show the continuity of $\tilde{\varphi}$ at y_{∞}. Let $\left\{y_{\alpha}\right\} \subset M_{B_{e}}$ be a net converging to
y_{∞}. Lemma 3.3 with the injectivity of φ implies that M_{d} is at most finite, and hence $M_{B_{e}} \backslash M_{d}$ is an open neighborhood of y_{∞}. Thus we may assume $\left\{y_{\alpha}\right\} \subset M_{B_{e}} \backslash M_{d}$. Pick $f \in A$ arbitrarily. Note that

$$
f\left(\tilde{\varphi}\left(y_{\alpha}\right)\right)= \begin{cases}f\left(\varphi\left(y_{\alpha}\right)\right) & y_{\alpha} \in M_{B} \backslash M_{d} \tag{4.2}\\ f\left(x_{\infty}\right)=0 & y_{\alpha}=y_{\infty} .\end{cases}
$$

It follows from (1.2) and (4.2) that $\left|f\left(\tilde{\varphi}\left(y_{\alpha}\right)\right)\right|=\left|\rho(f)\left(y_{\alpha}\right)\right|$ for each α. Since $\rho(f)$ is continuous on $M_{B_{e}}, \rho(f)\left(y_{\alpha}\right)$ converges to $\rho(f)\left(y_{\infty}\right)=0$. This implies that $f\left(\tilde{\varphi}\left(y_{\alpha}\right)\right)$ converges to $0=f\left(\tilde{\varphi}\left(y_{\infty}\right)\right)$. Since $f \in A$ was arbitrary, we thus obtain $\tilde{f}\left(\tilde{\varphi}\left(y_{\alpha}\right)\right)$ converges to $\tilde{f}\left(\varphi\left(y_{\infty}\right)\right)$ for every $\tilde{f} \in A_{e}$. By the definition of the Gelfand topology, we see that $\tilde{\varphi}\left(y_{\alpha}\right)$ converges to $x_{\infty}=\tilde{\varphi}\left(y_{\infty}\right)$, proving the continuity of $\tilde{\varphi}$. Now it is easy to see that φ is a closed mapping. In fact, let F be a closed subset of M_{B}. Then $F \cup\left\{y_{\infty}\right\} \subset M_{B_{e}}$ is compact. Since $\tilde{\varphi}$ is continuous on $M_{B_{e}}, \tilde{\varphi}\left(F \cup\left\{y_{\infty}\right\}\right)=$ $\varphi(F) \cup\left\{x_{\infty}\right\}$ is compact in $M_{A_{e}}$, and so $\varphi(F) \subset M_{A}$ is closed. This proves that φ is a closed mapping.

Finally, we show that B is regular. To do this, let F and K be a closed subset and a compact subset of M_{B} with $F \cap K=\emptyset$. Since φ is an injective, continuous and closed mapping as proved above, $\varphi(F)$ is closed and $\varphi(K)$ is compact in M_{A} with $\varphi(F) \cap \varphi(K)=\emptyset$. Since A is regular, there exists $a_{1} \in A$ such that $a_{1}(\varphi(K))=1$ and $a_{1}(\varphi(F))=0$. By (1.2), we have that $\rho\left(a_{1}\right)(K)=1$ and $\rho\left(a_{1}\right)(F)=0$, and so the regularity of B is proved.

Example 4.1. Let \mathbb{D} and $\overline{\mathbb{D}}$ be the open and the closed unit discs respectively. Let $A(\overline{\mathbb{D}})$ be the disc algebra, that is, the uniform algebra of all complex-valued continuous functions on $\overline{\mathbb{D}}$, which are holomorphic in \mathbb{D}. Let $H^{\infty}(\mathbb{D})$ be the commutative Banach algebra of all bounded holomorphic functions on \mathbb{D}. Neither $A(\overline{\mathbb{D}})$ nor $H^{\infty}(\mathbb{D})$ are regular. Let $B=A(\overline{\mathbb{D}})$ or $H^{\infty}(\mathbb{D})$. By Corollary 1.2 , there are no ring homomorphism ρ from a semisimple regular commutative Banach algebra A to B such that $\rho(A)$ contains a separating and vanishes nowhere subalgebra of B. In particular, both $A(\overline{\mathbb{D}})$ and $H^{\infty}(\mathbb{D})$ can not be the ring homomorphic images of any semisimple regular commutative Banach algebra A (cf. [11, Example 1]). The case where $A=C_{0}(X)$, the regular commutative Banach algebra of all complexvalued continuous functions on a locally compact Hausdorff space X, which vanish at infinity, was proved by Molnár [12, Corollary].

Example 4.2. Let X and Y be locally compact Hausdorff spaces such that Y can not be embedded into X. By Corollary 1.2, there are no surjective ring homomorphism from $C_{0}(X)$ onto $C_{0}(Y)$.

Remark 4.1. Let X be the closure of $\{1 / n: n \in \mathbb{N}\}$ in \mathbb{R} with its usual topology. P. Šemrl [15, Example 5.4] constructed a ring homomorphism $\rho: C(X) \rightarrow \mathbb{C}$ such
that ker ρ is a nonmaximal prime ideal of $C(X)$, where $C(X)$ denotes the commutative regular Banach algebra of all complex-valued continuous functions on X. There do exist infinitely many such mappings. In fact, let \mathcal{A} be a uniform algebra on an infinite compact metric space and G the set of all ring homomorphisms of \mathcal{A} into \mathbb{C}, whose kernels are nonmaximal prime ideals. In [10, Corollary 1.2], it is proved that $\sharp G=\sharp 2^{\mathbb{C}}$, where $\sharp S$ denotes the cardinal number of a set S.

References

[1] B. H. Arnold, Rings of operators on vector spaces, Ann. of Math., 45 (1944), 24-49.
[2] A. Charnow, The automorphisms of an algebraically closed field, Canad. Math. Bull. 13 (1970), 95-97.
[3] O. Hatori, T. Ishii, T. Miura and S.-E. Takahasi, Characterizations and automatic linearity for ring homomorphisms on algebras of functions, Contemp. Math. 328 (2003), 201-215.
[4] I. Kaplansky, Ring isomorphisms of Banach algebras, Canad. J. Math. 6 (1954), 374-381.
[5] H. Kestelman, Automorphisms of the field of complex numbers, Proc. London Math. Soc. (2) 53 (1951), 1-12.
[6] M. H. Lebesgue, Sur les transformations ponctuelles, transformaant les plans en plans, qu'on peut définir par des procédés analytiques, Atti della R. Acc. delle Scienze di Torino 42 (1907), 532-539.
[7] T. Miura, Star ring homomorphisms between commutative Banach algebras, Proc. Amer. Math. Soc. 129 (2001), 2005-2010.
[8] T. Miura, A representation of ring homomorphisms on commutative Banach algebras, Sci. Math. Japonica. 53 (2001), 515-523.
[9] T. Miura, A representation of ring homomorphisms on unital regular commutative Banach algebras, Math. J. Okayama. Univ. 44 (2002), 143-153.
[10] T. Miura, S.-E. Takahasi and N. Niwa Prime ideals and complex ring homomorphisms on a commutative algebra, Publ. Math. Debrecen 70 (2007), 453-460.
[11] T. Miura, S.-E. Takahasi, N. Niwa and H. Oka, On surjective ring homomorphisms between semi-simple commutative Banach algebras, to appear in Publ. Math. Debrecen.
[12] L. Molnár, The range of a ring homomorphism from a commutative C^{*}-algebra, Proc. Amer. Math. Soc. 124 (1996), 1789-1794.
[13] L. Molnár, Automatic surjectivity of ring homomorphisms on H^{*}-algebras and algebraic differences among some group algebras of compact groups, Proc. Amer. Math. Soc. 128 (2000), 125-134.
[14] C. Segre, Un nuovo campo di ricerche geometriche, Atti della R. Acc. delle Scienze di Torino 25 (1889), 276-301.
[15] P. Šemrl, Non linear perturbations of homomorphisms on $C(X)$, Quart. J. Math. Oxford Ser. (2) 50 (1999), 87-109.
[16] E. L. Stout, The theory of uniform algebras, Bogden \& Quigley, Inc., Tarrytown-on-Hudson, New York, 1971.
[17] S.-E. Takahasi and O. Hatori, A structure of ring homomorphisms on commutative Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 2283-2288.
(Takeshi Miura) Department of Applied Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan E-mail address: miura@yz.yamagata-u.ac.jp
(Sin-Ei Takahasi) Department of Applied Mathematics and Physics, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp
(Norio Niwa) Faculty of Engineering, Osaka Electro-Communication University, NeyaGAWA 572-8530, JAPAN

Received April 1, 2008

[^0]: 2000 Mathematics Subject Classification. 46J10.
 Key words and phrases. commutative algebras, ring homomorphisms.

