Isometric Composition Operators Between Two Weighted Hardy Spaces

Takahiko Nakazi *

Abstract

We study isometric composition operators C_{ϕ} between two weighted Hardy spaces $H^2(\nu)$ and $H^2(\mu)$ when ν is a radial measure. The isometric C_{ϕ} is related to a moment sequence and such a ϕ is studied by the Nevanlinna counting function of ϕ when μ is the normalized Lebesgue measure on the unit circle.

§1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C} . We denote by \mathcal{P} the set of all analytic polynomials and H the set of all analytic functions on D. Let μ be a positive Borel measure on \overline{D} with $\mu(\overline{D}) = 1$. $H^p(\mu)$ denotes the closure of all analytic polynomials in $L^p(d\mu)$ for $0 . If <math>d\mu = d\theta/2\pi$, then $H^p(\mu) = H^p$ is the classical Hardy space. If $d\mu = 2rdrd\theta/2\pi$, then $H^p(\mu) = L^p_a$ is the classical Bergman space. H^p and L^p_a can be embedded in H. In this paper, we assume that $H^p(\mu)$ is embedded in H for a general μ . H^{∞} denotes the set of all bounded analytic functions on D. We also assume that $H^{\infty} = H \cap L^{\infty}(d\mu)$.

For an analytic self map ϕ of D, the composition operator C_{ϕ} is defined by $(C_{\phi}f)(z) = f(\phi(z))$ $(z \in D)$ for f in H. Throughout this paper, we assume that ν and μ are positive Borel measures on \overline{D} with $\nu(\overline{D}) = \mu(\overline{D}) = 1$. ν is called a radial measure if $d\nu = d\nu_0(r)d\theta/2\pi$ for a positive Borel measure ν_0 on [0, 1]. Since $d\theta/2\pi = d\delta_{r=1}d\theta/2\pi$, $d\theta/2\pi$ is a radial measure.

In this paper, we studied isometric composition operators from $H^2(\nu)$ into $H^2(\mu)$ when ν is a radial measure. As we show in the final section, our isometric composition operator C_{ϕ} is related to an isometric operator T from $H^p(\nu)$ into $H^p(\mu)$ with

^{*}This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

T1 = 1 when $p \neq 2$. We have a long history for such isometric operators (see [8]). The onto isometries on H^p or L^p_a for $p \neq 2$ were described completely. Unfortunately into isometries have been known very little.

Problem 1. For given measures ν and μ , does there exist an isometric composition operator C_{ϕ} from $H^2(\nu)$ into $H^2(\mu)$? If there exists such a C_{ϕ} , describe ϕ .

A function F in $H^2(\mu)$ is called an inner function in $H^2(\mu)$ if

$$\int_{\overline{D}} f|F|^2 d\mu = \int_{\overline{D}} f d\mu \int_{\overline{D}} |F|^2 d\mu \quad (f \in \mathcal{P}).$$

If ϕ^n is an inner function in $H^2(\mu)$ with $\int_{\overline{D}} \phi d\mu = 0$ for any $n \ge 0$ then there exists a unique radial measure ν such that C_{ϕ} is isometric from $H^2(\nu)$ into $H^2(\mu)$ where $d\nu = d\nu_0(r)d\theta/2\pi$ and $1 \in \text{supp } \nu_0$. This is not difficult to prove. However we don't know whether the converse is true.

Problem 2. If a composition operator C_{ϕ} is isometric from $H^2(\nu)$ into $H^2(\mu)$ then is ϕ^n an inner function in $H^2(\mu)$ with $\int_{\overline{D}} \phi d\mu = 0$ for any $n \ge 0$?

A function ϕ in H^{∞} with $\|\phi\|_{\infty} = 1$ is called a Rudin's orthogonal function in $H^{2}(\mu)$ if $\{\phi^{n}; n = 0, 1, 2, \cdots\}$ is a set of orthogonal functions in $H^{2}(\mu)$. If ϕ^{n} is an inner function in $H^{2}(\mu)$ with $\int_{\overline{D}} \phi d\mu = 0$ for any $n \geq 0$ and $\|\phi\|_{\infty} = 1$ then ϕ is a Rudin's orthogonal function in $H^{2}(\mu)$ because \mathcal{P} is dense in $H^{2}(\mu)$ by its definition. We can ask whether the converse is true or not.

Problem 3. If ϕ is a Rudin's orthogonal function in $H^2(\mu)$ then is ϕ^n an inner function in $H^2(\mu)$ with $\int_{\overline{D}} \phi d\mu = 0$ for any $n \ge 0$?

When $d\mu = d\theta/2\pi$, Problem 3 was studied by several people, for example, [2],[3],[5],[6] and [10]. C. Bishop [2] and C. Sundberg [10] gave counter examples. Hence there exists a Rudin's orthogonal function which is not an inner function in $H^2(d\theta/2\pi)$.

Problem 3 has a strong connection with Problem 2. In fact, if C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$ then by Theorem 1 ϕ is a Rudin's orthogonal function in $H^2(\mu)$. Conversely if ϕ is a Rudin's orthogonal function in $H^2(\mu)$ then

by Proposition 8 there exists a unique radial measure ν such that C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$.

For each ϕ , we will use two Borel measures μ_{ϕ} on \overline{D} and $\mu_{|\phi|}$ on [0,1]. For a Borel set E in \overline{D} $\mu_{\phi}(E) = \mu(\{z \in \overline{D}; \phi(z) \in E\})$ and for a Borel set G in [0,1] $\mu_{|\phi|}(G) = \mu(\{z \in \overline{D}; |\phi(z)| \in G\}.$

§2. General case

In this section we assume that ν is a radial measure, μ is an arbitrary measure and ϕ is an analytic selfmap with $\|\phi\|_{\infty} = 1$. We say that $\{a_n\}$ is a moment sequence of ν_0 , a positive Borel measure on [0,1], if $a_n = \int_0^1 r^n d\nu_0$ $(n = 0, 1, 2, \cdots)$.

Theorem 1. Suppose $d\nu = d\nu_0(r)d\theta/2\pi$. Then C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$ if and only if $\int_{\overline{D}} \phi^n \overline{\phi}^m d\mu = 0$ $(n \neq m)$ and $\left\{ \int_{\overline{D}} |\phi|^n d\mu \right\}$ is a moment sequence of ν_0 .

Proof. If C_{ϕ} is isometric, by the polarization formula

$$\delta_{nm} \int_0^1 r^n r^m d\nu_0(r) = \int_{\overline{D}} z^n \overline{z}^m d\nu = \int_{\overline{D}} \phi^n \overline{\phi}^m d\mu$$

because ν is a radial measure. Hence

$$\int_{\overline{D}} |\phi|^{2n} d\mu = \int_0^1 r^{2n} d\nu_0 \quad (n = 0, 1, 2, \cdots).$$

It is elementary to see that $x = \sqrt{1 - (1 - x^2)} = \sum_{n=0}^{\infty} a_n (1 - x^2)^n$ and $\sum_{n=0}^{\infty} |a_n| (1 - x^2)^n < \infty$ $(0 \le x \le 1)$. Hence by Lebesgue's dominated convergence theorem

$$\begin{split} \int_{\overline{D}} |\phi| d\mu &= \int_{\overline{D}} \sum_{n=0}^{\infty} a_n (1-|\phi|^2)^n d\mu = \sum_{n=0}^{\infty} a_n \int_{\overline{D}} (1-|\phi|^2)^n d\mu \\ &= \sum_{n=0}^{\infty} a_n \int_0^1 (1-r^2)^n d\nu_0 = \int_0^1 \sum_{n=0}^{\infty} a_n (1-r^2)^n d\nu_0 = \int_0^1 r d\nu_0 \\ \text{because} \left| \sum_{n=0}^k a_n (1-|\phi|^2)^n \right| &\leq \sum_{n=0}^{\infty} |a_n| \text{ and } \left| \sum_{n=0}^k a_n (1-r^2)^2 \right| &\leq \sum_{n=0}^{\infty} |a_n| < \infty. \text{ Similarly, as } x^{2\ell+1} = \sqrt{1-(1-x^{4\ell+2})} \text{ we can show that } \int_{\overline{D}} |\phi|^{2n+1} d\mu = \int_0^1 r^{2n+1} d\nu_0 \quad (n=1)^{2\ell+1} d\mu = \int_0^1 r^{2n+1} d\mu =$$

-113 -

 $(0, 1, 2, \cdots)$. Thus $\left\{ \int_{\overline{D}} |\phi|^n d\mu \right\}$ is a moment sequence of ν_0 .

Conversely if $\int_{\overline{D}} \phi^n \bar{\phi}^m d\mu = 0$ $(n \neq m)$ and $\left\{ \int_{\overline{D}} |\phi|^n d\mu \right\}$ is a moment sequence of ν_0 , then

$$\int_{\overline{D}} \left| \sum_{n=0}^{k} a_{n} \phi^{n} \right|^{2} d\mu = \sum_{n=0}^{k} |a_{n}|^{2} \int_{\overline{D}} |\phi|^{2n} d\mu$$
$$= \sum_{n=0}^{k} |a_{n}|^{2} \int_{0}^{1} r^{2n} d\nu_{0} = \int_{\overline{D}} \left| \sum_{n=0}^{k} a_{n} z^{n} \right|^{2} d\nu.$$

Hence C_{ϕ} is isometric. \Box

Theorem 2. If $d\nu = d\nu_0(r)d\theta/2\pi$ then the following conditions are equivalent. (1) C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$. (2) $\nu_0 = \mu_{|\phi|}$ (3) $\int_0^1 F(r)d\nu_0 = \int_{\overline{D}} F(|\phi|)d\mu$ for any Borel nonnegative function F on [0,1].

Proof. (1) \Rightarrow (2) If G is a Borel set in [0,1], then $\nu_0(G) = \inf\{\nu_0(V) ; G \subset V, V \text{ is open in } [0,1]\}$ because ν_0 is a Borel measure. Hence there exists a sequence of continuous functions $\{f_m\}$ such that $f_m \to \chi_G$ a.e. ν_0 on [0,1] and $||f_m||_{\infty} \leq \gamma < \infty$ $(m = 1, 2, \cdots)$. By the Stone-Weierstrass theorem,

$$\int_{0}^{1} f_{m}(r) d\nu_{0} = \int_{\overline{D}} f_{m}(|\phi|) d\mu \quad (m = 1, 2, \cdots)$$

because $\int_0^1 r^n d\nu_0 = \int_{\overline{D}} |\phi|^n d\mu$ $(n = 0, 1, 2, \cdots)$. Thus $\nu_0(G) = \mu(\{z \in \overline{D} ; |\phi(z)| \in G\})$. (2) \Rightarrow (3) is clear. (3) \Rightarrow (1) is a result of Theorem 1. \Box

The following theorem shows that we can solve Problem 2 in the Introduction when C_{ϕ} is onto.

Theorem 3. Suppose $d\nu = d\nu_0(r)d\theta/2\pi$. If C_{ϕ} is an isometric operator from $H^2(\nu)$ onto $H^2(\mu)$ then ϕ^n is an inner function in $H^2(\mu)$ for any $n \ge 0$.

Proof. Let $F \in \mathcal{P}$ then there exists $f \in H^2(\nu)$ such that $F = f \circ \phi$. Let $f = f \circ \phi$.

$$\begin{split} &\sum_{j=0}^{\infty}a_jz^j, \text{ since } \sum_{j=0}^{\infty}|a_j|^2\int_0^1r^{2j}d\nu_0(r)<\infty, \ F=\sum_{j=0}^{\infty}a_j\phi^j \text{ and } \sum_{j=0}^{\infty}|a_j|^2\int_{\overline{D}}|\phi|^{2j}d\mu<\infty.\\ &\text{By Theorem 1, for any }\ell\geq 0 \end{split}$$

$$\int_{\overline{D}} F|\phi|^{2\ell} d\mu = a_0 \int_{\overline{D}} |\phi|^{2\ell} d\mu = \int_{\overline{D}} F d\mu \int_{\overline{D}} |\phi|^{2\ell} d\mu$$

because $\int_{\overline{D}} \phi d\mu = 0$. This implies that ϕ^{ℓ} is an inner function in $H^2(\mu)$ for any $\ell \ge 0$.

When $d\nu = d\nu_0(r)d\theta/2\pi$, if C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$ then C_z is isometric from $H^2(\nu)$ onto $H^2(\mu_{\phi})$.

Corollary 1. Suppose $d\nu = d\nu_0(r)d\theta/2\pi$. If C_z is an isometric operator then z^n is an inner function in $H^2(\mu)$ for any $n \ge 0$. Moreover $d\mu = d\nu_1(r)d\theta/2\pi + d\delta_{r=0}d\mu_1(\theta)$. where ν_1 is a Borel measure on [0,1] and μ_1 is a Borel measure on ∂D . If ν_0 does not have point mass on $\{r=0\}$ then $\nu = \mu$.

Proof. By the remark above, C_z is isometric from $H^2(\nu)$ onto $H^2(\mu)$ because $\mu_z = \mu$. By Theorem 3, z^n is inner in $H^2(\mu)$ for any $n \ge 0$. Put $C_0[0,1] = \{u; u \text{ is continuous on } [0,1] \text{ and } u(0) = 0\}$ and $C_0(\partial D) = \{f; f \text{ is continuous on } \partial D \text{ and } f(1) = 0\}$. Since $r^n d\mu$ annihilates $z\mathcal{P} + \bar{z}\bar{\mathcal{P}}$ for any $n \ge 0$, for any $j \ne 0$, $d\mu \perp \{r^{2n+|j|}e^{ij\theta}; n = 0, 1, 2, \cdots\}$. By the Müntz-Szasz theorem [6], $d\mu \perp C_0[0,1]e^{ij\theta}$ for any $j \ne 0$ and so $d\mu \perp C_0[0,1] \otimes C_0(\partial D)$. This implies that $d\mu = d\nu_1(r)d\theta/2\pi + d\delta_{r=0}d\mu_1(\theta)$ where ν_1 is a Borel measure on [0,1] and μ_1 is a Borel measure on T. If ν_0 does not have point mass on $\{r = 0\}$ then we may assume that $\mu_1 = 0$ and so $d\mu = d\nu_1(r)d\theta/2\pi$. By Theorem 2 $\nu_0 = \mu_{|z|}$ and $\mu_{|z|} = \nu_1$ because $d\mu = d\nu_1(r)d\theta/2\pi$. \Box

§3. Radial measure

In this section we assume that ν and μ are radial measures, that is, $d\nu = d\nu_0(r)d\theta/2\pi$ and $d\mu = d\mu_0(r)d\theta/2\pi$. Proposition 1 solves Problem 2 when $\nu = \mu$. By Theorem 2, if C_{ϕ} is isometric from $H^2(\nu)$ into $H^2(\mu)$, then for some positive integer k

$$\int_0^1 \log r d\nu_0 \le k \int_0^1 \log r d\mu_0 + \int_0^{2\pi} \log |\phi(e^{i\theta})| d\theta$$

as $F(t) = \log t$, using the inner outer factorization of ϕ . Proposition 2 gives an exact formula for this.

Proposition 1. Suppose ν is a radial measure. If C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\nu)$, then ϕ^n is an inner function in $H^2(\nu)$ for any $n \ge 0$.

Proof. By Theorem 1, $\phi(0) = 0$ because ν is a radial measure and so by Schwarz's lemma, $|\phi(z)| \leq |z| \quad (z \in D)$. Since $\int_{\overline{D}} |\phi(z)|^2 d\nu = \int_{\overline{D}} |z|^2 d\nu$, $|\phi(z)| = |z| \quad a.e. \ \nu$. For $f \in \mathcal{P}$,

$$\int_{\overline{D}} f|\phi|^{2n} d\nu = \int_{\overline{D}} f|z|^{2n} d\nu = f(0) \int_0^1 r^{2n} d\nu_0 = \int_{\overline{D}} f d\nu \int_{\overline{D}} |\phi|^{2n} d\nu. \ \Box$$

Proposition 2. Suppose ν and μ are radial measures, that is, $d\nu = d\nu_0(r)d\theta/2\pi$ and $d\mu = d\mu_0(r)d\theta/2\pi$. Let $\phi = z^k BQh$ where k is a positive integer, B is a Blaschke product with $B(0) \neq 0$, $Q(z) = \exp - \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\lambda(t)$ is a singular inner function and h is an outer function. If C_{ϕ} is an isometric oprator from $H^2(\nu)$ into $H^2(\mu)$, then

$$\int_{0}^{1} \log r d\nu_{0} = k \int_{0}^{1} \log r d\mu_{0} + \int_{0}^{1} d\mu_{0} \int_{0}^{r} n(s, B) \frac{ds}{s} + \log |B(0)| - \mu_{0}([0, 1))\lambda([0, 2\pi]) + \int_{0}^{2\pi} \log |\phi(e^{i\theta})| d\theta/2\pi$$

where n(s, B) is the number of zeros of B on the closed disc $\{z \in \mathbb{C} ; |z| \leq r\}$.

Proof. Let n(s, B) = n(s, BQh) is the number of zeros of BQh on the closed disc $\{z \in \mathbb{C} ; |z| \leq r\}$. Then, by Theorem 2 and $[1, \S 2 \text{ of Chapter 5}]$

$$\begin{split} &\int_{0}^{1} \log r d\nu_{0} \\ &= \int_{0}^{1-} d\mu_{0} \int_{0}^{2\pi} \log |\phi(re^{i\theta})| d\theta/2\pi + \mu_{0}(\{1\}) \int_{0}^{2\pi} \log |\phi(e^{i\theta})| d\theta/2\pi \\ &= \int_{0}^{1-} d\mu_{0} \left\{ \log r^{k} + \int_{0}^{r} n(s,B) \frac{ds}{s} \right\} + \mu_{0}([0,1)) \log |B(0)Q(0)h(0)| \\ &+ \mu_{0}(\{1\}) \int_{0}^{2\pi} \log |\phi(e^{i\theta})| d\theta/2\pi \\ &= k \int_{0}^{1} \log r d\mu_{0} + \int_{0}^{1} d\mu_{0} \int_{0}^{r} n(s,B) \frac{ds}{s} + \log |B(0)| \\ &- \mu_{0}([0,1))\lambda([0,2\pi]) + \int_{0}^{2\pi} \log |\phi(e^{i\theta})| d\theta/2\pi \end{split}$$

because
$$\mu_0(\{1\}) \int_0^1 n(s, B) \frac{ds}{s} = -\mu_0(\{1\}) \log |B(0)|.$$

§4. Special cases

In this section we assume that ν or μ is the normalized Lebesgue measure or the normalized area measure. Proposition 3 solves Problems 1 and 2 when ν is the normalized Lebesgue measure on the circle and μ is a radial measure. Proposition 5 solves Problem 2 when ν is a radial measure or the Lebesgue measure on the circle. Corollary 3 solves Problem 2 negatively when $d\nu = 2rdrd\theta/2\pi$ and $d\mu = d\theta/2\pi$.

Proposition 3. Let μ be a radial measure. C_{ϕ} is an isometric operator from H^2 into $H^2(\mu)$ if and only if ϕ^n is an inner function with $\int_{\overline{D}} \phi d\mu = 0$ in $H^2(\mu)$ for any $n \ge 1$ and $H^2(d\mu) = H^2$.

Proof. If C_{ϕ} is isometric, by Theorem 1 $\int_{\overline{D}} \phi^n \overline{\phi}^m d\mu = 0 \ (n \neq m)$ and we have

$$1 = \int_{0}^{2\pi} |z|^{2} d\theta / 2\pi = \int_{\overline{D}} |\phi|^{2} d\mu \le 1.$$

Hence $|\phi(z)| = 1$ a.e. μ and so supp $\mu \subset \partial D$. This implies that $d\mu = d\delta_{r=1}d\theta/2\pi$ because μ is a radial measure. The converse is clear. \Box

Proposition 4. Suppose $d\nu = d\nu_0(r)d\theta/2\pi$ and C_{ϕ} is an isometric operator from $H^2(\nu)$ into H^2 .

- (1) $\nu_0(\{a\}) > 0$ for $0 \le a \le 1$ if and only if $d\theta/2\pi(\{e^{i\theta}; |\phi(e^{i\theta})| = a\}) > 0$.
- (2) $d\nu_0 = d\delta_{r=1}$ if and only if ϕ is an inner function in H^2 .

(3) ν_0 is a discrete measure if and only if $|\phi| = \sum_{n=1}^{\infty} a_n \chi_{E_n}$ where $0 \le a_n \le 1$, and $d\theta/2\pi(E_n) = \nu_0(\{a_n\})$ $(n = 1, 2, \cdots)$.

Proof. Since $\nu_0(G) = d\theta/2\pi\{e^{i\theta}; |\phi(e^{i\theta})| \in G\})$ for a Borel set G in [0,1] by Theorem 2, it is easy to see. \Box

Proof. This is just (2) of Proposition 4.

-117-

Now we consider when $d\nu = r dr d\theta / \pi$ or $d\mu = r dr d\theta / \pi$.

Proposition 5. If C_{ϕ} is an isometric operator from L_a^2 into $H^2(\mu)$, then $\mu(\{z \in \overline{D}; |\phi| = b\} = 0 \text{ and } \int_{\overline{D}} (b - |\phi|)^{-1} d\mu = \infty \text{ for any } 0 \le b \le 1.$

Proof. It is clear by Theorem 2. \Box

Corollary 2. If C_{ϕ} is an isometric operator from L_a^2 into H^2 , then ϕ is not inner in H^2 .

Proposition 6. Suppose $d\nu = d\nu_0(r)d\theta/2\pi$. If C_{ϕ} is an isometric operator from $H^2(\nu)$ into L^2_a , then $\int_0^1 \log r d\nu_0 = -\frac{k}{4} + \int_0^1 2r dr \int_0^r n(s,B) \frac{ds}{s} + \log |B(0)| - \lambda([0,2\pi]) + \int_0^{2\pi} \log |\phi(e^{i\theta})| d\theta/2\pi$, where the inner part of ϕ is $z^k BQ$, B is a Blaschke product with $B(0) \neq 0$, $Q(z) = \exp - \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\lambda$ is a singular inner function. Hence if ϕ is a shricht function, then $\int_0^1 \log r d\nu_0 = -\frac{1}{4} + \int_0^{2\pi} \log |\phi(e^{i\theta})| d\theta/2\pi$.

Proof. It is clear by Proposition 2. \Box

§5. Nevanlinna counting function

Suppose ν or μ is the normalized Lebesgue measure or the normalized area measure. We assume that ϕ is a non-constant function in H^{∞} with $\|\phi\|_{\infty} = 1$. The Nevanlinna counting function of ϕ , N_{ϕ} , is defined on $D \setminus \{\phi(0)\}$ by

$$N_{\phi}(w) = \sum_{\phi(z)=w} \log \frac{1}{|z|},$$

where multiplicities are counted and $N_{\phi}(w)$ is taken to be zero if w is not in the range of ϕ . Corollary 4 seems to be interesting in spite of Corollary 3.

Theorem 4. Suppose $d\nu = d\nu_0(r)d\theta/2\pi$. Then, C_{ϕ} is an isometric operator

from $H^2(\nu)$ into H^2 if and only if

$$N_{\phi}(z) = \int_{|z|}^{1} \log \frac{r}{|z|} d\nu_0(r)$$

for nearly all z in D.

Proof. The 'only if' part was proved in [6, Lemma 3]. If $N_{\phi}(z) = \int_{|z|}^{1} \log \frac{r}{|z|} d\nu_0(r)$ for nearly all z in D, by the Littlewood-Paley theorem (see [3]),

$$\int_{0}^{2\pi} \phi^{n}(e^{i\theta})\bar{\phi}^{m}(e^{i\theta})d\theta/2\pi$$

= $2nm \int_{\overline{D}} z^{n-1}\bar{z}^{m-1}N_{\phi}(|z|)dA(z)$
= $4nm\delta_{nm} \int_{0}^{1} r^{n+m-1} \left(\int_{r}^{1}\log\frac{s}{r}d\nu_{0}(s)\right)dr$
= $4nm\delta_{nm} \int_{0}^{1} d\nu_{0}(s) \int_{0}^{s} r^{m+n-1} \left(\log\frac{s}{r}\right)dr$
= $\frac{4nm}{(n+m)^{2}}\delta_{nm} \int_{0}^{1} s^{n+m}d\nu_{0}(s).$

When n = m, $\int_0^{2\pi} |\phi(e^{i\theta})|^{2n} d\theta/2\pi = \int_0^1 s^{2n} d\nu_0(s)$ for $n = 0, 1, 2, \cdots$. Hence by Theorem 1 and its proof, C_{ϕ} is an isometric operator from $H^2(\nu)$ into H^2 .

Lemma. $D \setminus \{z \in D ; \phi'(z) = 0\}$ can be decomposed into an at most countable disjoint collection $\{R_n\}$ of "semi-closed" polar rectangles, on each of which ϕ is schricht.

Proof. It is known in [9, p186]. \Box

Corollary 3. Suppose ϕ is a finite-to-one map. Then C_{ϕ} is not an isometric operator from L_a^2 into H^2 .

Proof. By Lemma, there exists the inverse ψ_n of the restriction of ϕ to R_n . Let $w \in \phi(R_{j_1})$. If ϕ is an ℓ to 1 map, then there exist j_2, \dots, j_ℓ such that $\psi_{j_1}(z) = \psi_{j_2}(z) = \dots = \psi_{j_\ell}(z) = w$. Hence there exists a small disc Δ in $\phi(R_{j_1})$ such that

$$N_{\phi}(z) = \sum_{z=\phi(w)} \log \frac{1}{|w|} = \sum_{t=1}^{\ell} \log \frac{1}{|\psi_{j_t}(z)|}$$

-119-

for all $w \in \Delta$. Therefore there exists a subdisc Δ_0 in Δ such that $N_{\phi}(z)$ is harmonic on Δ_0 . On the other hand, by Proposition 5

$$N_{\phi}(z) = 2 \int_{|z|}^{1} \left(\log \frac{r}{|z|} \right) r dr = \frac{|z|^2 - 1}{2} + \log \frac{1}{|z|}.$$

This contradicts that $N_{\phi}(z)$ is harmonic on Δ_0 . \Box

Theorem 5. Suppose ϕ is a contractive function in H^{∞} such that ϕ is a finite-toone map and $|\phi| = \sum_{j=1}^{\ell} a_j \chi_{E_j}$ where $0 < a_j < a_{j+1}$, $\sum_{j=1}^{\ell} \chi_{E_j} = 1$ and E_j is a measurable set in ∂D where $1 \leq \ell \leq \infty$. If the inner part of $z - \phi$ is a Blaschke product for each $z \in D$, then C_{ϕ} is not an isometric operator from $H^2(\nu)$ into H^2 for any $d\nu = d\nu_0(r)d\theta/2\pi$ if $\ell \neq 1$.

Proof. Suppose C_{ϕ} is an isometric operator from $H^2(\nu)$ into H^2 for some $d\nu = d\nu_0(r)d\theta/2\pi$. By Proposition 4, ν_0 is a discrete measure and $d\theta/2\pi(E_j) = \nu_0(\{a_j\})$ $(j = 1, 2, \cdots)$. Since $\phi(0) = 0$, by Lemma 2 in [6] and Proposition 7

$$N_{\phi}(z) = \int_{0}^{2\pi} \log |z - \phi(e^{i\theta})| d\theta / 2\pi + \log \frac{1}{|z|}$$
$$= \int_{|z|}^{1} \log \frac{r}{|z|} d\nu_{0}(r)$$

for $z \in D \setminus \{0\}$. If $|z| \leq a_1$, then

$$\begin{split} &\int_{|z|}^{1} \log \frac{r}{|z|} d\nu_0(r) = \sum_{j=1}^{\infty} \left(\log \frac{a_j}{|z|} \right) \nu_0(\{a_j\}) \\ &= \sum_{j=1}^{\infty} \nu_0(\{a_j\}) \log \frac{1}{|z|} + \sum_{j=1}^{\infty} \nu_0(\{a_j\}) \log a_j \\ &= \log \frac{1}{|z|} + \sum_{j=1}^{\infty} \nu_0(\{a_j\}) \log a_j. \end{split}$$

Hence if $|z| \leq a_1$ then

$$\int_0^{2\pi} \log |z - \phi(e^{i\theta})| d\theta / 2\pi = \sum_{j=1}^\infty \nu_0(\{a_j\}) \log a_j = \alpha.$$

If $a_1 < |z| \le a_2$, then

$$\int_{|z|}^{1} \log \frac{r}{|z|} d\nu_0(r) = \sum_{j=2}^{\infty} \left(\log \frac{a_j}{|z|} \right) \nu_0(\{a_j\})$$
$$= \sum_{j=2}^{\infty} \nu_0(\{a_j\}) \log \frac{1}{|z|} + \sum_{j=2}^{\infty} \nu_0(\{a_j\}) \log a_j$$

$$\begin{aligned} \int_{0}^{2\pi} \log |z - \phi(e^{i\theta})| d\theta / 2\pi &= -\nu_0(\{a_1\}) \log \frac{1}{|z|} + \sum_{j=2}^{\infty} \nu_0(\{a_j\}) \log a_j \\ &= \beta \log \frac{1}{|z|} + \gamma. \end{aligned}$$

where $\beta \neq 0$

For each $z \in D$, put

$$z - \phi(\zeta) = q_z(\zeta)h_z(\zeta) \quad (\zeta \in D)$$

where $q_z(\zeta)$ is inner and $h_z(\zeta)$ is outer. Since ϕ is a finite-to-one map, q_z is a finite Blaschke product by hypothesis and so

$$q_{\phi(t)}(\zeta) = \prod_{j=1}^{n} \frac{\zeta - b_j(t)}{1 - \overline{b_j(t)}\zeta} \quad (t \in D).$$

Then, since $\phi(0) = 0$,

$$\phi(t) = (-1)^n \left(\prod_{j=1}^n b_j(t)\right) h_{\phi(t)}(0) \quad (t \in D).$$

Put $D_r = \{t \in \mathbb{C}; |t| \le r\}$ for 0 < r < 1. If both ϕ and ϕ' have no zeros on ∂D_r then there is a division $\{D_r^j\}_{1 \le j \le n}$ of D_r such that ϕ is one-to-one on D_r^j for $1 \le j \le n$. For, ϕ is conformal in a neighborhood of each point on ∂D_r and so arg ϕ is increasing on, ∂D_r . Put $\phi_j = \phi \mid D_r^j$ and $b_j(t) = \phi_j^{-1}(\phi(t))$ for $1 \le j \le n$. Then $b_j(t)$ is analytic except $\phi'(t) = 0$ when $\phi(t)$ in $\phi(D_r)$. Hence $h_{\phi(t)}(0)$ is analytic except $\phi'(t) = 0$ and $\| b_r \|_{r} \{t \in D; b_j(t) = 0\}$ when $\phi(t)$ in $\phi(D_r)$. Since $\phi(0) = 0$, $\{t \in D; |\phi(t)| < a_1\}$ is a

 $\bigcup_{j=1} \{t \in D; b_j(t) = 0\} \text{ when } \phi(t) \text{ in } \phi(D_r). \text{ Since } \phi(0) = 0, \{t \in D; |\phi(t)| < a_1\} \text{ is a}$

nonempty open set. We can choose r such that $\{t \in D; |\phi(t)| < a_1\} \cap \phi(D_r) \neq \emptyset$. If $|\phi(t)| \leq a_1$, by what was proved above,

$$\alpha = \int_0^{2\pi} \log |\phi(t) - \phi(e^{i\theta})d\theta/2\pi$$
$$= \int_0^{2\pi} \log |h_{\phi(t)}(e^{i\theta})|d\theta/2\pi = \log |h_{\phi(t)}(0)|.$$

Hence $|h_{\phi(t)}(0)| = e^{\alpha}$. and so $h_{\phi(t)}(0)$ is constant on D_r . If $a_1 < |\phi(t)| \le a_2$, by what was proved above,

$$\beta \log \frac{1}{|\phi(t)|} + \gamma = \int_0^{2\pi} \log |\phi(t) - \phi(e^{i\theta})| d\theta/2\pi$$
$$= \int_0^{2\pi} \log |h_{\phi(t)}(e^{i\theta})| d\theta 2\pi = \log |h_{\phi(t)}(0)|$$

and so $|h_{\phi(t)}(0)| = e^{\gamma} |\phi(t)|^{\beta}$. Since there exists 0 < r < 1 such that $\{t \in D; a_1 < |\phi(t)| < a_2\} \cap \phi(D_r) \neq \emptyset$, this implies that $|\phi(t)|$ is constant there and so ϕ is constant on D. This contradicts that ϕ is a finite-to-one map. Therefore C_{ϕ} is not isometric. \Box

If ϕ is a one-to-one map then it is known [4, Theorem 3.17] that the inner part of $z - \phi$ is a Blaschke product for each $z \in D$. Hence we need not such a hypothesis in Theorem 5. Unfortunately we could not prove it in general, that is, for a finite-to-one map.

§6. Rudin's orthogonal function

In this section, we study Rudin's orthogonal functions. By Theorem 1, if C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$ then ϕ is a Rudin's orthogonal function. Proposition 7 implies the converse. This was proved by the author [6] when $d\mu = d\theta/2\pi$. The proof is valid for an arbitrary μ . However we give a new proof due to K. Izuchi.

Proposition 7. If ϕ is a Rudin's orthogonal function in $H^2(\mu)$ then there exists a unique radial measure ν such that C_{ϕ} is an isometric operator from $H^2(\nu)$ into $H^2(\mu)$ where $d\nu = d\nu_0(r)d\theta/2\pi$ and $1 \in \text{supp } \nu_0$.

Proof. Put $\nu_0 = \mu_{|\phi|}$ and $d\nu = d\nu_0 d\theta/2\pi$, then Theorems 1 and 2 imply the proposition. \Box

Corollary 4, Suppose ϕ is a finite-to-one map and ϕ is a Rudin's orthogonal function. If the inner part of $z - \phi$ is a Blashke product for each $z \in D$ and $|\phi| = \sum_{j=1}^{\ell} a_j \chi_{E_j}$ where $0 \le a_j \le a_{j+1}$, $\sum_{j=1}^{\ell} \chi_{E_j} = 1$ and E_j is a measurable set in ∂D where $1 \le \ell \le \infty$, then $|\phi| = 1$ and so ϕ is a finite Blaschke product.

Proof. If ϕ is a Rudin's orthogonal function, then by Proposition 7 and Theorem 5, $\ell = 1$ and so ϕ is a finite Blashke product. \Box

In Corollary 4, if ϕ is one-to-one map then the inner part of $z - \phi$ is a Blaschke product (see [4.Theorem 3.17]). Hence we can take off such a condition. However in such a case Corollary 4 is not new. In fact, P. S. Bourdon [3] showed that if ϕ is univalent and a Rudin's orthogonal function then ϕ is just the coordinate function z.

§7. Final remark

The research in this paper gives more general one. Suppose $0 and <math>p \neq 2$. T is an isometric operator from $H^p(\nu)$ into $H^p(\mu)$ with T1 = 1 if and only if $T = C_{\phi}$ for some ϕ in H^{∞} with $\|\phi\|_{\infty} = 1$ and C_{ϕ} is an isometric operator from $H^p(\nu)$ into $H^p(\mu)$. For the 'if' part is trivial. For the 'only if' part, if T is isometric and T1 = 1, then by [5, Theorem 7.5.3] $T(fg) = Tf \cdot Tg$ a.e. μ and $\|Tf\|_{\infty} = \|f\|_{\infty}$ for all $f \in \mathcal{P}, g \in \mathcal{P}$. Hence if $\phi = Tz$ then ϕ belongs to H^{∞} and $\|\phi\|_{\infty} = 1$. Therefore $Tf = C_{\phi}f$ $(f \in \mathcal{P})$ and so $Tf = C_{\phi}f$ $(f \in H^p(\nu))$. When $p \neq 2$, if C_{ϕ} is an isometric operator from $H^p(\nu)$ into $H^p(\mu)$, then C_{ϕ} is an isometric operator from $H^p(\nu)$. For by [5, Theorem 8.5.3], for all $f \in \mathcal{P}$ and $g \in \mathcal{P}$

$$\int_{\overline{D}} C_{\phi} f \cdot \overline{C_{\phi}g} d\mu = \int_{\overline{D}} f \bar{g} d\mu$$

and $||C_{\phi}f||_{\infty} = ||f||_{\infty}$. This implies that C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$.

We give two open problems :

(1) Are there any isometric C_{ϕ} from L_a^2 into H^2 ?

(2) When ν_0 is a discrete measure and not a dirac measure, are there any isometric C_{ϕ} from $H^2(\nu)$ to H^2 where $d\nu = d\nu_0(r)d\theta/2\pi$?

Acknowledgement. The author wishes to express his sincere gratitude to the referee for his many helpful suggestions and advices. In particular, he formulates and improves the original Theorem 2 to the present one.

References

- 1. M. Anderson, Topics in Complex Analysis, Universetext : Tracts in Mathematics, Springer.
- 2. C. Bishop, Orthogonal functions in H^p , preprint.
- P. S. Bourdon, Rudin's orthogonality problem and the Nevanlinna counting function, Proc. Amer. Math. Soc. 125(1997), 1187-1192.
- 4. P. L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- 5. T. Nakazi and T. Watanabe, Properties of a Rudin's orthogonal function which is a linear combination of two inner functions, Sciential Mathematical Japonical Online, 7(2002), 347-352.
- 6. T. Nakazi, The Nevanlinna counting functions for Rudin's orthogonal functions, Proc. Amer. Math. Soc. 131(2003), 1267-1271.
- 7. W. Rudin, Real Complex Analysis, Third Edition, McGraw-Hill Series in Higher Mathematics
- 8. W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, 1980
- 9. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, 1993
- 10. C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, preprint.

Department of Mthematics Hokkaido University Sapporo 060-0810, Japan

nakazi@math.sci.hokudai.ac.jp

Received July 28, 2005 Revised July 20, 2006