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ON A CLASS OF SASAKIAN MANIFOLDS

KADRI ARSLAN, UDAY CHAND DE, CIHAN \"OZG\"UR AND JAE-BOK JUN

ABSTRACT. In the present paper, we shall discuss C-Bochner pseudo-symmetric
Sasakian manifolds and also Sasakian manifolds satisfying the condition $B\cdot S=$

$0$ where $B$ and $S$ are the C-Bochner curvature tensor and the Ricci tensor of
the manifolds respectively.

1. Introduction
A Riemannian manifold $(M^{n}, g)$ is called locally symmetric if its curvature tensor
$R$ is parallel i.e., $\nabla R=0$ , where $\nabla$ denotes the Levi Civita connection. As a
proper generalization of locally symmetric manifolds the notion of semi-symmetric
manifolds was defined by

$(R(X, Y)\cdot R)(U, V)W=0$ , $X,$ $Y,$ $U,$ $V,$ $W\in\chi(M^{n})$

and studied by many authors, e.g. ([13], [14], [20], [19]). A complete intrinsic
classification of these spaces was given by Z. I. Szabo [18]. Ryszard Deszcz and
others ([6], [7], [5]) weakened the notion of semi-symmetry and introduced the notion
of pseudo-symmetric manifolds by

$(R(X, Y)\cdot R)(U, V)W=L_{R}[((X\wedge Y)\cdot R)(U, V)W]$ ,

where $L_{R}$ is some smooth function on $M^{n}$ and

$(R(X, Y)\cdot R)(U, V)W$ $=$ $R(X, Y)R(U, V)W-R(R(X, Y)U,$ $V$ ) $W$

$-R(U, R(X, Y)V)W-R(U, V)R(X, Y)W$,

$X\wedge Y$ is an endomorphism defined by

$(X\wedge Y)Z=g(Y, Z)X-g(X, Z)Y$.

We refer the reader to R. Deszcz [6] as a general reference for the ideas of pseudo-
symmetric manifolds.
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A Riemannian or a semi-Riemannian manifold is said to be C-Bochner pseudo-
symmetric if

(1) $(R(X, Y)\cdot B)(U, V)W=L_{B}[((X\wedge Y)\cdot B)(U, V)W]$

holds on the set $U_{B}=$ {$x\in M$ : $B\neq 0$ at $x$ }, where $L_{B}$ is some function on $U_{B}$

and $B$ is the C-Bochner curvature tensor [11]. Recently M. Hotlos [9] has studied
Bochner pseudo-symmetric para-K\"ahler manifold and prove that such a manifold
is semi-symmetric. The present paper deals with a Sasakian manifold in which
the condition (1) holds. In Section 3, we prove a result ensuring the existence of
$n(=2m+1\geq 5)$-dimensional C-Bochner pseudo-symmetric Sasakian manifolds
which are not C-Bochner semi-symmetric ones. This result also generalizes the
result[3, Theorem 1] and is somewhat connected with the works of [1] and [4]. In
the last section, we prove that if a Sasakian manifold $M^{n},$ $n\geq 5$ , is $\eta$-Einstein then
the condition $B\cdot S=0$ holds on $M^{n}$ , where $S$ is the Ricci tensor.

2. Preliminaries

Let $(M^{n}, g)$ be an $n(=2m+1\geq 5)$-dimensional contact Riemannian manifold with
contact form $\eta$ , the associated vector field $\xi,$ $(1,1)$-tensor field $\phi$ and the associated
Riemannian metric $g$ . If $\xi$ is a Killing vector field then $M^{n}$ is called a K-contact
Riemannian manifold ([2], [17]). If in such a manifold the relation

(2) $(\nabla_{X}\phi)Y=g(X, Y)\xi-\eta(Y)X$

holds, where $\nabla$ denotes the Levi Civita connection of $g$ , then $M^{n}$ is called a
Sasakian manifold. It is well-known that every Sasakian manifold is K-contact
but the converse is not true in general. However, a 3-dimensional K-contact mani-
fold is Sasakian. On the other hand, the notion of C-Bochner curvature tensor on a
Sasakian manifold was first introduced by Matsumoto and Chuman [11]. Also, C-
Bochner curvature tensor has been studied by V. Mihova-Nehmer [12], I. Hasegawa
and T. Nakahe [8], T. Ikawa and M. Kon [10], G. Pathak, U. C. De and Y. H. Kim
[16].

Acontact metric manifold is said to be $\eta$-Einstein if its Ricci tensorS is of the
form

$ S=ag+b\eta\otimes\eta$ ,

where $a,$
$b$ are functions on $M^{n}$ .

Let $R,$ $Q,$ $r$ denote respectively the curvature tensor of type $(1,3)$ , Ricci oper-
ator and scalar curvature of $M^{n}$ . It is known that in a contact manifold $M^{n}$ the
Riemannian metric may be so chosen that the following relations hold [2], [21].

(3) a) $\phi\xi=0$ , b) $\eta(\xi)=1$ , c) $\eta\circ\phi=0$ .



(4) $\phi^{2}X=-X+\eta(X)\xi$ ,

(5) $g(X, \xi)=\eta(X)$ ,

(6) $g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y)$

for any vector fields $X,$ $Y$ . If $M^{n}$ is a Sasakian manifold, then besides (3), (4), (5)
and (6) the following relations hold ([2], [21]):

(7) $\nabla_{X}\xi=-\phi X$ ,

(8) $\Phi(X, Y)=(\nabla_{X}\eta)Y$,

(9) $\Phi(X, Y)=-\Phi(Y, X)$ ,

(10) $\Phi(X, \xi)=0$ ,

(11) $R(X, Y)\xi=\eta(Y)X-\eta(X)Y$,

(12) $R(\xi, X)Y=(\nabla_{X}\phi)Y$,

(13) $S(X, \xi)=(n-1)\eta(X)$ .

The C-Bochner curvature tensor on a Sasakian manifold $M^{n}(n=2m+1\geq 5)$

is defined by [11]

$B(X, Y)Z=R(X, Y)Z+\frac{1}{n+3}[S(X, Z)Y-S(Y, Z)X+g(X, Z)QY$
$-g(Y, Z)QX+S(\phi X, Z)\phi Y-S(\phi Y, Z)\phi X+g(\phi X, Z)Q\phi Y$

$-g(\phi Y, Z)Q\phi X+2S(\phi X, Y)\phi Z+2g(\phi X, Y)Q\phi Z-S(X, Z)\eta(Y)\xi$

$+S(Y, Z)\eta(X)\xi-\eta(X)\eta(Z)QY+\eta(Y)\eta(Z)QX]$
(14)

$-\frac{k+n-1}{n+3}[g(\phi X, Z)\phi Y-g(\phi Y, Z)\phi X+2g(\phi X, Y)\phi Z]$

$-\frac{k-4}{n+3}[g(X, Z)Y-g(Y, Z)X]$

$+\frac{k}{n+3}[g(X, Z)\eta(Y)\xi+\eta(X)\eta(Z)Y$

$-g(Y, Z)\eta(X)\xi-\eta(Y)\eta(Z)X]$ ,

where $k=\frac{r+n-1}{n+1}$ and $S(X, Y)=g(QX, Y)$ .
From (14), it can be easily verified that in a Sasakian manifold $M^{n},$ $(n\geq 5)$ , the

C-Bochner curvature tensor satisfies the following properties:

(15) $B(X, Y)Z=-B(Y, X)Z$ ,



(16) $B(\xi, Y)Z=0$ ,

(17) $B(X, Y)\xi=0$ ,

(18) $B(X, Y, Z,\xi)=0$ ,
and

(19) $B(X, Y, Z, U)=B(Z, U, X, Y)$ ,

for all vector fields $X,$ $Y,$ $Z,$ $U$ and $B(X, Y, Z, U)=g(B(X, Y)Z,$ $U$).
The above results wil be used in the following sections.

3. C-Bochner pseudo-symmetric Sasakian manifolds
Let $M^{n}$ be an $n(=2m+1\geq 5)$-dimensional C-Bochner pseudo-symmetric Sasakian
manifold. Then putting $ Y=\xi$ in (1) we have

$(R(X, \xi)\cdot B)(U, V)W=L_{B}[((X\wedge\xi)\cdot B)(U, V)W]$

(20) $=L_{B}[((X\wedge\xi)(B(U, V)W)-B((X\wedge\xi)U, V)W$

$-B(U, (X\wedge\xi)V)W-B(U, V)(X\wedge\xi)W]$ .
The above equation can be written as

$R(X,\xi)B(U, V)W-B(R(X, \xi)U,$ $V$ )$W-B(U, R(X, \xi)V)W$
$-B(U, V)R(X,\xi)W=L_{B}[B(U, V, W, \xi)X-B(U, V, W, X)\xi$

(21) $-\eta(U)B(X, V)W+g(X, U)B(\xi, V)W$

$-\eta(V)B(U, X)W+g(X, V)B(U, \xi)W$

$-\eta(W)B(U, V)X+g(X, W)B(U, V)\xi]$ .
Now using (11), (16), (17) and (18) into (21) it follows that

$-B(U, V, W, X)\xi-\eta(V)B(U, X)W-\eta(W)B(U, V)X$

$-\eta(U)B(X, V)W=-L_{B}[B(U, V, W, X)\xi$

$+\eta(V)B(U, X)W+\eta(W)B(U, V)X+\eta(U)B(X, V)W]$ .

Putting $ V=\xi$ in the last equation and using (17) and (18) we obtain
(22) $(L_{B}-1)B(U, X)W=0$ .
From (22), we have easily the following theorem.
Theorem 3.1 Let $M^{n}$ be an $n(=2m+1\geq 5)$ -dimensional C-Bochner pseudo-
symmetric Sasakian manifold. Then, either $B\neq 0$ and $L_{B}=1$ or $B=0$ holds at
each point of $M^{n}$ .

Since C-Bochner semi-symmetric Sasakian manifold can be regarded as a special
C-Bochner pseudo-symmetric Sasakian manifold, from the above Theorem 3.1, we
have immediately the following.

Corollary 3.2 An $n(=2m+1\geq 5)$ -dimensional C-Bochner semi-symmetric Sasakian
manifold is C-Bochner flat.

The above corollary was already proved in [3].



4. Sasakian manifolds satisfying $B\cdot S=0$

Let $M^{n}$ be an $n(=2m+1\geq 5)$-dimensional $\eta$-Einstein Sasakian manifold. Then
we can write

(23) $S(X, Y)=ag(X, Y)+b\eta(X)\eta(Y)$ ,

where $a$ and $b$ are constants.
Putting $X=Y=e_{i}$ in (23), where $\{e_{i}\}$ is an orthonormal basis of the tangent

space at each point of the manifold and taking summation over $i,$ $1\leq i\leq n$ we
obtain

(24) $r=na+b$ .

On the other hand, putting $ X=Y=\xi$ in (23) and using (13) we also have

(25) $n-1=a+b$ .

Hence it follows from (24) and (25) that

$a=\frac{r}{n-1}-1$ , $b=n-\frac{r}{n-1}$ .

So the Ricci tensor $S$ of an $\eta$-Einstein Sasakian manifold is given by

(26) $S(X, Y)=(\frac{r}{n-1}-1)g(X, Y)+(n-\frac{r}{n-1})\eta(X)\eta(Y)$ .

Now

$(B(U, X)\cdot S)(Y, Z)=-S(B(U, X)Y,$ $Z$) $-S(Y, B(U, X)Z)$

(27) $=(1-\frac{r}{n-1})B(U, X, Y, Z)+(\frac{r}{n-1}-n)\eta(B(U, X)Y)\eta(Z)$

$+(1-\frac{r}{n-1})B(U, X, Z, Y)+(\frac{r}{n-1}-n)\eta(B(U, X)Z)\eta(Y)$ .

Using (19) and (18) in (27) we obtain $B\cdot S=0$ . Thus we can state the following:

Theorem 4.1 Let $(M^{n}, g)$ be an $n(=2m+1\geq 5)$ -dimensional $\eta$ -Einstein Sasakian
manifold. Then the condition $B\cdot S=0$ holds on $M^{n}$ .

Remark. It is known that an $n(=2m+1\geq 5)$-dimensional Sasakian manifold of
constant $\phi$-sectional curvature(namely, a Sasakian space form) is C-Bochner flat and
$\eta$-Einstein and also that an $n(=2m+1\geq 5)$ -dimensional C-Bochner flat Sasakian
manifold is $\eta$-Einstein if and only if it is a Sasakian space form ([11], Theorem 2.4,
Corollary 2.5). From these observations, it seems that the converse of the above
Theorem 4.1 is not necessarily valid in general.
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