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AN EXAMPLE OF MULTIPLICATIVELY
SPECTRUM-PRESERVING MAPS BETWEEN NON-ISOMORPHIC

SEMI-SIMPLE COMMUTATIVE BANACH ALGEBRAS

OSAMU HATORI, TAKESHI MIURA, AND HIROKAZU OKA

ABSTRACT. In this paper we give an example of a multiplicatively spectrum-
preserving map between two non-unital commutative semisimiple Banach algebras
which are not dgebraically isomorphic to each other.

1. INTRODUCTION

Moln\’ar [6] initiated the study of multiplicatively spectrum-preserving maps on
Banach algebras and proved among other theorems that a map $T$ from a Banach
algebra $C(\mathcal{X})$ of all complex-valued continuous functions on a first countable com-
pact Hausdorff space $\mathcal{X}$ onto itself is an almost isomorphism in the sense that $T$

is an algebra isomorphism times a weight with the values in $\{-1,1\}$ if $T$ is mul-
tiplicatively spectrum preserving in the sense that the spectrum of the product of
any two functions $f$ and $g\in C(\mathcal{X})$ equals to the spectrum of the product of $Tf$

and $Tg$ . Rao and Roy [7] generalized the result for an arbitrary uniform algebra
onto itself. Hatori, Miura and Takagi [3] studied the maps between arbitrary two
uniform algebras which are multiplicatively range-preserving and showed that the
maps are almost isomorphisms. In particular, they shoed the two uniform algebras
are algebraically isomorphic to eacy other. Hatori, Miura and Takagi [4] consider
the case where underlying algebras are unital semisimple commutative Banach al-
gebras. They showed that the surjective maps between those commutative Banach
algebras are almost isomophic if they are multiplicatively spectrum-preserving and
the two Banach algebras are algebraically isomorphic to each other. Luttman and
Tonev [5] considered multiplicatively preserving property for much more smaller set;
peripheral ranges. They proved that if a surjective map between uniform algebra
satisfies that the peripheral range of the product of any two functions equals to the
peripheral range of the product of the images of those two functions, then the map
is an almost isomorphism and these uniform algebras are isometrically isomorphic to
each other as Banach algebras. For the case where the underlying Banach algebras
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need not be unital, Rao and Roy [8] consider maps from uniformly closed algebras
of continuous functions which vanish at infinity onto itself.

In any case of the previous results the domain algebra and the image algebra of
the given map are algebraically isomorphic. In this paper we give an example of
a multiplicatively spectrum-preserving map between two non-unital commutative
semisimiple Banach algebras which are not algebraically isomorphic to each other.

2. A MAIN RESULT

Let $D=\{z\in \mathbb{C} : |z|<1\},$ $D_{0}=\{z\in \mathbb{C} : 0<|z|<1\},\overline{D}_{0}=\{z\in \mathbb{C}$ :
$0<|z|\leq 1\}$ and $L=\{z\in \mathbb{R} : 1 \leq z\leq 2\}$ . Put $X_{0}=\overline{D}_{0}\cup L,$ $\overline{X_{0}}=X_{0}\cup\{0\}$

and $X=X_{0}\times\{1,2\}$ . For $i=1$ and 2 define maps $\pi_{i}$ from $X_{0}$ into $X$ such that
$\pi_{i}(z)=(z, i)$ respectively. Then the map $\pi_{i}$ is a homeomorphism from $X_{0}$ onto
$X_{0}\times\{i\}$ for $i=1,2$ . Put complex-valued functions $f_{A}$ and $f_{B}$ on $X$ by $f_{A}(z, i)=z$

and $f_{B}(z, i)=(-1)^{i+1}z$ . The algebra of all complex-valued continuous functions
on $\overline{X_{0}}$ which is analytic on $D$ is denoted by $P(\overline{X_{0}})$ . We denote $P(X_{0})$ by the
restriction of $P(\overline{X_{0}})$ on $X_{0}$ and $P_{00}(X_{0})=\{z^{2}f(z) : f\in P(X_{0})\}$ . The algebra of all
complex-valued continuous functions which vanish at infinity is denoted by $C_{0}(X)$ .
We denote $A_{0}=\{f\in C_{0}(X) : f\circ\pi_{1}, f\circ\pi_{2}\in P_{00}(X_{0})\}$ . Put $A=A_{0}+\mathbb{C}f_{A}$ and
$B=A_{0}+\mathbb{C}f_{B}$ . It is easy to see that $A$ and $B$ are closed subalgebras of $C_{0}(X)$

which strongly separate the points of $X$ .

Theorem 2.1. Let $A$ and $B$ be the Banach algebras which are defined above. Let
$\eta$ : $X\rightarrow\{-1,1\}$ be $\eta(x, i)=(-1)^{i}$ . Then the map $T:A\rightarrow B$ defined by $T(f)=\eta f$

is surjective and satisfies the equality

$\sigma(T(f)T(g))=\sigma(fg)$ , $f,$ $g\in A$ .

The Banach algebras $A$ and $B$ are not algebraically isomorphic to each other.

Note that $A$ is isometrically isomorphic to $B$ as a Banach space.

Lemma 2.2. For every $f\in A$ and $i=1$ and 2, the function $f\circ\pi_{i}$ is analytically
extended at the origin $0$ and the derivative at the origin of both functions coincides,
that is, $(fo\pi_{1})^{\prime}(0)=(fo\pi_{2})^{\prime}(0)$ .

Proof. It is simple that the extended function with the value $0$ at the origin for $fo\pi_{i}$

is analytic on $D$ . For the rest of the proof the extended function of $f\in A$ is also
denoted by $f$ . Let $f\in A$ . Then $f$ is docmposed by $f=f_{0}+\lambda f_{A}$ for an $f_{0}\in A_{0}$

and a complex number $\lambda$ . Then we have
$(f\circ\pi_{i})^{\prime}(0)=(f_{0}\circ\pi_{i})^{\prime}(0)+\lambda(f_{A}o\pi_{i})^{\prime}(0)$

for $i=1,2$ . Since $(f_{0}o\pi_{i})^{\prime}(0)=0$ and $(f_{A}\circ\pi_{i})^{\prime}(0)=1$ , we see that
$(f\circ\pi_{1})^{\prime}(0)=\square $

$\lambda=(fo\pi_{2})^{l}(0)$ .



In the same way we see the following.

Lemma 2.3. For every $f\in B$ and $i=1$ and 2, the function $f\circ\pi_{i}$ is analytically
extended at the origin $0$ and $(fo\pi_{1})^{\prime}(0)=-(fo\pi_{2})^{\prime}(0)$ .

The maximal ideal space for $A$ (resp. $B$ ) is denoted by $M_{A}$ (resp. $M_{B}$ ). The
space $X$ is embedded in $M_{A}$ (resp. $M_{B}$ ) by the natural embedding. We see the
following.

Lemma 2.4. The maximal ideal space $M_{A}$ of $A$ coincides with $X$ itself.

Proof. First we show that the maximal ideal space $M_{P_{00}(X_{0})}$ is equal to $X_{0}$ . It is
trivial that $M_{P_{00}(X_{0})}\supset X_{0}$ , we show that the opposite inclusion. Supoose that
$\phi\in M_{P_{00}(X_{0})}$ . By the definition the function $z^{2}$ is in $P_{00}(X_{0})$ and we see that
$\phi(z^{2})\neq 0$ . (Suppose not. Put an arbitrary $f\in P_{00}(X_{0})$ . Then there is a $g\in P(X_{0})$

with $f=z^{2}g$ . We see that $z^{2}g^{2}\in P_{00}(X_{0})$ and
$\phi(f)^{2}=\phi(f^{2})=\phi(z^{2})\phi(z^{2}g^{2})=0$ .

It follows that $\phi$ vanishes since $f$ is an arbitrary element in $P_{00}(X_{0})$ , which is a
contradiction.) Put a function $\overline{\phi}$ : $P(X_{0})\rightarrow \mathbb{C}$ by

$\overline{\phi}(f)=\frac{\phi(z^{2}f)}{\phi(z^{2})}$

for each $f\in P(X_{0})$ . Then by a simple calculation we see that $\overline{\phi}$ is a non-zero complex
homomorphism on $P(X_{0})$ , that is, $\overline{\phi}$ is in the maximal ideal space $M_{P(X_{0})}$ of $P(X_{0})$ .
Since $P(X_{0})$ is algebraically isomorphic to $P(\overline{X_{0}})$ , we see that $M_{P(X_{0})}=\overline{X_{0}}$ (cf. [2,
Corollary II 1.10]); there exists an $x\in\overline{X_{0}}$ such that $\overline{\phi}(f)=f(x)$ holds for every
$f\in P(X_{0})$ . We see that $x\neq 0$ . (Suppose not. Then we have

$0=\overline{\phi}(z^{2})=\frac{\phi(z^{4})}{\phi(z^{2})}=\phi(z^{2})\neq 0$ ,

which is a contradiction.) We also see by a similar calculation that $\overline{\phi}|P_{00}(X_{0})=\phi$ .
It follows that the equalities

$\phi(f)=\overline{\phi}(f)=f(x)$

hold for every $f\in P_{00}(X_{0})$ . Thus we see that $M_{P_{00}(X_{0})}=X_{0}$ .

Next we show that the maximal ideal space $M_{A_{0}}$ of $A_{0}$ coincides with $X$ . By the
definition of the algebra $A_{0},$ $A_{0}$ is algebraically isomorphic to the direct product of
two copies of $P_{00}(X_{0})$ , so the maximal ideal space of $A_{0}$ is homeomorphic to the
topological sum of those of $P_{00}(X_{0})$ , which is homeomorphic to $X$ .

Finally we show that $M_{A}=X$ . We only need to show that $M_{A}\subset X$ . Let $\phi\in M_{A}$ .
Since $(f_{A})^{2}\in A_{0}$ we see that the restriction $\phi|A_{0}$ of $\phi$ to $A_{0}$ is non-zero. So there
exists an $x\in X$ such that the equality

$\phi(f)=f(x)$



holds for every $f\in A_{0}$ . Put a function $Z^{2}$ on $X$ by $Z^{2}(z, i)=z^{2}$ for every $(z, i)\in X$ .
Then $Z^{2}f_{A}$ is in $A_{0}$ and $\phi(Z^{2}f_{A})=Z(x)^{2}f_{A}(x)$ . Since $\phi$ is multiplicative on $A$ , we
have that $\phi(Z^{2}f_{A})=\phi(Z^{2})\phi(f_{A})$ . It follows that $\phi(f_{A})=f_{A}(x)$ since $\phi(Z^{2})=$

$Z^{2}(x)\neq 0$ . It follows that the equality
$\phi(f)=f(x)$

holds for every $f\in A$ . We see that $M_{A}\subset X$ . $\square $

In a way similar to the above we see the following.

Lemma 2.5. The maximal ideal space $M_{B}$ of $B$ is $X$ itself.
Lemma 2.6. $A$ is not algebraically isomorphic to $B$ .

Proof. Suppose that $A$ is algebraically isomorphic to $B$ . Let $T$ be an algebra iso-
morphism from $A$ onto $B$ . Then there exists a homeomophism $\Phi$ from $M_{B}$ onto $M_{A}$

with
$\overline{T(f)}=f\circ\Phi$ , $f\in A$ .

Since $M_{A}=X=M_{B}$ and $X=X_{0}\times\{1\}\cup X_{0}\times\{2\}$ , we have that (1) $\Phi(X_{0}\times\{1\})=$

$X_{0}\times\{1\}$ and $\Phi(X_{0}\times\{2\})=X_{0}\times\{2\}$ ; or (2) $\Phi(X_{0}\times\{1\})=X_{0}\times\{2\}$ and
$\Phi(X_{0}\times\{2\})=X_{0}\times\{1\}$ . We consider the case (1). (For the case (2) we can prove in a
similar way and the proof is omitted.) In this case there exist self-homeomorphisms
$\Phi_{1}$ and $\Phi_{2}$ on $X_{0}$ with $\Phi(x, 1)=(\Phi_{1}(x), 1)$ and $\Phi(x, 2)=(\Phi_{2}(x), 2)$ for every
$x\in X_{0}$ . Since $T(f_{A})\circ\pi_{1}=\Phi_{1}$ on $X_{0},$ $T(f_{A})\circ\pi_{1}$ is an analytic automorphism on
$D_{0}$ and $T(f_{A})\circ\pi_{1}(1)=1$ . It follows that $T(f_{A})0\pi_{1}$ is extended to the analytic
automorphism on $D$ which fixes the origin and 1; $T(f_{A})\circ\pi_{1}(z)=z$ for every $z\in D$ .
So we have that $(T(f_{A})0\pi_{1})^{\prime}(0)=1$ . In a way similar to the above, we see that
$(T(f_{A})\circ\pi_{2})^{\prime}(0)=1$ , which contradicts to Lemma 2.3. Thus we see that $A$ is not
algebraically isomorphic to B. $\square $

Lemma 2.7. Let $\eta$ : $X\rightarrow\{-1,1\}$ be $\eta(x, i)=(-1)^{i}$ . Then the map $T$ : $A\rightarrow B$

defined by $T(f)=\eta f$ is surjective and satisfies the equality
$\sigma(T(f)T(g))=\sigma(fg)$ , $f,$ $g\in A$ .

A proof is clear and is omitted.
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