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Isometric Composition Operators Between Two
Weighted Hardy Spaces
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Abstract

We study isometric composition operators $C_{\phi}$ between two weighted Hardy
spaces $H^{2}(v)$ and $H^{2}(\mu)$ when $v$ is a radial measure. The isometric $C_{\phi}$ is
related to a moment sequence and such a $\phi$ is studied by the Nevanlinna
counting function of $\phi$ when $\mu$ is the normalized Lebesgue measure on the
unit circle.

\S 1. Introduction

Let $D$ be the open unit disc in the complex plane $\mathbb{C}$ . We denote by $\mathcal{P}$ the set
of all analytic polynomials and $H$ the set of all analytic functions on $D$ . Let $\mu$ be
a positive Borel measure on $\overline{D}$ with $\mu(\overline{D})=1$ . $H^{p}(\mu)$ denotes the closure of all
analytic polynomials in $L^{p}(d\mu)$ for $ 0<p<\infty$ . If $ d\mu=d\theta/2\pi$ , then $H^{p}(\mu)=H^{p}$

is the classical Hardy space. If $ d\mu=2rdrd\theta/2\pi$ , then $H^{p}(\mu)=L_{a}^{p}$ is the classical
Bergman space. $H^{p}$ and $IF_{a}$ can be embeded in $H$ . In this paper, we assume that
$H^{p}(\mu)$ is embeded in $H$ for a general $\mu$ . $H^{\infty}$ denotes the set of all bounded analytic
functions on $D$ . We also assume that $H^{\infty}=H\cap L^{\infty}(d\mu)$ .

For an analytic self map $\phi$ of $D$ , the composition operator $C_{\phi}$ is defined by
$(C_{\phi}f)(z)=f(\phi(z))$ $(z\in D)$ for $f$ in $H$ . Throughout this paper, we assume that
$v$ and $\mu$ are positive Borel measures on $\overline{D}$ with $v(\overline{D})=\mu(\overline{D})=1$ . $v$ is called a
radial measure if $ dv=dv_{0}(r)d\theta/2\pi$ for a positive Borel measure $v_{0}$ on $[0,1]$ . Since
$d\theta/2\pi=d\delta_{r=1}d\theta/2\pi,$ $ d\theta/2\pi$ is a radial measure.

In this paper, we studied isometric composition operators from $H^{2}(v)$ into $H^{2}(\mu)$

when $v$ is a radial measure. As we show in the final section, our isometric composi-
tion operator $C_{\phi}$ is related to an isometric operator $T$ from $H^{p}(v)$ into $H^{p}(\mu)$ with
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$T1=1$ when $p\neq 2$ . We have a long history for such isometric operators (see [8]).
The onto isometries on $H^{p}$ or $L_{a}^{p}$ for $p\neq 2$ were described completely. Unfortunately
into isometries have been known very little.

Problem 1. For given measures $v$ and $\mu$ , does there exist an isometric com-
position operator $C_{\phi}$ from $H^{2}(v)$ into $H^{2}(\mu)9$ If there exists such a $C_{\phi}$ , describe
$\phi$ .

A function $F$ in $H^{2}(\mu)$ is called an inner function in $H^{2}(\mu)$ if

$\int_{\overline{D}}f|F|^{2}d\mu=\int_{\overline{D}}fd\mu\int_{\overline{D}}|F|^{2}d\mu$ $(f\in \mathcal{P})$ .

If $\phi^{n}$ is an inner function in $H^{2}(\mu)$ with $\int_{\overline{D}}\phi d\mu=0$ for any $n\geq 0$ then there exists

a unique radial measure $v$ such that $C_{\phi}$ is isometric from $H^{2}(v)$ into $H^{2}(\mu)$ where
$ d\nu=dv_{0}(r)d\theta/2\pi$ and $1\in suppv_{0}$ . This is not difficult to prove. However we don’t
know whether the converse is true.

Problem 2. If a composition operator $C_{\phi}$ is isometric from $H^{2}(v)$ into $H^{2}(\mu)$

then is $\phi^{n}$ an inner function in $H^{2}(\mu)$ with $\int_{\overline{D}}\phi d\mu=0$ for any $n\geq 0p$

A function $\phi$ in $H^{\infty}$ with $\Vert\phi\Vert_{\infty}=1$ is called a Rudin’s orthogonal function in
$H^{2}(\mu)$ if $\{\phi^{n};n=0,1,2, \cdots\}$ is a set of orthogonal functions in $H^{2}(\mu)$ . If $\phi^{n}$ is an
inner function in $H^{2}(\mu)$ with $\int_{\overline{D}}\phi d\mu=0$ for any $n\geq 0$ and $\Vert\phi\Vert_{\infty}=1$ then $\phi$ is a

Rudin’s orthogonal function in $H^{2}(\mu)$ because $\mathcal{P}$ is dense in $H^{2}(\mu)$ by its definition.
We can as$k$ whether the converse is true or not.

Problem 3. If $\phi$ is a Rudin’s orthogonal function in $H^{2}(\mu)$ then is $\phi^{n}$ an inner

function in $H^{2}(\mu)$ with $\int_{\overline{D}}\phi d\mu=0$ for any $n\geq 0Q$

When $ d\mu=d\theta/2\pi$ , Problem 3 was studied by several people, for example,
$[2],[3],[5],[6]$ and [10]. C. Bishop [2] and C. Sundberg [10] gave counter examples.
Hence there exists a Rudin’s orthogonal function which is not an inner function in
$H^{2}(d\theta/2\pi)$ .

Problem 3 $h$as a strong conection with Problem 2. In fact, if $C_{\phi}$ is an isometric
operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ then by Theorem 1 $\phi$ is a Rudin’s orthogonal
function in $H^{2}(\mu)$ . Conversely if $\phi$ is a Rudin’s orthogonal function in $H^{2}(\mu)$ then
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by Proposition 8 there exists a unique radial measure $v$ such that $C_{\phi}$ is an isometric
operator from $H^{2}(v)$ into $H^{2}(\mu)$ .

For each $\phi$ , we will use two Borel measures $\mu_{\phi}$ on $\overline{D}$ and $\mu_{|\phi|}$ on $[0,1]$ . For a
Borel set $E$ in $\overline{D}\mu_{\phi}(E)=\mu(\{z\in\overline{D};\phi(z)\in E\})$ and for a Borel set $G$ in $[0,1]$

$\mu_{|\phi|}(G)=\mu(\{z\in\overline{D};|\phi(z)|\in G\}$ .

\S 2. General case

In this section we assume that $v$ is a radial measure, $\mu$ is an arbitrary measure
and $\phi$ is an analytic selfmap with $\Vert\phi\Vert_{\infty}=1$ . We say that $\{a_{n}\}$ is a moment sequence

of $v_{0}$ , a positive Borel measure on $[0,1]$ , if $a_{n}=\int_{0}^{1}r^{n}dv_{0}(n=0,1,2, \cdots)$ .

Theorem 1. Suppose $ dv=dv_{0}(r)d\theta/2\pi$ . Then $C_{\phi}$ is an isometric operator

from $H^{2}(v)$ into $H^{2}(\mu)$ if and only if $\int_{\overline{D}}\phi^{n}\overline{\phi}^{m}d\mu=0(n\neq m)$ and $\{\int_{\overline{D}}|\phi|^{n}d\mu\}$ is

a moment sequence of $v_{0}$ .

Proof. If $C_{\phi}$ is isometric, by the polarization formula

$\delta_{nm}\int_{0}^{1}r^{n}r^{m}dv_{0}(r)=\int_{\overline{D}}z^{n}\overline{z}^{m}dv=\int_{\overline{D}}\phi^{n}\overline{\phi}^{m}d\mu$

because $v$ is a radial measure. Hence

$\int_{\overline{D}}|\phi|^{2n}d\mu=\int_{0}^{1}r^{2n}dv_{0}(n=0,1,2, \cdots)$ .

It is elementary to see that $x=\sqrt{1-(1-x^{2})}=\sum_{n=0}^{\infty}a_{n}(1-x^{2})^{n}$ and $\sum_{n=0}^{\infty}|a_{n}|(1-$

$x^{2})^{n}<\infty(0\leq x\leq 1)$ . Hence by Lebesgue’s dominated convergence theorem

$\int_{\overline{D}}|\phi|d\mu$ $=$ $\int_{\overline{D}}\sum_{n=0}^{\infty}a_{n}(1-|\phi|^{2})^{n}d\mu=\sum_{n=0}^{\infty}a_{n}\int_{\overline{D}}(1-|\phi|^{2})^{n}d\mu$

$=$ $\sum_{n=0}^{\infty}a_{n}\int_{0}^{1}(1-r^{2})^{n}dv_{0}=\int_{0}^{1}\sum_{n=0}^{\infty}a_{n}(1-r^{2})^{n}dv_{0}=\int_{0}^{1}rd\nu_{0}$

because $|\sum_{n=0}^{k}a_{n}(1-|\phi|^{2})^{n}|\leq\sum_{n=0}^{\infty}|a_{n}|$ and $|\sum_{n=0}^{k}a_{n}(1-r^{2})^{2}|\leq\sum_{n=0}^{\infty}$ I $ a_{n}|<\infty$ . Simi-

larly, as $x^{2\ell+1}=\sqrt{1-(1-x^{4\ell+2})}$ we can show that $\int_{\overline{D}}|\phi|^{2n+1}d\mu=\int_{0}^{1}r^{2n+1}dv_{0}(n=$
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$0,1,2,$ $\cdots$ ). Thus $\{\int_{\overline{D}}|\phi|^{n}d\mu\}$ is a moment sequence of $v_{0}$ .

Conversely if $\int_{\overline{D}}\phi^{n}\overline{\phi}^{m}d\mu=0(n\neq m)$ and $\{\int_{\overline{D}}|\phi|^{n}d\mu\}$ is a moment sequence

of $v_{0}$ , then

$\int_{\overline{D}}|\sum_{n=0}^{k}a_{n}\phi^{n}|^{2}d\mu=\sum_{n=0}^{k}|a_{n}|^{2}\int_{\overline{D}}|\phi|^{2n}d\mu$

$=$ $\sum_{n=0}^{k}|a_{n}|^{2}\int_{0}^{1}r^{2n}d\nu_{0}=\int_{\overline{D}}|\sum_{n=0}^{k}a_{n}z^{n}|^{2}dv$.

Hence $C_{\phi}$ is isometric. $\square $

Theorem 2. If $ dv=d\nu_{0}(r)d\theta/2\pi$ then the following conditions are equivalent.

(1) $C_{\phi}$ is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ .

(2) $v_{0}=\mu_{|\phi|}$

(3) $\int_{0}^{1}F(r)dv_{0}=\int_{\overline{D}}F(|\phi|)d\mu$ for any Borel nonnegative function $F$ on $[0,1]$ .

Proof. (1) $\Rightarrow(2)$ If $G$ is a Borel set in $[0,1]$ , then $v_{0}(G)=\inf\{v_{0}(V)$ ; $G\subset V,$ $V$

is open in $[0,1]$ } because $v_{0}$ is a Borel measure. Hence there exists a sequence of
continuous functions $\{f_{m}\}$ such that $f_{m}\rightarrow\chi_{G}a.e$ . $\nu_{0}$ on $[0,1]$ and $\Vert f_{m}\Vert_{\infty}\leq\gamma<$

$\infty(m=1,2, \cdots)$ . By the Stone-Weierstrass theorem,

$\int_{0}^{1}f_{m}(r)d\nu_{0}=\int_{\overline{D}}f_{m}(|\phi|)d\mu(m=1,2, \cdots)$

because $\int_{0}^{1}r^{n}d\nu_{0}=\int_{\overline{D}}|\phi|^{n}d\mu(n=0,1,2, \cdots)$ . Thus $v_{0}(G)=\mu(\{z\in\overline{D}$ ; $|\phi(z)|\in$

$G\})$ . (2) $\Rightarrow(3)$ is clear. (3) $\Rightarrow(1)$ is a result of Theorem 1. $\square $

The following theorem shows that we can solve Problem 2 in the Introduction
when $C_{\phi}$ is onto.

Theorem 3. Suppose $ dv=d\nu_{0}(r)d\theta/2\pi$ . If $C_{\phi}$ is an isometmc operator from
$H^{2}(v)$ onto $H^{2}(\mu)$ then $\phi^{n}$ is an inner function in $H^{2}(\mu)$ for any $n\geq 0$ .

Proof. Let $F\in \mathcal{P}$ then there exists $f\in H^{2}(v)$ such that $ F=f\circ\phi$ . Let $f=$
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$\sum_{j=0}^{\infty}a_{j}z^{j}$ , since $\sum_{j=0}^{\infty}|a_{j}|^{2}\int_{0}^{1}r^{2j}dv_{0}(r)<\infty,$ $ F=\sum_{j=0}^{\infty}a_{j}\psi$ and $\sum_{j=0}^{\infty}|a_{j}|^{2}\int_{\overline{D}}|\phi|^{2j}d\mu<\infty$ .

By Theorem 1, for any $\ell\geq 0$

$\int_{\overline{D}}F|\phi|^{2\ell}d\mu=a_{0}\int_{\overline{D}}|\phi|^{2\ell}d\mu=\int_{\overline{D}}Fd\mu\int_{\overline{D}}|\phi|^{2\ell}d\mu$

because $\int_{\overline{D}}\phi d\mu=0$ . This implies that $\phi^{\ell}$ is an inner function in $H^{2}(\mu)$ for any
$\ell\geq 0$ .

When $ dv=dv_{0}(r)d\theta/2\pi$ , if $C_{\phi}$ is an isometric operator from $H^{2}(v)$ into $H^{2}(\mu)$

then $C_{z}$ is isometric from $H^{2}(v)$ onto $H^{2}(\mu_{\phi})$ .

Corollary 1. Suppose $ dv=dv_{0}(r)d\theta/2\pi$ . If $C_{z}$ is an isometric opemtor then
$z^{n}$ is an inner function in $H^{2}(\mu)$ for any $n\geq 0$ . Moreover $d\mu=dv_{1}(r)d\theta/2\pi+$

$d\delta_{r=0}d\mu_{1}(\theta)$ . where $v_{1}$ is a Borel measure on $[0,1]$ and $\mu_{1}$ is a Borel measure on $\partial D$ .
If $v_{0}$ does not have poin $t$ mass on $\{r=0\}$ then $ v=\mu$ .

Proof. By the remark above, $C_{z}$ is isometric from $H^{2}(v)$ onto $H^{2}(\mu)$ because
$\mu_{z}=\mu$ . By Theorem 3, $z^{n}$ is inner in $H^{2}(\mu)$ for any $n\geq 0$ . Put $C_{0}[0,1]=$

{$u;u$ is continuous on [0,1] and $u(O)=0$} and $C_{0}(\partial D)=\{f;f$ is continuous
on $\partial D$ and $f(1)=0$}. Since $ r^{n}d\mu$ annihilates $z\mathcal{P}+\overline{z}\overline{\mathcal{P}}$ for any $n\geq 0$ , for
any $j\neq 0,$ $d\mu\perp\{r^{2n+|j|}e^{ij\theta};n=0,1,2, \cdots\}$ . By the M\"untz-Szasz theorem [6],
$d\mu\perp C_{0}[0,1]e^{ij\theta}$ for any $j\neq 0$ and so $d\mu\perp C_{0}[0,1]\otimes C_{0}(\partial D)$ . This implies that
$d\mu=dv_{1}(r)d\theta/2\pi+d\delta_{r=0}d\mu_{1}(\theta)$ where $v_{1}$ is a Borel measure on $[0,1]$ and $\mu_{1}$ is a
Borel measure on $T$ . If $v_{0}$ does not have point mass on $\{r=0\}$ then we may assume
that $\mu_{1}=0$ and so $ d\mu=dv_{1}(r)d\theta/2\pi$ . By Theorem 2 $v_{0}=\mu_{|z|}$ and $\mu_{|z|}=v_{1}$ because
$ d\mu=dv_{1}(r)d\theta/2\pi$ . $\square $

\S 3. Radial measure

In this section we assume that $v$ and $\mu$ are radial measures, that is, $dv=$
$ dv_{0}(r)d\theta/2\pi$ and $ d\mu=d\mu_{0}(r)d\theta/2\pi$ . Proposition 1 solves Problem 2 when $ v=\mu$ .
By Theorem 2, if $C_{\phi}$ is isometric from $H^{2}(v)$ into $H^{2}(\mu)$ , then for some positive
integer $k$

$\int_{0}^{1}\log rdv_{0}\leq k\int_{0}^{1}\log rd\mu_{0}+\int_{0}^{2\pi}$ log $|\phi(e^{i\theta})|d\theta$

as $F(t)=\log t$ , using the inner outer factorization of $\phi$ . Proposition 2 gives an exact
formula for this.
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Proposition 1. Suppose $v$ is a mdial measure. If $C_{\phi}$ is an isometric opemtor
from $H^{2}(v)$ into $H^{2}(v)$ , then $\phi^{n}$ is an inner function in $H^{2}(v)$ for any $n\geq 0$ .

Proof. By Theorem 1, $\phi(0)=0$ because $v$ is a radial measure and so by Schwarz’s

lemma, $|\phi(z)|\leq|z|$ $(z\in D)$ . Since $\int_{\overline{D}}|\phi(z)|^{2}dv=\int_{\overline{D}}|z|^{2}dv,$ $|\phi(z)|=|z|a.e$ . $v$ .

For $f\in \mathcal{P}$ ,

$\int_{\overline{D}}f|\phi|^{2n}dv=\int_{\overline{D}}f|z|^{2n}dv=f(0)\int_{0}^{1}r^{2n}dv_{0}=\int_{\overline{D}}fdv\int_{\overline{D}}|\phi|^{2n}dv$ . $\square $

Proposition 2. Suppose $v$ and $\mu$ are mdial measures, that is, $ dv=dv_{0}(r)d\theta/2\pi$

and $ d\mu=d\mu_{0}(r)d\theta/2\pi$ . Let $\phi=z^{k}BQh$ where $k$ is a positive integer, $B$ is a Blaschke

product with $B(O)\neq 0,$ $Q(z)=\exp-\int_{0}^{2\pi}\frac{e^{it}+z}{e^{it}-z}d\lambda(t)$ is a singular inner function
and $h$ is an outer function. If $C_{\phi}$ is an isometric opmtor from $H^{2}(\nu)$ into $H^{2}(\mu)$ ,
then

$\int_{0}^{1}\log rdv_{0}=k\int_{0}^{1}\log rd\mu_{0}+\int_{0}^{1}d\mu_{0}\int_{0}^{r}n(s, B)\frac{ds}{s}+$

log $|B(0)|-\mu_{0}([0,1))\lambda([0,2\pi])+\int_{0}^{2\pi}$ log $|\phi(e^{i\theta})|d\theta/2\pi$

where $n(s, B)$ is the number of zeros of $B$ on the closed disc $\{z\in \mathbb{C} ; |z|\leq r\}$ .

Proof. Let $n(s, B)=n(s, BQh)$ is the number of zeros of $BQh$ on the closed
disc $\{z\in \mathbb{C} ; |z|\leq r\}$ . Then, by Theorem 2 and [1, \S 2 of Chapter 5]

$\int_{0}^{1}\log rdv_{0}$

$=$ $\int_{0}^{1-}d\mu_{0}\int_{0}^{2\pi}$ log $|\phi(re^{i\theta})|d\theta/2\pi+\mu_{0}(\{1\})\int_{0}^{2\pi}$ log $|\phi(e^{i\theta})|d\theta/2\pi$

$=$ $\int_{0}^{1-}d\mu_{0}\{\log r^{k}+\int_{0}^{r}n(s, B)\frac{ds}{s}\}+\mu_{0}([0,1))\log|B(0)Q(0)h(0)|$

$+\mu_{0}(\{1\})\int_{0}^{2\pi}\log|\phi(e^{i\theta})|d\theta/2\pi$

$=$ $k\int_{0}^{1}\log rd\mu_{0}+\int_{0}^{1}d\mu_{0}\int_{0}^{r}n(s, B)\frac{ds}{s}+\log|B(0)|$

$-\mu_{0}([0,1))\lambda([0,2\pi])+\int_{0}^{2\pi}$ log I $\phi(e^{i\theta})|d\theta/2\pi$
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because $\mu_{0}(\{1\})\int_{0}^{1}n(s, B)\frac{ds}{s}=-\mu_{0}(\{1\})\log|B(0)|$ . $\square $

\S 4. Special cases

In this section we assume that $v$ or $\mu$ is the normalized Lebesgue measure or
the normalized area measure. Proposition 3 solves Problems 1 and 2 when $v$ is the
normalized Lebesgue measure on the circle and $\mu$ is a radial measure. Proposition 5
solves Problem 2 when $v$ is a radial measure or the Lebesgue measure on the circle.
Corollary 3 solves Problem 2 negatively when $ dv=2rdrd\theta/2\pi$ and $ d\mu=d\theta/2\pi$ .

Proposition 3. Let $\mu$ be a mdial measure. $C_{\phi}$ is an $isomet7\dot{\eta}c$ opemtor from
$H^{2}$ into $H^{2}(\mu)$ if and only if $\phi^{n}$ is an inner function with $\int_{\overline{D}}\phi d\mu=0$ in $H^{2}(\mu)$ for
any $n\geq 1$ and $H^{2}(d\mu)=H^{2}$ .

Proof. If $C_{\phi}$ is isometric, by Theorem 1 $\int_{\overline{D}}\phi^{n}\overline{\phi}^{m}d\mu=0(n\neq m)$ and we have

$1=\int_{0}^{2\pi}|z|^{2}d\theta/2\pi=\int_{\overline{D}}|\phi|^{2}d\mu\leq 1$ .

Hence $|\phi(z)|=1a.e$ . $\mu$ and so supp $\mu\subset\partial D$ . This implies that $ d\mu=d\delta_{r=1}d\theta/2\pi$

because $\mu$ is a radial measure. The converse is clear. $\square $

Proposition 4. Suppose $ dv=dv_{0}(r)d\theta/2\pi$ and $C_{\phi}$ is an isometric operator
from $H^{2}(v)$ into $H^{2}$ .

(1) $v_{0}(\{a\})>0$ for $0\leq a\leq 1$ if and only if $d\theta/2\pi(\{e^{i\theta};|\phi(e^{i\theta})|=a\})>0$ .

(2) $dv_{0}=d\delta_{r=1}$ if and only if $\phi$ is an inner function in $H^{2}$ .

(3) $v_{0}$ is a discrete measure if and only if $|\phi|=\sum_{n=1}^{\infty}a_{n}\chi_{E_{n}}$ where $0\leq a_{n}\leq 1$ , and

$d\theta/2\pi(E_{n})=v_{0}(\{a_{n}\})(n=1,2, \cdots)$ .

Proof. Since $v_{0}(G)=d\theta/2\pi\{e^{i\theta};|\phi(e^{i\theta)}|\in G\})$ for a Borel set $G$ in $[0,1]$ by
Theorem 2, it is easy to see. $\square $

Proof. This is just (2) of Proposition 4.
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Now we consider when $ dv=rdrd\theta/\pi$ or $ d\mu=rdrd\theta/\pi$ .

Proposition 5. If $C_{\phi}$ is an isometric opemtor from $L_{a}^{2}$ into $H^{2}(\mu)$ , then $\mu(\{z\in$

$\overline{D};|\phi|=b\}=0$ and $\int_{\overline{D}}(b-|\phi|)^{-1}d\mu=\infty$ for any $0\leq b\leq 1$ .

Proof. It is clear by Theorem 2. $\square $

Corollary 2. If $C_{\phi}$ is an isometric opemtor from $L_{a}^{2}$ into $H^{2}$ , then $\phi$ is not
inner in $H^{2}$ .

Proposition 6. Suppose $ d\nu=d\nu_{0}(r)d\theta/2\pi$ . If $C_{\phi}$ is an isometric opemtor

from $H^{2}(\nu)$ into $L_{a}^{2}$ , then $\int_{0}^{1}\log rd\nu_{0}=-\frac{k}{4}+\int_{0}^{1}$ 2rdr $\int_{0}^{r}n(s, B)\frac{ds}{s}+\log|B(0)|-$

$\lambda([0,2\pi])$

$+\int_{0}^{2\pi}$ log $|\phi(e^{i\theta})|d\theta/2\pi$ , where the inner part of $\phi$ is $z^{k}BQ,$ $B$ is a Blaschke procuct

with $B(O)\neq 0,$ $ Q(z)=\exp-\int_{0}^{2\pi}\frac{e^{it}+z}{e^{it}-z}d\lambda$ is a singular inner function. Hence if

$\phi$ is a shri cht function, then $\int_{0}^{1}\log rdv_{0}=-\frac{1}{4}+\int_{0}^{2\pi}$ log $|\phi(e^{i\theta})|d\theta/2\pi$ .

Proof. It is clear by Proposition 2. $\square $

\S 5. Nevanlinna counting function

Suppose $v$ or $\mu$ is the normalized Lebesgue measure or the normalized area
measure. We assume that $\phi$ is a non-constant function in $H^{\infty}$ with $\Vert\phi\Vert_{\infty}=1$ . The
Nevanlinna counting function of $\phi,$ $N_{\phi}$ , is defined on $D\backslash \{\phi(0)\}$ by

$N_{\phi}(w)=\sum_{\phi(z)=w}\log\frac{1}{|z|}$ ,

where multiplicities are counted and $N_{\phi}(w)$ is taken to be zero if $w$ is not in the
range of $\phi$ . Corollary 4 seems to be interesting in spite of Corollary 3.

Theorem 4. Suppose $ d\nu=dv_{0}(r)d\theta/2\pi$ . Then, $C_{\phi}$ is an isometric opemtor

–118–



from $H^{2}(v)$ into $H^{2}$ if and only if

$N_{\phi}(z)=\int_{|z|}^{1}\log\frac{r}{|z|}dv_{0}(r)$

for $n$early all $z$ in $D$ .

Proof. The ‘only if’ part was proved in [6, Lemma 3]. If $N_{\phi}(z)=\int_{|z|}^{1}$ log $\frac{r}{|z|}dv_{0}(r)$

for nearly all $z$ in $D$ , by the Littlewood-Paley theorem (see [3]),

$\int_{0}^{2\pi}\phi^{n}(e^{i\theta})\overline{\phi}^{m}(e^{i\theta})d\theta/2\pi$

$=$ 2nm $\int_{\overline{D}}z^{n-1}\overline{z}^{m-1}N_{\phi}(|z|)dA(z)$

$=$ $4nm\delta_{nm}\int_{0}^{1}r^{n+m-1}(\int^{1}\log\frac{s}{r}dv_{0}(s))dr$

$=$ $4nm\delta_{nm}\int_{0}^{1}dv_{0}(s)\int_{0}^{s}r^{m+n-1}(\log\frac{s}{r})dr$

$=$ $\frac{4nm}{(n+m)^{2}}\delta_{nm}\int_{0}^{1}s^{n+m}dv_{0}(s)$ .

When $n=m,$ $\int_{0}^{2\pi}|\phi(e^{i\theta})|^{2n}d\theta/2\pi=\int_{0}^{1}s^{2n}dv_{0}(s)$ for $n=0,1,2,$ $\cdots$ . Hence by

Theorem 1 and its proof, $C_{\phi}$ is an isometric operator from $H^{2}(v)$ into $H^{2}$ .

Lemma. $D\backslash \{z\in D ; \phi^{\prime}(z)=0\}$ can be decomposed into an at most countable
disjoint collection $\{R_{n}\}$ of ”semi-closed” polar rectangles, on each of which $\phi$ is
schricht.

Proof. It is known in [9, p186]. $\square $

Corollary 3. Suppose $\phi$ is a finite-to-one map. Then $C_{\phi}$ is not an isometric
opemtor from $L_{a}^{2}$ into $H^{2}$ .

Proof. By Lemma, there exists the inverse $\psi_{n}$ of the restriction of $\phi$ to $R_{n}$ . Let
$w\in\phi(R_{j_{1}})$ . If $\phi$ is an $\ell$ to 1 map, then there exist $j_{2},$ $\cdots j_{\ell}$ such that $\psi_{j_{1}}(z)=$

$\psi_{j_{2}}(z)=\cdots=\psi_{j\ell}(z)=w$ . Hence there exists a small disc $\triangle$ in $\phi(R_{j_{1}})$ such that

$N_{\phi}(z)=\sum_{z=\phi(w)}\log\frac{1}{|w|}=\sum_{t=1}^{\ell}\log\frac{1}{|\psi_{j_{t}}(z)|}$
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for all $ w\in\triangle$ . Therefore there exists a subdisc $\triangle_{0}$ in $\triangle$ such that $N_{\phi}(z)$ is harmonic
on $\triangle_{0}$ . On the other hand, by Proposition 5

$N_{\phi}(z)=2\int_{|z|}^{1}(\log\frac{r}{|z|})rdr=\frac{|z|^{2}-1}{2}+\log\frac{1}{|z|}$ .

This contradicts that $N_{\phi}(z)$ is harmonic on $\triangle_{0}$ . $\square $

Theorem 5. $ Suppose\phi\ell$ is a contmctive function in $H^{\infty}$ such that $\phi$ is a finite-to-
one map and

$|\phi|=\sum_{j=1}a_{j}\chi_{E_{j}}$
where $0<a_{j}<a_{j+1}\neq’\sum_{j=1}^{\ell}\chi_{E_{j}}=1$ and $E_{j}$ is a measumble

set in $\partial D$ where $ 1\leq\ell\leq\infty$ . If the inner part of $ z-\phi$ is a Blaschke product for
each $z\in D$ , then $C_{\phi}$ is not an isometric opemtor from $H^{2}(v)$ into $H^{2}$ for any
$ dv=dv_{0}(r)d\theta/2\pi$ if $\ell\neq 1$ .

Proof. Suppose $C_{\phi}$ is an isometric operator from $H^{2}(\nu)$ into $H^{2}$ for some
$ dv=dv_{0}(r)d\theta/2\pi$ . By Proposition 4, $v_{0}$ is a discrete measure and $d\theta/2\pi(E_{j})=$

$v_{0}(\{a_{j}\})(j=1,2, \cdots)$ . Since $\phi(0)=0$ , by Lemma 2 in [6] and Proposition 7

$N_{\phi}(z)$ $=$ $\int_{0}^{2\pi}\log|z-\phi(e^{i\theta})|d\theta/2\pi+\log\frac{1}{|z|}$

$\int_{|z|}^{1}\log\frac{r}{|z|}d\nu_{0}(r)$

for $z\in D\backslash \{0\}$ . If $|z|\leq a_{1}$ , then

$\int_{|z|}^{1}\log\frac{r}{|z|}dv_{0}(r)=\sum_{j=1}^{\infty}(\log\frac{a_{j}}{|z|})\nu_{0}(\{a_{j}\})$

$=$ $\sum_{j=1}^{\infty}\nu_{0}(\{a_{j}\})\log\frac{1}{|z|}+\sum_{j=1}^{\infty}v_{0}(\{a_{j}\})$ log $a_{j}$

$=$ $\log\frac{1}{|z|}+\sum_{j=1}^{\infty}\nu_{0}(\{a_{j}\})$ log $a_{j}$ .

Hence if $|z|\leq a_{1}$ then

$\int_{0}^{2\pi}$ log $|z-\phi(e^{i\theta})|d\theta/2\pi=\sum_{j=1}^{\infty}v_{0}(\{a_{j}\})$ log $ a_{j}=\alpha$ .
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If $a_{1}<|z|\leq a_{2}$ , then

$\int_{|z|}^{1}\log\frac{r}{|z|}dv_{0}(r)=\sum_{j=2}^{\infty}(\log\frac{a_{j}}{|z|})v_{0}(\{a_{j}\})$

$\sum_{j=2}^{\infty}v_{0}(\{a_{j}\})\log\frac{1}{|z|}+\sum_{j=2}^{\infty}v_{0}(\{a_{j}\})$ log $a_{j}$

$\int_{0}^{2\pi}$ log $|z-\phi(e^{i\theta})|d\theta/2\pi$ $=$ $-v_{0}(\{a_{1}\})\log\frac{1}{|z|}+\sum_{j=2}^{\infty}v_{0}(\{a_{j}\})$ log $a_{j}$

$\beta\log\frac{1}{|z|}+\gamma$ .

where $\beta\neq 0$

For each $z\in D$ , put

$z-\phi(\zeta)=q_{z}(\zeta)h_{z}(\zeta)$ $(\zeta\in D)$

where $q_{z}(\zeta)$ is inner and $h_{z}(\zeta)$ is outer. Since $\phi$ is a finite-to-one map, $q_{z}$ is a finite
Blaschke product by hypothesis and so

$q_{\phi(t)}(\zeta)=\prod_{j=1}^{n}\frac{\zeta-b_{j}(t)}{1-\overline{b_{j}(t)}\zeta}$ $(t\in D)$ .

Then, since $\phi(0)=0$ ,

$\phi(t)=(-1)^{n}(.\prod_{=1}^{n}b_{j}(t))h_{\phi(t)}(0)$ $(t\in D)$ .

Put $D_{r}=\{t\in \mathbb{C};|t|\leq r\}$ for $0<r<1$ . If both $\phi$ and $\phi^{\prime}$ have no zeros on $\partial D_{r}$ then
there is a division $\{D_{r}^{j}\}_{1\leq j\leq n}$ of $D_{r}$ such that $\phi$ is one-to-one on $D_{r}^{j}$ for $1\leq j\leq n$ .
For, $\phi$ is conformal in a neighborhood of each point on $\partial D_{r}$ and so arg $\phi$ is increasing
on, $\partial D_{r}$ . Put $\phi_{j}=\phi|D_{r}^{j}$ and $b_{j}(t)=\phi_{j}^{-1}(\phi(t))$ for $1\leq j\leq n$ . Then $b_{j}(t)$ is analytic
except $\phi^{\prime}(t)=0$ when $\phi(t)$ in $\phi(D_{r})$ . Hence $h_{\phi(t)}(0)$ is analytic except $\phi^{\prime}(t)=0$ and

$\bigcup_{j=1}^{n}\{t\in D;b_{j}(t)=0\}$ when $\phi(t)$ in $\phi(D_{r})$ . Since $\phi(0)=0,$ $\{t\in D;|\phi(t)|<a_{1}\}$ is a

nonempty open set. We can choose $r$ such that $\{t\in D;|\phi(t)|<a_{1}\}\cap\phi(D_{r})\neq\emptyset$ .
If $|\phi(t)|\leq a_{1}$ , by what was proved above,

$\alpha=\int_{0}^{2\pi}$ log $|\phi(t)-\phi(e^{i\theta})d\theta/2\pi$

$\int_{0}^{2\pi}$ log I $h_{\phi(t)}(e^{i\theta})$ I $ d\theta/2\pi=\log$ I $h_{\phi(t)}(0)|$ .
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Hence $|h_{\phi(t)}(0)|=e^{\alpha}$ . and so $h_{\phi(t)}(0)$ is constant on $D_{r}$ . If $a_{1}<|\phi(t)|\leq a_{2}$ , by what
was proved above,

$\beta\log\frac{1}{|\phi(t)|}+\gamma=\int_{0}^{2\pi}$ log $|\phi(t)-\phi(e^{i\theta})|d\theta/2\pi$

$=\int_{0}^{2\pi}\log|h_{\phi(t)}(e^{i\theta})|d\theta 2\pi=\log|h_{\phi(t)}(0)|$

and so $|h_{\phi(t)}(0)|=e^{\gamma}|\phi(t)|^{\beta}$ . Since there exists $0<r<1$ such that $\{t\in D;a_{1}<$

$|\phi(t)|<a_{2}\}\cap\phi(D_{r})\neq\emptyset$ , this implies that $|\phi(t)|$ is constant there and so $\phi$ is
constant on $D$ . This contradicts that $\phi$ is a finite-to-one map. Therefore $C_{\phi}$ is not
isometric. $\square $

If $\phi$ is a one-to-one map then it is known [4, Theorem 3.17] that the inner part of
$ z-\phi$ is a Blaschke product for each $z\in D$ . Hence we need not such a hypothesis in
Theorem 5. Unfortunately we could not prove it in general, that is, for a finite-to-one
map.

\S 6. Rudin’s orthogonal function

In this section, we study Rudin’s orthogonal functions. By Theorem 1, if $C_{\phi}$

is an isometric operator from $H^{2}(v)$ into $H^{2}(\mu)$ then $\phi$ is a Rudin’s orthogonal
function. Proposition 7 implies the converse. This was proved by the author [6]
when $ d\mu=d\theta/2\pi$ . The proof is valid for an arbitrary $\mu$ . However we give a new
proof due to K. Izuchi.

Proposition 7. If $\phi$ is a Rudin’s orthogonal function in $H^{2}(\mu)$ then there exists
a unique mdial measure $v$ such that $C_{\phi}$ is an isometric opemtor from $H^{2}(\nu)$ into
$H^{2}(\mu)$ where $ d\nu=d\nu_{0}(r)d\theta/2\pi$ and $ 1\in$ supp $\nu_{0}$ .

Proof. Put $v_{0}=\mu_{|\phi|}$ and $ dv=d\nu_{0}d\theta/2\pi$ , then Theorems 1 and 2 imply the
proposition. $\square $

Corollary 4, Suppose $\phi$ is a finite-to-one map and $\phi$ is a Rudin’s orthogonal
function. If the inner part of $ z-\phi$ is a Blashke product for each $z\in D$ and

$|\phi|=\sum_{j=1}^{\ell}a_{j}\chi_{E_{j}}$ where $0\leq a_{j}<a_{j+1},$$\sum_{j=1}^{\ell}\chi_{E_{j}}\neq=1$ and $E_{j}$ is a measumble set in $\partial D$

where $ 1\leq\ell\leq\infty$ , then $|\phi|=1$ and so $\phi$ is a finite Blaschke product.
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Proof. If $\phi$ is a Rudin’s orthogonal function, then by Proposition 7 and Theorem
5, $\ell=1$ and so $\phi$ is a finite Blashke product. $\square $

In Corollary 4, if $\phi$ is one-to-one map then the inner part of $ z-\phi$ is a Blaschke
product (see $[4.Theorem3.17]$ ). Hence we can take off such a condition. However
in such a case Corollary 4 is not new. In fact, P. S. Bourdon [3] showed that if $\phi$ is
univalent and a Rudin’s orthogonal function then $\phi$ is just the coordinate function

\S 7. Final remark

The research in this paper gives more general one. Suppose $ 0<p<\infty$ and
$p\neq 2$ . $T$ is an isometric operator from $H^{p}(v)$ into $H^{p}(\mu)$ with $T1=1$ if and only
if $T=C_{\phi}$ for some $\phi$ in $H^{\infty}$ with $\Vert\phi\Vert_{\infty}=1$ and $C_{\phi}$ is an isometric operator from
$H^{p}(v)$ into $H^{p}(\mu)$ . For the ‘if’ part is trivial. For the ‘only if’ part, if $T$ is isometric
and $T1=1$ , then by [5, Theorem 7.5.3] $T(fg)=Tf\cdot Tga.e$ . $\mu$ and 1 $Tf\Vert_{\infty}=\Vert f\Vert_{\infty}$

for all $f\in \mathcal{P},$ $g\in \mathcal{P}$ . Hence if $\phi=Tz$ then $\phi$ belongs to $H^{\infty}$ and I $\phi\Vert_{\infty}=1$ .
Therefore $Tf=C_{\phi}f(f\in \mathcal{P})$ and so $Tf=C_{\phi}f(f\in H^{p}(v))$ . When $p\neq 2$ , if $C_{\phi}$

is an isometric operator from $H^{p}(v)$ into $H^{p}(\mu)$ , then $C_{\phi}$ is an isometric operator
from $H^{2}(v)$ into $H^{2}(\mu)$ . For by [5, Theorem 8.5.3], for all $f\in \mathcal{P}$ and $g\in \mathcal{P}$

$\int_{\overline{D}}C_{\phi}f\cdot\overline{C_{\phi}g}d\mu=\int_{\overline{D}}f\overline{g}d\mu$

and $\Vert C_{\phi}f\Vert_{\infty}=\Vert f\Vert_{\infty}$ . This implies that $C_{\phi}$ is an isometric operator from $H^{2}(v)$

into $H^{2}(\mu)$ .

We give two open problems:

(1) Are there any isometric $C_{\phi}$ from $L_{a}^{2}$ into $H^{2}$ ?

(2) When $v_{0}$ is a discrete measure and not a dirac measure, are there any isometric
$C_{\phi}$ from $H^{2}(v)$ to $H^{2}$ where $ dv=dv_{0}(r)d\theta/2\pi$ ?

Acknowledgement. The author wishes to express his sincere gratitude to the
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