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[sometric Composition Operators Between Two
Weighted Hardy Spaces

Takahiko Nakazi *

Abstract

We study isometric composition operators Cy4 between two weighted Hardy
spaces H2(v) and H?(u) when v is a radial measure. The isometric Cy is
related to a moment sequence and such a ¢ is studied by the Nevanlinna
counting function of ¢ when y is the normalized Lebesgue measure on the
unit circle.

§1. Introduction

Let D be the open unit disc in the complex plane C. We denote by P the set
of all analytic polynomials and H the set of all analytic functions on D. Let u be
a positive Borel measure on D with u(D) = 1. HP(u) denotes the closure of all
analytic polynomials in LP(du) for 0 < p < oo. If du = df/2m, then HP(u) = HP
is the classical Hardy space. If du = 2rdrdf/2m, then H?(u) = LP is the classical
Bergman space. H? and LP can be embeded in H. In this paper, we assume that
H?(u) is embeded in H for a general . H* denotes the set of all bounded analytic
functions on D. We also assume that H> = H N L*>®(du).

For an analytic self map ¢ of D, the composition operator C, is defined by
(Cof)(2) = f(¢(2)) (z € D) for f in H. Throughout this paper, we assume that
v and p are positive Borel measures on D with v(D) = u(D) = 1. v is called a
radial measure if dv = dyy(r)df/2r for a positive Borel measure 14 on [0,1]. Since
df/2m = db,-1d0 /2w, df/2m is a radial measure.

In this paper, we studied isometric composition operators from H?(v) into H2(u)
when v is a radial measure. As we show in the final section, our isometric composi-
tion operator Cy is related to an isometric operator T' from HP(v) into HP(u) with-
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T1 =1 when p # 2. We have a long history for such isometric operators (see [8]).
The onto isometries on H? or L® for p # 2 were described completely. Unfortunately
into isometries have been known very little.

Problem 1. For given measures v and u, does there erist an isometric com-
position operator Cy from H?(v) into H?(u) ? If there exists such a Cy, describe

0.

A function F in H?(u) is called an inner function in H?(u) if

/ﬁlePd“:/ﬁfd”/ﬁlFPdu (f € P).

If " is an inner function in H?(u) with /__ ¢dp = 0 for any n > 0 then there exists
D

a unique radial measure v such that C, is isometric from HZ?(v) into HZ(u) where
dv = dyy(r)df/2m and 1 € supp . This is not difficult to prove. However we don’t
know whether the converse is true.

Problem 2. If a composition operator C, is isometric from H?(v) into H?(u)

then is ¢™ an inner function in H?(u) with /_ ddp =0 for anyn >0 ?
D

A function ¢ in H*® with ||¢||c = 1 is called a Rudin’s orthogonal function in
H?(u) if {¢™;n =0,1,2,---} is a set of orthogonal functions in H?(u). If ¢" is an

inner function in H2(u) with /_q&du = 0 for any n > 0 and ||¢|lcc = 1 then ¢ is a

D
Rudin’s orthogonal function in H?(u) because P is dense in H?(y) by its definition.
We can ask whether the converse is true or not.

Problem 3. If ¢ is a Rudin’s orthogonal function in H?(u) then is ¢™ an inner
function in H?(u) with / ¢dp =0 for anyn >0 2
D

When dp = d@/2w, Problem 3 was studied by several people, for example,
(2],3],[5],[6] and [10]. C. Bishop [2] and C. Sundberg [10] gave counter examples.
Hence there exists a Rudin’s orthogonal function which is not an inner function in

H?(df/2r).

Problem 3 has a strong conection with Problem 2. In fact, if Cy is an isometric
operator from H?(v) into H?(u) then by Theorem 1 ¢ is a Rudin’s orthogonal
function in H%(u). Conversely if ¢ is a Rudin’s orthogonal function in H?(y) then
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by Proposition 8 there exists a unique radial measure v such that Cy is an isometric
operator from H?(v) into H?(u).

For each ¢, we will use two Borel measures p4 on D and pyy on [0,1]. For a
Borel set E in D pys(E) = u({z € D;¢(z) € E}) and for a Borel set G in [0,1]

e (G) = u({z € D;| 4(2) |e G}.

§2. General case

In this section we assume that v is a radial measure, u is an arbitrary measure
and ¢ is an analytic selfmap with ||¢||.c = 1. We say that {a,} is a moment sequence
1

of vy, a positive Borel measure on [0,1], if a,, = / r*dyy (n=0,1,2,---).
0

Theorem 1. Suppose dv = dvy(r)df/2n. Then Cy is an isometric operator

from H2(v) into H?(u) if and only if ‘/_qb"c%md,u, =0 (n # m) and {[_|¢|”d,u} is
D D

a moment sequence of vy.

Proof. If Cj is isometric, by the polarization formula
1

Onm [ Tr™di(r) = / 2"F"dy = / P ™ du
D D

0
because v is a radial measure. Hence

’ 1
| /;|¢,2ndu=/ TanVO '(n=O,1,2,...)_
D ‘ 0
It is elementary to see that z = /1 — (1 — 22?) = Zan(l — 22" and ZIG‘"'(l -
=0 n=0

7?)" < 0o (0 < z < 1). Hence by Lebesgue’s dominated convergence theorem

/ﬁwd“ ) /52“"(1—|¢| yd =3 on /ﬁ (1~ o) du

n=0

0o 1 1 o© 1
= Zan/ (1—r2)"d1/0=/ Zan(l—TQ)"dvoz/ rdvg
0 0 n=o 0

n=0
k
> an(1—1r?)?

n=0

because

oo
< Zlanl < oo. Simi-

n=0

1
larly, as z%*1 = /1 — (1 — 2%+2) we can show that / |62t du = / r?* ldyy (n =
D 0

o0
< Z[an| and

n=0

Zan(l — |o)"

n=0
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0,1,2,---). Thus {/_Iqbl”d,u} is a moment sequence of .
D

k
> an”

Conversely if / ¢"d™dpu = 0 (n # m) and { / |¢|"d,u} is a moment sequence
D D
n=0

of v, then
2 k
du=> lonf? [ I8"d
Jo Xl o
k

1 k
= Z|an|2/ r2"du0=/ Zanz"
0 D

n=0 n=0

2
dv.

Hence Cy is isometric. O

Theorem 2. If dv = dvy(r)df/2n then the following conditions are equivalent.
(1) Cy is an isometric operator from H?(v) into H%(u).

(2) vo = g

1
(8) / F(r)dyy = /; F(|¢)du for any Borel nonnegative function F on [0,1].
0 D

Proof. (1) = (2) If G is a Borel set in [0,1], then 15(G) = inf{y(V); GCV, V
is open in [0,1]} because vy is a Borel measure. Hence there exists a sequence of
continuous functions {f,} such that f,, — x¢ a.e. vy on [0,1] and ||fmllec < ¥ <
oo (m=1,2,---). By the Stone-Weierstrass theorem,

/0 Fon(r) iy = /5 fu(lthdu (m=1,2,---)

1

because / rdyy = /_|¢|"du (n=0,1,2,---). Thus (G) = u({z € D ; |¢(2)| €
0 D

G}). (2) = (3) is clear. (3) = (1) is a result of Theorem 1. O

The following theorem shows that we can solve Problem 2 in the Introduction
when Cj is onto.

Theorem 3. Suppose dv = diy(r)df/2n. If Cy is an isometric operator from
H?(v) onto H%(u) then @™ is an inner function in H%(u) for any n > 0.

Proof. Let F € P then there exists f € H?(v) such that FF = fo¢. Let f =

\
\
|
|
\
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00 oo 1 00 0

Zajzj, since Z\aj|2/ r¥dyy(r) < oo, F = Zajdﬂ and Z\aj|2/_|¢|2jd,u < oo.
— = 0 =0 =0 b

By Theorem 1, for any ¢ > 0

[ Floau=aa [ 1oPdn= [ Fau [ 6P an

because / ¢du = 0. This implies that ¢° is an inner function in H?(u) for any
‘ D
£>0.

When dv = diy(r)df/2x, if Cy is an isometric operator from H?(v) into H?(u)
then C, is isometric from H?(v) onto H?(uy).

Corollary 1. Suppose dv = divy(r)dé/2n. If C, is an isometric operator then
2™ is an inner function in H?(u) for any n > 0. Moreover du = dv,(r)d8/2m +
ddr—odp1(0). where v s a Borel measure on [0,1] and p; is a Borel measure on 8D.
If vy does not have point mass on {r = 0} then v = u.

Proof. By the remark above, C, is isometric from HZ?(v) onto H?(u) because
p; = p. By Theorem 3, 2" is inner in H?(u) for any n > 0. Put Co[0,1] =
{u;u is continuous on [0,1] and uw(0) = 0} and Co(8D) = {f;f is continuous
on 8D and f(1) = 0}. Since r"du annihilates 2P + zZP for any n > 0, for
any j # 0, du L {r»+llei®:n = 0,1,2,-.-}. By the Miintz-Szasz theorem [6],
dp L Col0,1]e*® for any j # 0 and so du L Cp[0,1] ® Co(8D). This implies that
dp = dvi(r)df/2m + db,—odpu1(6) where v; is a Borel measure on [0,1] and u; is a
Borel measure on T'. If v, does not have point mass on {r = 0} then we may assume
that p; = 0 and so du = dv,(r)df/2r. By Theorem 2 vy = ), and py,| = v4 because
du = dwn(r)d8/2=. O

83. Radial measure

In this section we assume that v and p are radial measures, that is, dv =
dvo(r)df/2m and dp = duo(r)df/2w. Proposition 1 solves Problem 2 when v = p.
By Theorem 2, if Cy is isometric from H?(v) into H?(u), then for some positive
integer k

1 1 27
/ logrdyy < k/ log rduy +/ log |¢(ei9)|d9
0 0 0

as F'(t) = logt, using the inner outer factorization of ¢. Proposition 2 gives an exact
formula for this.
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Proposition 1. Suppose v is a radial measure. If Cy is an isometric operator
from H?(v) into H?(v), then ¢" is an inner function in H2(v) for any n > 0.

Proof. By Theorem 1, ¢(0) = 0 because v is a radial measure and so by Schwarz’s
lemma, |¢p(z)| < |2| (2 € D). Since /_Id)(z)|2d1/ = /_Izl%m |¢(2)] = |2| a.e. v.
D
For f € P, ?

[ siomar = [ siapras =5 [ o= [ av [ foav. 0

Proposition 2. Suppose v and u are radial measures, that is, dv = dyy(r)d0/2n
and dp = duo(r)d8/2n. Let ¢ = 2* BQh where k is a positive integer, B is a Blaschke
2w it
product with B(0) # 0, Q(z) = exp — / Zit -_': zd/\(t) is a singular inner function
and h is an outer function. If Cy is an isometric oprator from H?(v) into H?(p),
then

1 1 1 T dS
/ log rdvy = k/ log rdug +/ duof n(s, B)— +
0 0 0 0 S

log |B(0)] — pio([0, 1))A([0, 21]) + f " log |(¢%)|d6 /2

where n(s, B) is the number of zeros of B on the closed disc {z € C ; |z| < r}.

Proof. Let n(s, B) = n(s, BQh) is the number of zeros of BQh on the closed
disc {z € C; |z| < r}. Then, by Theorem 2 and [1, §2 of Chapter 5]

/1 log rdyg
Jo
1— 27
= [ duo [ togletre)ide/2m + o({11) / log ¢(e)\d8/2
= /01_ duo {logr +/0 n(s,B)—s—}+,u0([0,1))log|B(0)Q(0)h(0)|
+ (1) [ loglo(elas)2m
k/o logrduo+/0 duo /Orn(s, B)%+log|B(0)|

— 1o(0, 1))A([0, 27]) + / " log |6(¢)|d8/2m
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becanse a({1}) [ n(s,B) = ~po({1}) log | BO)]. D

84. Special cases

In this section we assume that v or p is the normalized Lebesgue measure or
the normalized area measure. Proposition 3 solves Problems 1 and 2 when v is the
normalized Lebesgue measure on the circle and p is a radial measure. Proposition 5
solves Problem 2 when v is a radial measure or the Lebesgue measure on the circle.
Corollary 3 solves Problem 2 negatively when dv = 2rdrd6/2n and du = df/2m.

Proposition 3. Let p be a radial measure. Cy is an isometric operator from
H? into H*(u) if and only if ¢" is an inner function with / édu = 0 in H?(u) for
D
any n > 1 and H?(du) = H?2.

Proof. If Cy is isometric, by Theorem 1 / ¢"¢™du =0 (n # m) and we have
D

2w
1= / |2|2d68 /27 =/ ||%dp < 1.
0 D

Hence |¢(2)| = 1 a.e. p and so supp p C 8D. This implies that duy = dd,-1d0/2n
because p is a radial measure. The converse is clear. O

Proposition 4. Suppose dv = diy(r)df/2n and Cy is an isometric operator
from H?(v) into H2.

(1) vo({a}) > 0 for 0 < a <1 if and only if d8/2n({e?; |p(e*®)| = a}) > 0.

(2) dvg = db,=1 if and only if ¢ is an inner function in H?.

o0
(8) vo is a discrete measure if and only if || = Zanxp;n where 0 < a, <1, and

d0/2m(Ey) = vo({an}) (n=1,2,---). =

Proof. Since v(G) = df/2n{e?;|p(e"®)| € G}) for a Borel set G in [0,1] by
Theorem 2, it is easy to see. O

Proof. This is just (2) of Proposition 4.
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Now we consider when dv = rdrdf/m or dy = rdrdf/=.

Proposition 5. If C, is an isometric operator from L% into H*(u), then u({z €
D;|¢| = b} =0 and / (b— @) 'du = oo for any 0 < b < 1.
D

Proof. It is clear by Theorem 2. O

Corollary 2. If C, is an isometric operator from L2? into H 2 then ¢ is not
inner in H2.

Proposition 6. Suppose dv = diy(r)df/2n. If Cy is an isometric operator
from H?(v) into L2, then /; logrdyy = —% + /01 2rdr /OT n(s, B)% + log | B(0)| —
A([0, 27))

+ /0 ” log |p(e®)|dB/2m, where the inner part of ¢ is 2*BQ, B is a Blaschke procuct

27 e‘it + A
with B(0) # 0, Q(z) = exp — / dX is a singular inner function. Hence if

0 €t—z

1 1 2r )
¢ is a shricht function, then / log rdyy = ~1 + / log |¢(e®)|d6 /2.
0 0

Proof. It is clear by Proposition 2. O

§5. Nevanlinna counting function

Suppose v or u is the normalized Lebesgue measure or the normalized area
measure. We assume that ¢ is a non-constant function in H* with ||¢||cc = 1. The
Nevanlinna counting function of ¢, Ny, is defined on D\{¢(0)} by

Ny(w)= D log —

. 12l
#(2)=w
where multiplicities are counted and Ng(w) is taken to be zero if w is not in the

range of ¢. Corollary 4 seems to be interesting in spite of Corollary 3.

Theorem 4. Suppose dv = dyy(r)df/2m. Then, Cy is an isometric operator

—118 —



from H?(v) into H? if and only if

Ny(z) =/| log |—Z—|d1/0(7")

2|

for nearly all z in D.

1

- Proof. The ‘only if’ part was proved in [6, Lemma 3]. If Ny(2) = / log

jz| I |dV0(T)

for nearly all z in D, by the Littlewood-Paley theorem (see [3]),

27

¢" (€)™ (e*)d8/2m

— 2nm /E_ LN (|2])dA()

1 1
= 4nmb,m / prtm-1 ( / log ;dyo(s)) dr
0 r

1 s
. m+n—1 ‘_9_
Anmbpm dyo(s) /0 T (log 7") dr

dnm 5 1

fl

s"t™dyy(s).

27 1
When n = m, / |p(e®)|*"db/2m =/ §*"dvg(s) for n = 0,1,2,---. Hence by
0 0

Theorem 1 and its proof, Cy is an isometric operator from H?(v) into H2.

Lemma. D\ {z € D ; ¢'(z) =0} can be decomposed into an at most countable
disjoint collection {R,} of “semi-closed” polar rectangles, on each of which ¢ is
schricht.

Proof. It is known in [9, p186]. O

Corollary 3. Suppose ¢ is a finite-to-one map. Then Cy is not an isometric
operator from L2 into H2.

Proof. By Lemma, there exists the inverse 1), of the restriction of ¢ to R,,. Let
w € ¢(R;,). If ¢ is an ¢ to 1 map, then there exist ja,- -, je such that ¥; (2) =

V5, (2) = - - = 1;,(2) = w. Hence there exists a small disc A in ¢(R;,) such that
Ny(z lo lo
= 2 oy P
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for all w € A. Therefore there exists a subdisc Ay in A such that Ny(z) is harmonic
on Agy. On the other hand, by Proposition 5

! r |2|2 =1 1
Ny(z =2/ (1og——>rdr=————+log—.
o) =2 ) o8 2 B

2|

This contradicts that Ny(z) is harmonic on Ay. O

Theorem 5. Suppose ¢ is a contractive functzon in H* such that ¢ is a finite-to-

one map and |p| = Zajxg where 0 < ajjaJ_H, ZXE =1 and E; is a measurable
=1 i=1

set in 0D where 1 < ¢ < o0o. If the inner part of z — ¢ is a Blaschke product for

each z € D, then Cy is not an isometric operator from H?(v) into H? for any
dv = dVO(r)d0/27r if0# 1.

Proof. Suppose Cj is an isometric operator from H?(v) into H? for some
dv = diyy(r)d8/2n. By Proposition 4, vy is a discrete measure and df/27(E;) =
w({ae;}) (7=1,2,---). Since ¢(0) =0, by Lemma 2 in (6] and Proposition 7

2 . 1
Ny(z) = / log |z — ¢(€%)|d0 /27 + log 7
0
= /ll log P lduo(r)
for z € D\{0}. If |2| < a;, then
1 oo
log

” I IdVO(T) Z (log l I) Vo({(lj})

ZVO({%})IOg +Zuo({a,} loga,

I

- g ol s
Hence if |2| < a; then

27 00
/0 log |z — ¢(e%)|db /27 = Z v({a;})loga; = a.

j=1
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If a; < |z| < ag, then

tog odn(r) = S (1o 2 ) i)
| |2|

2| 7j=2

Z vo({a;}) log i+ Z vo({a;}) log a;

/0 " log |z — ¢(e®)|d8/27 = —vp({a1})log é—l + Z vo({a;}) log a;

1
= flog— +7.
]
where 3 # 0

For each z € D, put

where ¢,(¢) is inner and h,(() is outer. Since ¢ is a finite-to-one map, ¢, is a finite
Blaschke product by hypothesis and so

A1) (C) = l:_[ -f—:—b](—tt))z (t € D).

Then, since ¢(0) = 0,

¢(t) = (=1)" (H bj(t)> hs)(0) (t € D).

Put D, = {t € C;|t| < r} for 0 < r < 1. If both ¢ and ¢’ have no zeros on 4D, then
there is a division {D?}1<;<n of D, such that ¢ is one-to-one on D7 for 1 < j < n.
For, ¢ is conformal in a neighborhood of each point on 8D, and so arg ¢ is increasing
on, dD,. Put ¢; = ¢ | DI and b;(t) = ¢ (4(t)) for 1 < j < n. Then b;(t) is analytic
except ¢'(t) = 0 when ¢(¢) in ¢(D,). Hence hy)(0) is analytic except ¢'(t) = 0 and
\J{t € D;b;(t) = 0} when ¢(t) in ¢(D,). Since $(0) = 0,{t € D;|$(t)| < ar} is a
j=1

nonempty open set. We can choose r such that {t € D;|¢(t)| < a1} N ¢(D,) # .
If |¢(t)| < a1, by what was proved above,

27
o = / log |$(t) — $(e®)d6/2m

27
= / log ]h¢(t) (eze)ld9/27l’ = log |h¢(t) (0)’
0
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Hence |hy(4)(0)] = e*. and so hy)(0) is constant on D;. If a; < |¢(t)| < aq, by what
was proved above,

1
¢(2)]

27
= /0 log |hr) (e?)|d02m = log |y () (0)]

Blog

27 )
by = / log |$(t) — ¢(¢*)|d6/2r

and so |he)(0)] = €7|@()|P. Since there exists 0 < 7 < 1 such that {t € D;a; <
|p(t)] < ax} N d(D,) # @, this implies that |¢p(t)| is constant there and so ¢ is
constant on D. This contradicts that ¢ is a finite-to-one map. Therefore Cy is not
isometric. O

If ¢ is a one-to-one map then it is known [4, Theorem 3.17] that the inner part of
z — ¢ is a Blaschke product for each z € D. Hence we need not such a hypothesis in
Theorem 5. Unfortunately we could not prove it in general, that is, for a finite-to-one
map.

§6. Rudin’s orthogonal function

In this section, we study Rudin’s orthogonal functions. By Theorem 1, if Cy
is an isometric operator from H?(v) into H?(u) then ¢ is a Rudin’s orthogonal
function. Proposition 7 implies the converse. This was proved by the author [6]
when dyp = df/2n. The proof is valid for an arbitrary u. However we give a new
proof due to K. Izuchi.

Proposition 7. If ¢ is a Rudin’s orthogonal function in H?(u) then there exists
a unique radial measure v such that Cy is an isometric operator from H?(v) into
H?(u) where dv = dyy(r)d/2m and 1 € supp vp.

Proof. Put vy = 4 and dv = dyydf/27, then Theorems 1 and 2 imply the
proposition. O

Corollary 4, Suppose ¢ is a finite-to-one map and ¢ is a Rudin’s orthogonal
function. If the inner part of z — ¢ is a Blashke product for each z € D and
e ¢

lp| = Zaijj where 0 < ajfaj.,_l,ZxEj = 1 and E; is a measurable set in 0D

j=1 7j=1
where 1 < £ < 0o, then |¢| =1 and so ¢ is a finite Blaschke product.
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Proof. If ¢ is a Rudin’s orthogonal function, then by Proposition 7 and Theorem
5, £ =1 and so ¢ is a finite Blashke product. O

In Corollary 4, if ¢ is one-to-one map then the inner part of 2 — ¢ is a Blaschke
product (see [4.Theorem 3.17]). Hence we can take off such a condition. However
in such a case Corollary 4 is not new. In fact, P. S. Bourdon (3] showed that if ¢ is
univalent and a Rudin’s orthogonal function then ¢ is just the coordinate function
z.

87. Final remark

The research in this paper gives more general one. Suppose 0 < p < co and
p # 2. T is an isometric operator from H?(v) into HP(u) with T1 = 1 if and only
if T = C, for some ¢ in H*® with ||¢||l.c = 1 and Cy is an isometric operator from
H?(v) into HP(u). For the ‘if’ part is trivial. For the ‘only if’ part, if T is isometric
and T'1 = 1, then by [5, Theorem 7.5.3] T(fg) = T'f - Tg a.e. g and ||T f|lc = || flloo
for all f € P, g € P. Hence if ¢ = Tz then ¢ belongs to H*® and [|¢|lcc = 1.
Therefore Tf = Cpf (f € P)andso Tf =Cyf (f € HP(v)). When p # 2, if Cy
is an isometric operator from HP(v) into H?(u), then Cy is an isometric operator
from H?(v) into H%(u). For by [5, Theorem 8.5.3], for all f € P and g € P

[ ot -Tuga = [ faau
D D

and ||Cyflleo = ||flleo- This implies that Cy is an isometric operator from H?2(v)
into H2(u).

We give two open problems :
(1) Are there any isometric Cy from L2 into H? ?

(2) When v, is a discrete measure and not a dirac measure, are there any isometric
Cy from H?*(v) to H? where dv = dvy(r)d0/2m ?
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