Nihonkai Math. J. Vol.18(2007), 51-55

REMARKS ON *n*-TH ROOT CLOSEDNESS FOR COMMUTATIVE C^* -ALGEBRAS

DAI HONMA AND TAKESHI MIURA

ABSTRACT. Let C(X) be the algebra of all complex-valued continuous functions defined on a compact Hausdorff space X. For a given natural number n with $n \ge 2$, the algebra C(X) is said to be n-th root closed if each function in C(X)is the n-th power of another. We will show that n-th root closedness is equivalent to square-root closedness, and to algebraic closedness of C(X) when X is first countable.

1. INTRODUCTION AND RESULTS

Let X be a compact Hausdorff space, and let C(X) be the algebra of all complexvalued continuous functions on X. Suppose that X is locally connected, and let A be a uniform algebra on X. Čirka [1] proved that if each function in A is the square of another, then A equals C(X). We say that C(X) is square-root closed if for every $f \in C(X)$ there exists $g \in C(X)$ such that $f = g^2$. This algebraic property is closely related to the topological structure of X. Indeed, for locally connected X, Hatori and the second author [4] proved that C(X) is square-root closed if and only if dim $X \leq 1$ and $\check{H}^1(X;\mathbb{Z}) = 0$. Here dim X denotes the covering dimension of X (cf. [11]) and $\check{H}^1(X;\mathbb{Z})$ denotes the first Čech cohomology group of X with the integer coefficients (cf. [5]). Let P(x, z) be a monic polynomial over C(X), with respect to z, that is, for a positive integer n and $f_0, f_1, \dots, f_{n-1} \in C(X)$,

$$P(x,z) = z^{n} + f_{n-1}(x)z^{n-1} + \dots + f_{1}(x)z + f_{0}(x)$$

for $x \in X$. The algebra C(X) is said to be algebraically closed if for every monic polynomial P(x, z) over C(X) there exists $g \in C(X)$ such that P(x, g(x)) = 0for every $x \in X$. By definition, C(X) is square-root closed whenever C(X) is algebraically closed. For first countable X, Countryman, Jr. [2] proved that C(X)is algebraically closed if and only if X is almost locally connected and hereditarily unicoherent. Moreover, his result states that square-root closedness is equivalent to algebraic closedness when X is first countable. The second author and Niijima [10] showed that this equivalence is also true for locally connected X. In [6], the authors considered the following condition:

2000 Mathematics Subject Classification. 46J10.

Key words and phrases. commutative C^* -algebras, maximal ideal spaces.

(K) For every $f \in C(X)$ there exist $g \in C(X)$ and $p, q \in \mathbb{N}$ such that $q/p \notin \mathbb{N}$ and $g^p = f^q$.

Here and after, N denotes the set of all positive integers. The property (K) was inspired by a result of Karahanjan [8], which is an extension of the result of Čirka mentioned above. From definition, if C(X) is algebraically closed, then C(X) has the property (K). The authors [6] proved that the converse holds if X is first countable or locally connected. Let $n \in \mathbb{N}$ with $n \geq 2$. We say that C(X) is n-th root closed if for every $f \in C(X)$ there exists $g \in C(X)$ such that $f = g^n$. Clearly, C(X) is n-th root closed for every $n \in \mathbb{N}$ whenever C(X) is algebraically closed. In this paper, we will make up some results obtained in [6] with respect to n-th root closedness.

Theorem. Let X be a first countable compact Hausdorff space. Then the following conditions are equivalent:

- (1) C(X) is n-th root closed for some $n \in \mathbb{N}$ with $n \geq 2$
- (2) C(X) is n-th root closed for every $n \in \mathbb{N}$ with $n \geq 2$
- (3) C(X) is algebraically closed.

Corollary. Let X be a first countable compact Hausdorff space. Then the following conditions are equivalent:

- (1) C(X) is n-th root closed for some $n \in \mathbb{N}$ with $n \geq 2$
- (2) C(X) is n-th root closed for every $n \in \mathbb{N}$ with $n \geq 2$
- (3) C(X) is algebraically closed
- (4) C(X) is square-root closed
- (5) For every $f \in C(X)$ there exist $g \in C(X)$ and $p, q \in \mathbb{N}$ such that $q/p \neq \mathbb{N}$ and $g^p = f^q$
- (6) X is almost locally connected and hereditarily unicoherent
- (7) X is almost locally connected, dim $X \leq 1$ and $H^1(X; \mathbb{Z}) = 0$.

2. A proof of results

We say that a topological space T is almost locally connected if and only if T does not contain mutually disjoint connected closed subsets C_n $(n \in \mathbb{N})$, which are also open in the closure of $\bigcup_{n \in \mathbb{N}} C_n$ in T, with the following property: there exist $x_n, y_n \in C_n$ such that $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ converge to distinct points. The closure of $\bigcup_{n \in \mathbb{N}} (\{1/n\} \times [0, 1])$ in \mathbb{R}^2 is not almost locally connected. But the closure of $\bigcup_{n \in \mathbb{N}} (\{1/n\} \times [0, 1/n])$ in \mathbb{R}^2 is almost locally connected. A topological space T is said to be hereditarily unicoherent if $M \cap N$ is connected for every pair of closed connected subsets M and N of T with $M \cap N \neq \emptyset$. The unit circle S^1 is a typical example that is not hereditarily unicoherent.

To prove our theorem, we need the following result.

Theorem A ([6, Corollary 1.3]). Let X be a first countable compact Hausdorff space. Then the following conditions are equivalent:

- (i) For every $f \in C(X)$ there exist $g \in C(X)$ and $p, q \in \mathbb{N}$ such that $q/p \neq \mathbb{N}$ and $g^p = f^q$
- (ii) C(X) is algebraically closed
- (iii) C(X) is square-root closed
- (iv) X is almost locally connected and hereditarily unicoherent
- (v) X is almost locally connected, dim $X \leq 1$ and $\dot{H}^1(X; \mathbb{Z}) = 0$.

Proof of Theorem. By definition, the implications $(3) \Rightarrow (2) \Rightarrow (1)$ are true. So, it is enough to show that $(1) \Rightarrow (3)$ holds. By definition, the implication $(1) \Rightarrow$ (i) of Theorem A is true. Since X is first countable, Theorem A shows that (i) is equivalent to the condition that C(X) is algebraically closed. So we have that (1) implies (3), and this completes the proof.

Proof of Corollary. This immediately follows from Theorem and Theorem A. \Box

Example 1. Let X be the closure of $\bigcup_{n \in \mathbb{N}} (\{1/n\} \times [0, 1/n])$ in \mathbb{R}^2 . Then it is easy to see that X is hereditarily unicoherent and almost locally connected. Thus Theorem A shows that C(X) is algebraically closed. In particular, C(X) is *n*-th root closed for every $n \in \mathbb{N}$.

Example 2. Let X be the closure of $\bigcup_{n \in \mathbb{N}} (\{1/n\} \times [0, 1])$ in \mathbb{R}^2 . Then it is easy to verify that X is not almost locally connected. So, by Corollary, C(X) is not n-th root closed for any $n \geq 2$.

Example 3. Let S^1 be the unit circle. Then S^1 is not hereditarily unicoherent. So, by Corollary, $C(S^1)$ is not *n*-th root closed for any $n \ge 2$.

Remark 2.1. By Theorem and Corollary, if X is first countable, then *n*-th root closedness is equivalent to square-root closedness and to algebraic closedness. The same holds for locally connected X (see [6, Corollary 1.2 and Remark]).

Remark 2.2. Let us consider the following two conditions:

- (a) The set $\{f^n : f \in C(X)\}$ is uniformly dense in C(X) for every $n \in \mathbb{N}$
- (b) The set $\{f^n : f \in C(X)\}$ is uniformly dense in C(X) for some $n \in \mathbb{N}$ with $n \ge 2$.

The implications (2) in Theorem \Rightarrow (a) \Rightarrow (b) is obviously true for any compact Hausdorff space X. In [6] it was shown that if X is locally connected, then the implication (b) \Rightarrow (2) holds. For first countable X, however, the situation is different. For example, let X be the closure of $\bigcup_{n \in \mathbb{N}} (\{1/n\} \times [0, 1])$ in \mathbb{R}^2 . Then, from [4], we see that dim X = 1 and $\check{H}^1(X; \mathbb{Z}) = 0$. So, by Lemma 2.5 in [6], the set $\{f^n : f \in C(X)\}$ is uniformly dense in C(X) for every $n \ge 2$. But, as in Example 2, C(X) is not *n*-th root closed for any $n \ge 2$.

Remark 2.3. From Theorem, we see that *n*-th root closedness for some $n \ge 2$ implies *m*-th root closedness for all $m \in \mathbb{N}$ whenever X is first countable. The implication is true for locally connected X (see [6, Corollary 1.2 and Remark]). So, a natural question arises: is this implication true for all compact Hausdorff spaces? Countryman, Jr. [2, Remarks (2)] noted that there exists a compact Hausdorff space X, which is not first countable nor locally connected, with the following property: there exists $f \in C(X)$ such that f has a continuous 2^n -th root in C(X) for every $n \in \mathbb{N}$ but that no continuous fifth root. Here, continuous k-th root of f means a continuous function in C(X) whose k-th power equals f. Recently, Kawamura and the second author [9] gave a negative answer to the question above. More explicitly, they showed that for each pair of relatively prime positive integers m and n, there exists a compact Hausdorff space X such that C(X) is n-th root closed but not m-th root closed.

References

- [1] E. M. Čirka, Approximation of continuous functions by functions holomorphic on Jordan arcs in \mathbb{C}^n , Soviet Math. 7 (1966), 336-338.
- [2] R. S. Countryman Jr., On the characterization of compact Hausdorff X for which C(X) is algebraically closed, Pacific J. Math. 20 (1967), 433-448.
- [3] E. A. Gorin and M. I. Karahanjan, Some certain characteristic properties of the algebra of all continuous functions on a locally connected compactum, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 11 (1976), 237-255.
- [4] O. Hatori and T. Miura, On a characterization of the maximal ideal spaces of commutative C*-algebras in which every element is the square of another, Proc. Amer. Math. Soc. 128 (2000), 1185-1189.
- [5] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1995.
- [6] D. Honma and T. Miura, On a characterization of compact Hausdorff space X for which certain algebraic equations are solvable in C(X), to appear in Tokyo J. Math.
- [7] T. Miura and D. Honma, A survey of certain algebraic equations in commutative C^* -algebras, to appear in Contemp. Math.
- [8] M. I. Karahanjan, On some algebraic characteristics of the algebra of all continuous functions on a locally connected compactum, Math. USSR-Sb. 35 (1979), 681-696.
- [9] K. Kawamura and T. Miura, On the root closedness of continuous function algebras, preprint.
- [10] T. Miura and K. Niijima, On a characterization of the maximal ideal spaces of algebraically closed commutative C^{*}-algebras, Proc. Amer. Math. Soc. 131 (2003), 2869–2876.
- [11] K. Morita, Dimension of general topological spaces, Surveys in general topology (G. M. Reed ed.) Academic Press N.Y.1980.

DEPARTMENT OF MATHEMATICAL SCIENCE, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA 950-2181 JAPAN

E-mail address: f05n004j@mail.cc.niigata-u.ac.jp

DEPARTMENT OF APPLIED MATHEMATICS AND PHYSICS, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, YAMAGATA UNIVERSITY, YONEZAWA 992-8510 JAPAN

E-mail address: miura@yz.yamagata-u.ac.jp

Received September 5, 2007