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A strong vectorial
Ekeland’s variational principle
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Abstract: Using a concept of approximately efficient point intro-
duced by Tanaka [8], we present a certain vectorial version of Ekeland’s
variational principle.

Key words: Ekeland’s variational principle, approximately efficient
solution, vector-valued function

1 Introduction

Since Ekeland [2] in 1972, the variational principle and its equivalent formulations
have been one of the main subjects in many fields of nonlinear functional analysis,
convex analysis, and optimization.

Theorem 1.1 (Ekeland[2]). Let (X, d) be a complete metric space and $f$ : $ X\rightarrow$

$(-\infty, \infty]$ a $l.s.c$ . function, $\not\equiv+\infty$ , bounded from below. Let $\epsilon>0$ and $u\in X$ satisfy

$ f(u)\leq\inf_{x\in X}f(x)+\epsilon$ .

Then there exists some point $v\in X$ such that

(i) $f(v)\leq f(u)$ ,

(ii) $d(u, v)\leq 1$ ,

(iii) for each $w\neq v$ , $f(v)-6d(v, w)<f(w)$ .

We are interested in generalizing the variational principle to that of vector-valued
function. Gopfert, Tammer and Zalinescu $(G- T- Z)[4,5]$ proved several minimal
point theorems and their corresponding variants for vectorial versions of Ekeland’s
variational principle. In their papers, they used the concept of $\epsilon$-efficient point,
which is an approximate concept introduced by Loridan [7]. On the other hand,
Tanaka introduced another concept called by approximately efficient solution point.



Definition 1.2 (Tanaka[8]). Let $S$ be a nonempty subset of $Y$ and $6>0$ . A point
$ y\in Yissaidtobealower\epsilon$-approximately efficient point ofSwith respect toCif
$y\in S$ and $(y-C)\cap(S\backslash B_{e}(\hat{y}))=\emptyset$ , where $B_{e}(\hat{y})=\{y\in Y|||y-\hat{y}\Vert\leq e\}$ .

The existence of such solutions guarantees a kind of lower boundedness of $S$ which
is different from the Loridan’s type lower boundedness. Based on this property we
present a specification of G-T-Z’s vectorial Ekeland’s variational principle and obtain
detail properties of this.

We give the preliminary terminology and notation used throughout this paper.
Let $X$ be a complete metric space and $Y$ a normed space. For a set $A\subset Y$ , corA
and int $A$ denote the algebraic interior and the topological interior of $A$ , respectively.
We assume that a nonempty set $C\subset Y$ is a solid closed convex cone, that is,

(a) int $ C\neq\emptyset$ ,

(b) c1C $=C$ ,

(c) $C+C\subseteq C$ ,

(d) $\lambda C\subseteq C$ for all $\lambda\in[0, \infty$).

A cone $C$ is said to be pointed if $C\cap(-C)=\{0\}$ . If a pointed convex cone $C\subseteq Y$

is given, we can define an ordering in $Y$ by $x\leq cy$ when $y-x\in C$ . This ordering
is compatible with the vector structure of $Y$ , that is, for every $x\in Y$ and $y\in Y$ ,

(i) $x\leq cy$ implies that $x+z\leq cy+z$ for all $z\in Y$ ;

(ii) $x\leq cy$ implies that $\alpha x\leq c\alpha y$ for all $\alpha\geq 0$ .

We denote $x\leq intCy$ when $ y-x\in$ intC, $B_{e}(\hat{y})=\{y\in Y|||y-\hat{y}\Vert\leq\epsilon\}$ for any
$\epsilon>0$ and $f(X)=\bigcup_{x\in X}\{f(x)\}$ for a function $f$ : $X\rightarrow Y$ .

Tammer and Weidner introduced the following nonlinear scalarizing function,
which takes values in $\mathbb{R}$ in the setting of this paper because $C$ is solid.

Lemma 1.3 (Lemma 7 in [5]). Let $C$ be a convex cone. We take $k^{0}\in C\backslash $ (-c1C)
and define $h_{C,k^{0}}$ : $Y\rightarrow[-\infty, \infty]$ by

$h_{C,k^{0}}(y)=\inf\{t\in \mathbb{R}|y\in tk^{0}-C\}$ .

Then the function $h_{C,k^{0}}$ has the following five properties:

(i) $h_{C,k^{0}}$ is proper ( $ h_{C,k^{0}}\not\equiv+\infty$ and $ h_{C,k^{0}}(y)>-\infty$ for every $y\in Y$),



(ii) $h_{C,k^{0}}$ is sublinear ( $h_{C,k^{0}}(\lambda y_{1}+\mu y_{2})\leq\lambda h_{C,k^{0}}(y_{1})+\mu h_{C,k^{0}}(y_{2})$ for every $y_{1},$ $ y_{2}\in$

$Y$ and $\lambda,$ $\mu\geq 0$),

(iii) $h_{C,k^{0}}$ is increasing with respect $to\leq c$ ( $y_{1}\leq cy_{2}$ implies $h_{C,k^{0}}(y_{1})\leq h_{C,k^{0}}(y_{2})$ ),

(iv) $\{y\in Y|h_{C,k^{0}}(y)\leq t\}=tk^{0}-C$ ,

(v) $ h_{C,k^{0}}(y+\lambda k^{0})=h_{C,k^{0}}(y)+\lambda$ for every $y\in Y$ and $\lambda\in \mathbb{R}$ .

Moreover, if $ k^{0}\in$ corC then $h_{C,k^{0}}$ is finitely valued, $\{y\in Y|h_{C,k^{0}}(y)<t\}=tk^{0}-$

corC and $h_{C,k^{0}}(y_{1})<h_{C,k^{0}}(y_{2})$ if $y_{2}-y_{1}\in corC$ . Furthermore, if $C$ is closed, then
$h_{C,k^{0}}$ is lower semicontinuous.

As a corollary of the above lemma, Gerth(Tammer) and Weidner presented the
following nonconvex separation theorem.

Lemma 1.4 (Theorem 2.3.6 in [4]). Assume that $Y$ is a topological vector space, $C$

a solid closed convex cone and $A\subset Y$ a nonempty set such that $ A\cap$ (-int $C$) $=\emptyset$ .
Then $h_{C,k^{0}}$ is a finite-valued continuous function such that

$h_{C,k^{0}}(-y)<0\leq h_{C,k^{0}}(x)$ $\forall x\in A,$ $y\in intC$ ,

moreover, $h_{C,k^{0}}(x)>0$ for all $x\in intA$ .

The above two lemmas play important roles in this paper.

2 Main result

We obtain the following vectorial Ekeland’s variational principle.

Theorem 2.1. Let $f$ : $X\rightarrow Y$ be a vector-valued function, $x_{0}\in X,$ $\epsilon>0$ and
$k^{0}\in int$C. Assume that $f$ satisfies $(f(X)\backslash B_{\epsilon}(f(x_{0})))\cap$ ( $f(x_{0})$ -int $C$) $=\emptyset$ and that

(H) $\{x^{\prime}\in X|f(x^{\prime})+d(x, x^{\prime})k^{0}\leq_{c}f(x)\}$ is closed for every $x\in X$ .

Moreover we also assume $\epsilon^{\prime}>0$ satisfies ( $-\epsilon^{\prime}k^{0}$ –int $C$) $\cap B_{e}(0)=\emptyset$ . Then there
exists $\overline{x}\in X$ such that

(i) $f(\overline{x})\leq intC^{f(x_{0})}$

$(ii)||f(\overline{x})-f(x_{0})||\leq\epsilon$



(iii) $d(x_{0},\overline{x})\leq\epsilon^{\prime}$

(iv) if for some $x\in X,$ $f(x)+d(x,\overline{x})k^{0}\leq_{c}f(\overline{x})$ then $x=\overline{x}$ .

Proof. First of all, $(h_{C,k^{0}}of)(x)$ is bounded from below on $X$ for all $x\in X$ . By
Proposition 1 in [8] and the assumption of Theorem 2.1, we have that a point $f(x_{0})$

is a Loridan’s e’-efficient point of $f(X)$ , that is, $ f(X)\cap$ ( $f(x_{0})-\epsilon^{\prime}k^{0}$ –int$C$) $=\emptyset$ .
By Lemma 1.4, we have

$h_{C,k^{0}}(-y)<0\leq h_{C,k^{0}}(f(x)-f(x_{0})+\epsilon^{\prime}k^{0})$

for all $x\in X,$ $y\in intC$ . Using (ii) and (v) of Lemma 1.3, we have

$-\infty<h_{C,k^{0}}(-y)-h_{C,k^{0}}(-f(x_{0}))-e^{\prime}<h_{C,k^{0}}(f(x))$ .

We consider the following set-valued map $F:X\rightarrow 2^{X}$

$F(x)$ $:=\{y\in X|f(y)+d(x, y)k^{0}\leq cf(x)\}$ .

By condition (H), $F(x)$ is a closed set for each $x\in X$ and $F$ has the following
properties:

(a) $x\in F(x)$ (reflexivity),

(b) if $y\in F(x)$ then $F(y)\subset F(x)$ (transitivity).

Property (a) is easy. To prove property (b), we take $y\in F(x)$ and suppose that
$z\in F(y)$ . Then we have that

$f(y)+d(x, y)k^{0}\leq cf(x)$ and $f(z)+d(y, z)k^{0}\leq cf(y)$ .

By the compatibility of the ordering $\leq c$ to the vector structure, the triangle in-
equality on $d$ and $k^{0}\in C$ , we have that

$f(z)+d(x, z)k^{0}\leq cf(x)$ ,

which implies $z\in F(x)$ .

Next, using (iii) and (v) of Lemma 1.3, we have that $y\in F(x)$ implies

$h_{C,k^{O}}(f(y))+d(x, y)\leq h_{C,k^{0}}(f(x))$ ,

and hence

$d(x, y)\leq h_{C,k^{0}}(f(x))-\inf_{z\in F(x)}h_{C,k^{0}}(f(z))$



for all $y\in F(x)$ , which implies the following upper bound on the diameter of $F(x)$

Diam $(F(x))\leq 2(h_{C,k^{0}}(f(x))-\inf_{z\in F(x)}h_{C,k^{0}}(f(z)))$ . (2.1)

For each $n=1,2,$ $\ldots$ , by definition of the infimum, there exists $x_{n+1}\in F(x_{n})$

such that $h_{C,k^{0}}(f(x_{n+1}))\leq\inf_{z\in F(x_{n})}h_{C,k^{0}}(f(z))+2^{-n}$ . Since $F(x_{n+1})\subset F(x_{n})$ by
property (b), we have

$\inf_{z\in F(x_{n})}h_{C,k^{0}}(f(z))\leq\inf_{z\in F(x_{n+1})}h_{C,k^{0}}(f(z))$ .

On the other hand, since we always have $\inf_{z\in F(y)}h_{C,k^{0}}(f(z))\leq h_{C,k^{0}}(f(y))$ by
property (a), we obtain the inequalities

$0\leq h_{C,k^{0}}(f(x_{n+1}))-\inf_{z\in F(x_{n+1})}h_{C,k^{0}}(f(z))\leq 2^{-n}$ . (2.2)

By combining (2.1) and (2.2), we get Diam $(F(x_{n+1}))\leq 2\cdot 2^{-n}$ . Consequently, it
follows that the sequence of diameters of the closed sets $F(x_{n})$ converges to $0$ . By
Cantor’s theorem, we have that

$\bigcap_{n=0}^{\infty}F(x_{n})=\{\overline{x}\}$ .

Since $\overline{x}$ belongs to $F(x_{0})$ , we have that

$f(\overline{x})+d(x_{0},\overline{x})k^{0}\leq cf(x_{0})$ (2.3)

and hence

$f(x_{0})-f(\overline{x})\in C+d(x_{0},\overline{x})k^{0}\subset intC$ ,

which shows that the condition (i) holds. Since $\overline{x}$ belongs to all the $F(x_{n})$ , we have
that $F(\overline{x})\subset F(x_{n})$ and consequently that

$F(\overline{x})=\{\overline{x}\}$ .

Thus, we deduce that the condition (iv) holds. Moreover, by condition (i), that is,
$f(\overline{x})\in f(x_{0})$ –int$C$ , and assumption $(f(X)\backslash B_{e}(f(x_{0})))\cap$ ( $f(x_{0})$ –int $C$) $=\emptyset$ , we
have that

$f(\overline{x})\in B_{\epsilon}(f(x_{0}))$ ,

therefore condition (ii) holds. To prove condition (iii), we suppose that $d(x_{0},\overline{x})>\epsilon^{\prime}$ .
Then we have that $(d(x_{0},\overline{x})-\epsilon^{\prime})k^{0}+C\subset intC$ . By condition (2.3) we have that

$f(\overline{x})\in f(x_{0})-d(x_{0},\overline{x})k^{0}-C\subset f(x_{0})-\epsilon^{\prime}k^{0}$ –int $C$ ,

which is a contradiction. $\square $



Remark 1. Note that the case of $Y=\mathbb{R},$ $ C=\mathbb{R}_{+}=[0, \infty$ ), $k^{0}=e\in \mathbb{R}_{+}\backslash \{0\}$ and
$\epsilon^{\prime}=1$ in Theorems 2.1 becomes Theorem 1.1. We also note that the pointedness of
$C$ is not needed to prove Theorem 2.1.

Remark 2. In Theorem 2.1, the solidness of $C$ is used to ensure that the constructed
functional $h_{C,k^{0}}$ takes finite values. If we set

$Y=\mathbb{R}^{2}$ , $C=\{(x, x)|x\in \mathbb{R}\}$ , $k^{0}=(1,1)$ , $a=(2,2)$ , $b=(1,0)$ .

We have that

$h_{C,k^{0}}(a)=2$ but $ h_{C,k^{0}}(b)=\infty$ .

This fact guarantees the lower boundedness of the function in Theorem 2.1.

3 Conclusions

Gopfert, Tammer and Zalinescu[5] obtained a vectorial Ekeland’s variational princi-
ple with an estimate of $d(x_{0},\overline{x})$ . In this paper, we assume the existence of approxi-
mately efficient solution point introduced by Tanaka and obtain a vectorial Ekeland’s
principle not only an estimate of $d(x_{0},\overline{x})$ but also an estimate of $||f(\overline{x})-f(x_{0})||$ .
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