Isometric Composition Operators Between Two Weighted Hardy Spaces

Takahiko Nakazi *

Abstract

We study isometric composition operators C_{ϕ} between two weighted Hardy spaces $H^{2}(\nu)$ and $H^{2}(\mu)$ when ν is a radial measure. The isometric C_{ϕ} is related to a moment sequence and such a ϕ is studied by the Nevanlinna counting function of ϕ when μ is the normalized Lebesgue measure on the unit circle.

§1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C}. We denote by \mathcal{P} the set of all analytic polynomials and H the set of all analytic functions on D. Let μ be a positive Borel measure on \bar{D} with $\mu(\bar{D})=1 . H^{p}(\mu)$ denotes the closure of all analytic polynomials in $L^{p}(d \mu)$ for $0<p<\infty$. If $d \mu=d \theta / 2 \pi$, then $H^{p}(\mu)=H^{p}$ is the classical Hardy space. If $d \mu=2 r d r d \theta / 2 \pi$, then $H^{p}(\mu)=L_{a}^{p}$ is the classical Bergman space. H^{p} and L_{a}^{p} can be embeded in H. In this paper, we assume that $H^{p}(\mu)$ is embeded in H for a general $\mu . H^{\infty}$ denotes the set of all bounded analytic functions on D. We also assume that $H^{\infty}=H \cap L^{\infty}(d \mu)$.

For an analytic self map ϕ of D, the composition operator C_{ϕ} is defined by $\left(C_{\phi} f\right)(z)=f(\phi(z)) \quad(z \in D)$ for f in H. Throughout this paper, we assume that ν and μ are positive Borel measures on \bar{D} with $\nu(\bar{D})=\mu(\bar{D})=1 . \nu$ is called a radial measure if $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ for a positive Borel measure ν_{0} on [0,1]. Since $d \theta / 2 \pi=d \delta_{r=1} d \theta / 2 \pi, d \theta / 2 \pi$ is a radial measure.

In this paper, we studied isometric composition operators from $H^{2}(\nu)$ into $H^{2}(\mu)$ when ν is a radial measure. As we show in the final section, our isometric composition operator C_{ϕ} is related to an isometric operator T from $H^{p}(\nu)$ into $H^{p}(\mu)$ with

[^0]$T 1=1$ when $p \neq 2$. We have a long history for such isometric operators (see [8]). The onto isometries on H^{p} or L_{a}^{p} for $p \neq 2$ were described completely. Unfortunately into isometries have been known very little.

Problem 1. For given measures ν and μ, does there exist an isometric composition operator C_{ϕ} from $H^{2}(\nu)$ into $H^{2}(\mu)$? If there exists such a C_{ϕ}, describe ϕ.

A function F in $H^{2}(\mu)$ is called an inner function in $H^{2}(\mu)$ if

$$
\int_{\bar{D}} f|F|^{2} d \mu=\int_{\bar{D}} f d \mu \int_{\bar{D}}|F|^{2} d \mu \quad(f \in \mathcal{P})
$$

If ϕ^{n} is an inner function in $H^{2}(\mu)$ with $\int_{\bar{D}} \phi d \mu=0$ for any $n \geq 0$ then there exists a unique radial measure ν such that C_{ϕ} is isometric from $H^{2}(\nu)$ into $H^{2}(\mu)$ where $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ and $1 \in \operatorname{supp} \nu_{0}$. This is not difficult to prove. However we don't know whether the converse is true.

Problem 2. If a composition operator C_{ϕ} is isometric from $H^{2}(\nu)$ into $H^{2}(\mu)$ then is ϕ^{n} an inner function in $H^{2}(\mu)$ with $\int_{\bar{D}} \phi d \mu=0$ for any $n \geq 0$?

A function ϕ in H^{∞} with $\|\phi\|_{\infty}=1$ is called a Rudin's orthogonal function in $H^{2}(\mu)$ if $\left\{\phi^{n} ; n=0,1,2, \cdots\right\}$ is a set of orthogonal functions in $H^{2}(\mu)$. If ϕ^{n} is an inner function in $H^{2}(\mu)$ with $\int_{\bar{D}} \phi d \mu=0$ for any $n \geq 0$ and $\|\phi\|_{\infty}=1$ then ϕ is a Rudin's orthogonal function in $H^{2}(\mu)$ because \mathcal{P} is dense in $H^{2}(\mu)$ by its definition. We can ask whether the converse is true or not.

Problem 3. If ϕ is a Rudin's orthogonal function in $H^{2}(\mu)$ then is ϕ^{n} an inner function in $H^{2}(\mu)$ with $\int_{\bar{D}} \phi d \mu=0$ for any $n \geq 0$?

When $d \mu=d \theta / 2 \pi$, Problem 3 was studied by several people, for example, $[2],[3],[5],[6]$ and [10]. C. Bishop [2] and C. Sundberg [10] gave counter examples. Hence there exists a Rudin's orthogonal function which is not an inner function in $H^{2}(d \theta / 2 \pi)$.

Problem 3 has a strong conection with Problem 2. In fact, if C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ then by Theorem 1ϕ is a Rudin's orthogonal function in $H^{2}(\mu)$. Conversely if ϕ is a Rudin's orthogonal function in $H^{2}(\mu)$ then
by Proposition 8 there exists a unique radial measure ν such that C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$.

For each ϕ, we will use two Borel measures μ_{ϕ} on \bar{D} and $\mu_{|\phi|}$ on $[0,1]$. For a Borel set E in $\bar{D} \mu_{\phi}(E)=\mu(\{z \in \bar{D} ; \phi(z) \in E\})$ and for a Borel set G in $[0,1]$ $\mu_{|\phi|}(G)=\mu(\{z \in \bar{D} ;|\phi(z)| \in G\}$.

§2. General case

In this section we assume that ν is a radial measure, μ is an arbitrary measure and ϕ is an analytic selfmap with $\|\phi\|_{\infty}=1$. We say that $\left\{a_{n}\right\}$ is a moment sequence of ν_{0}, a positive Borel measure on $[0,1]$, if $a_{n}=\int_{0}^{1} r^{n} d \nu_{0} \quad(n=0,1,2, \cdots)$.

Theorem 1. Suppose $d \nu=d \nu_{0}(r) d \theta / 2 \pi$. Then C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ if and only if $\int_{\bar{D}} \phi^{n} \bar{\phi}^{m} d \mu=0(n \neq m)$ and $\left\{\int_{\bar{D}}|\phi|^{n} d \mu\right\}$ is a moment sequence of ν_{0}.

Proof. If C_{ϕ} is isometric, by the polarization formula

$$
\delta_{n m} \int_{0}^{1} r^{n} r^{m} d \nu_{0}(r)=\int_{\bar{D}} z^{n} \bar{z}^{m} d \nu=\int_{\bar{D}} \phi^{n} \bar{\phi}^{m} d \mu
$$

because ν is a radial measure. Hence

$$
\int_{\bar{D}}|\phi|^{2 n} d \mu=\int_{0}^{1} r^{2 n} d \nu_{0} \quad(n=0,1,2, \cdots)
$$

It is elementary to see that $x=\sqrt{1-\left(1-x^{2}\right)}=\sum_{n=0}^{\infty} a_{n}\left(1-x^{2}\right)^{n}$ and $\sum_{n=0}^{\infty}\left|a_{n}\right|(1-$ $\left.x^{2}\right)^{n}<\infty(0 \leq x \leq 1)$. Hence by Lebesgue's dominated convergence theorem

$$
\begin{aligned}
\int_{\bar{D}}|\phi| d \mu & =\int_{\bar{D}} \sum_{n=0}^{\infty} a_{n}\left(1-|\phi|^{2}\right)^{n} d \mu=\sum_{n=0}^{\infty} a_{n} \int_{\bar{D}}\left(1-|\phi|^{2}\right)^{n} d \mu \\
& =\sum_{n=0}^{\infty} a_{n} \int_{0}^{1}\left(1-r^{2}\right)^{n} d \nu_{0}=\int_{0}^{1} \sum_{n=0}^{\infty} a_{n}\left(1-r^{2}\right)^{n} d \nu_{0}=\int_{0}^{1} r d \nu_{0}
\end{aligned}
$$

because $\left|\sum_{n=0}^{k} a_{n}\left(1-|\phi|^{2}\right)^{n}\right| \leq \sum_{n=0}^{\infty}\left|a_{n}\right|$ and $\left|\sum_{n=0}^{k} a_{n}\left(1-r^{2}\right)^{2}\right| \leq \sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$. Similarly, as $x^{2 \ell+1}=\sqrt{1-\left(1-x^{4 \ell+2}\right)}$ we can show that $\int_{\bar{D}}|\phi|^{2 n+1} d \mu=\int_{0}^{1} r^{2 n+1} d \nu_{0} \quad(n=$
$0,1,2, \cdots)$. Thus $\left\{\int_{\bar{D}}|\phi|^{n} d \mu\right\}$ is a moment sequence of ν_{0}.
Conversely if $\int_{\bar{D}} \phi^{n} \bar{\phi}^{m} d \mu=0(n \neq m)$ and $\left\{\int_{\bar{D}}|\phi|^{n} d \mu\right\}$ is a moment sequence of ν_{0}, then

$$
\begin{aligned}
& \int_{\bar{D}}\left|\sum_{n=0}^{k} a_{n} \phi^{n}\right|^{2} d \mu=\sum_{n=0}^{k}\left|a_{n}\right|^{2} \int_{\bar{D}}|\phi|^{2 n} d \mu \\
& \quad=\sum_{n=0}^{k}\left|a_{n}\right|^{2} \int_{0}^{1} r^{2 n} d \nu_{0}=\int_{\bar{D}}\left|\sum_{n=0}^{k} a_{n} z^{n}\right|^{2} d \nu .
\end{aligned}
$$

Hence C_{ϕ} is isometric.

Theorem 2. If $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ then the following conditions are equivalent.
(1) C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$.
(2) $\nu_{0}=\mu_{|\phi|}$
(3) $\int_{0}^{1} F(r) d \nu_{0}=\int_{\bar{D}} F(|\phi|) d \mu$ for any Borel nonnegative function F on $[0,1]$.

Proof. (1) \Rightarrow (2) If G is a Borel set in $[0,1]$, then $\nu_{0}(G)=\inf \left\{\nu_{0}(V) ; G \subset V, V\right.$ is open in $[0,1]\}$ because ν_{0} is a Borel measure. Hence there exists a sequence of continuous functions $\left\{f_{m}\right\}$ such that $f_{m} \rightarrow \chi_{G}$ a.e. ν_{0} on $[0,1]$ and $\left\|f_{m}\right\|_{\infty} \leq \gamma<$ $\infty(m=1,2, \cdots)$. By the Stone-Weierstrass theorem,

$$
\int_{0}^{1} f_{m}(r) d \nu_{0}=\int_{\bar{D}} f_{m}(|\phi|) d \mu \quad(m=1,2, \cdots)
$$

because $\int_{0}^{1} r^{n} d \nu_{0}=\int_{\bar{D}}|\phi|^{n} d \mu \quad(n=0,1,2, \cdots)$. Thus $\nu_{0}(G)=\mu(\{z \in \bar{D} ;|\phi(z)| \in$ $G\}$). $(2) \Rightarrow(3)$ is clear. $(3) \Rightarrow(1)$ is a result of Theorem 1.

The following theorem shows that we can solve Problem 2 in the Introduction when C_{ϕ} is onto.

Theorem 3. Suppose $d \nu=d \nu_{0}(r) d \theta / 2 \pi$. If C_{ϕ} is an isometric operator from $H^{2}(\nu)$ onto $H^{2}(\mu)$ then ϕ^{n} is an inner function in $H^{2}(\mu)$ for any $n \geq 0$.

Proof. Let $F \in \mathcal{P}$ then there exists $f \in H^{2}(\nu)$ such that $F=f \circ \phi$. Let $f=$
$\sum_{j=0}^{\infty} a_{j} z^{j}$, since $\sum_{j=0}^{\infty}\left|a_{j}\right|^{2} \int_{0}^{1} r^{2 j} d \nu_{0}(r)<\infty, F=\sum_{j=0}^{\infty} a_{j} \phi^{j}$ and $\sum_{j=0}^{\infty}\left|a_{j}\right|^{2} \int_{\bar{D}}|\phi|^{2 j} d \mu<\infty$. By Theorem 1, for any $\ell \geq 0$

$$
\int_{\bar{D}} F|\phi|^{2 \ell} d \mu=a_{0} \int_{\bar{D}}|\phi|^{2 \ell} d \mu=\int_{\bar{D}} F d \mu \int_{\bar{D}}|\phi|^{2 \ell} d \mu
$$

because $\int_{\bar{D}} \phi d \mu=0$. This implies that ϕ^{ℓ} is an inner function in $H^{2}(\mu)$ for any $\ell \geq 0$.

When $d \nu=d \nu_{0}(r) d \theta / 2 \pi$, if C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ then C_{z} is isometric from $H^{2}(\nu)$ onto $H^{2}\left(\mu_{\phi}\right)$.

Corollary 1. Suppose $d \nu=d \nu_{0}(r) d \theta / 2 \pi$. If C_{z} is an isometric operator then z^{n} is an inner function in $H^{2}(\mu)$ for any $n \geq 0$. Moreover $d \mu=d \nu_{1}(r) d \theta / 2 \pi+$ $d \delta_{r=0} d \mu_{1}(\theta)$. where ν_{1} is a Borel measure on [0,1] and μ_{1} is a Borel measure on ∂D. If ν_{0} does not have point mass on $\{r=0\}$ then $\nu=\mu$.

Proof. By the remark above, C_{z} is isometric from $H^{2}(\nu)$ onto $H^{2}(\mu)$ because $\mu_{z}=\mu$. By Theorem 3, z^{n} is inner in $H^{2}(\mu)$ for any $n \geq 0$. Put $C_{0}[0,1]=$ $\{u ; u$ is continuous on $[0,1]$ and $u(0)=0\}$ and $C_{0}(\partial D)=\{f ; f$ is continuous on ∂D and $f(1)=0\}$. Since $r^{n} d \mu$ annihilates $z \mathcal{P}+\bar{z} \overline{\mathcal{P}}$ for any $n \geq 0$, for any $j \neq 0, d \mu \perp\left\{r^{2 n+|j|} e^{i j \theta} ; n=0,1,2, \cdots\right\}$. By the Müntz-Szasz theorem [6], $d \mu \perp C_{0}[0,1] e^{i j \theta}$ for any $j \neq 0$ and so $d \mu \perp C_{0}[0,1] \otimes C_{0}(\partial D)$. This implies that $d \mu=d \nu_{1}(r) d \theta / 2 \pi+d \delta_{r=0} d \mu_{1}(\theta)$ where ν_{1} is a Borel measure on $[0,1]$ and μ_{1} is a Borel measure on T. If ν_{0} does not have point mass on $\{r=0\}$ then we may assume that $\mu_{1}=0$ and so $d \mu=d \nu_{1}(r) d \theta / 2 \pi$. By Theorem $2 \nu_{0}=\mu_{|z|}$ and $\mu_{|z|}=\nu_{1}$ because $d \mu=d \nu_{1}(r) d \theta / 2 \pi$.

§3. Radial measure

In this section we assume that ν and μ are radial measures, that is, $d \nu=$ $d \nu_{0}(r) d \theta / 2 \pi$ and $d \mu=d \mu_{0}(r) d \theta / 2 \pi$. Proposition 1 solves Problem 2 when $\nu=\mu$. By Theorem 2, if C_{ϕ} is isometric from $H^{2}(\nu)$ into $H^{2}(\mu)$, then for some positive integer k

$$
\int_{0}^{1} \log r d \nu_{0} \leq k \int_{0}^{1} \log r d \mu_{0}+\int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta
$$

as $F(t)=\log t$, using the inner outer factorization of ϕ. Proposition 2 gives an exact formula for this.

Proposition 1. Suppose ν is a radial measure. If C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\nu)$, then ϕ^{n} is an inner function in $H^{2}(\nu)$ for any $n \geq 0$.

Proof. By Theorem 1, $\phi(0)=0$ because ν is a radial measure and so by Schwarz's lemma, $|\phi(z)| \leq|z| \quad(z \in D)$. Since $\int_{\bar{D}}|\phi(z)|^{2} d \nu=\int_{\bar{D}}|z|^{2} d \nu,|\phi(z)|=|z|$ a.e. ν. For $f \in \mathcal{P}$,

$$
\int_{\bar{D}} f|\phi|^{2 n} d \nu=\int_{\bar{D}} f|z|^{2 n} d \nu=f(0) \int_{0}^{1} r^{2 n} d \nu_{0}=\int_{\bar{D}} f d \nu \int_{\bar{D}}|\phi|^{2 n} d \nu
$$

Proposition 2. Suppose ν and μ are radial measures, that is, $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ and $d \mu=d \mu_{0}(r) d \theta / 2 \pi$. Let $\phi=z^{k} B Q h$ where k is a positive integer, B is a Blaschke product with $B(0) \neq 0, Q(z)=\exp -\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} d \lambda(t)$ is a singular inner function and h is an outer function. If C_{ϕ} is an isometric oprator from $H^{2}(\nu)$ into $H^{2}(\mu)$, then

$$
\begin{aligned}
& \int_{0}^{1} \log r d \nu_{0}=k \int_{0}^{1} \log r d \mu_{0}+\int_{0}^{1} d \mu_{0} \int_{0}^{r} n(s, B) \frac{d s}{s}+ \\
& \quad \log |B(0)|-\mu_{0}([0,1)) \lambda([0,2 \pi])+\int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi
\end{aligned}
$$

where $n(s, B)$ is the number of zeros of B on the closed disc $\{z \in \mathbb{C} ;|z| \leq r\}$.
Proof. Let $n(s, B)=n(s, B Q h)$ is the number of zeros of $B Q h$ on the closed disc $\{z \in \mathbb{C} ;|z| \leq r\}$. Then, by Theorem 2 and [1, $\S 2$ of Chapter 5]

$$
\begin{aligned}
& \int_{0}^{1} \log r d \nu_{0} \\
&= \int_{0}^{1-} d \mu_{0} \int_{0}^{2 \pi} \log \left|\phi\left(r e^{i \theta}\right)\right| d \theta / 2 \pi+\mu_{0}(\{1\}) \int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi \\
&= \int_{0}^{1-} d \mu_{0}\left\{\log r^{k}+\int_{0}^{r} n(s, B) \frac{d s}{s}\right\}+\mu_{0}([0,1)) \log |B(0) Q(0) h(0)| \\
&+\mu_{0}(\{1\}) \int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi \\
&= k \int_{0}^{1} \log r d \mu_{0}+\int_{0}^{1} d \mu_{0} \int_{0}^{r} n(s, B) \frac{d s}{s}+\log |B(0)| \\
&-\mu_{0}([0,1)) \lambda([0,2 \pi])+\int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi
\end{aligned}
$$

because $\mu_{0}(\{1\}) \int_{0}^{1} n(s, B) \frac{d s}{s}=-\mu_{0}(\{1\}) \log |B(0)|$.

§4. Special cases

In this section we assume that ν or μ is the normalized Lebesgue measure or the normalized area measure. Proposition 3 solves Problems 1 and 2 when ν is the normalized Lebesgue measure on the circle and μ is a radial measure. Proposition 5 solves Problem 2 when ν is a radial measure or the Lebesgue measure on the circle. Corollary 3 solves Problem 2 negatively when $d \nu=2 r d r d \theta / 2 \pi$ and $d \mu=d \theta / 2 \pi$.

Proposition 3. Let μ be a radial measure. C_{ϕ} is an isometric operator from H^{2} into $H^{2}(\mu)$ if and only if ϕ^{n} is an inner function with $\int_{\bar{D}} \phi d \mu=0$ in $H^{2}(\mu)$ for any $n \geq 1$ and $H^{2}(d \mu)=H^{2}$.

Proof. If C_{ϕ} is isometric, by Theorem $1 \int_{\bar{D}} \phi^{n} \bar{\phi}^{m} d \mu=0(n \neq m)$ and we have

$$
1=\int_{0}^{2 \pi}|z|^{2} d \theta / 2 \pi=\int_{\bar{D}}|\phi|^{2} d \mu \leq 1
$$

Hence $|\phi(z)|=1$ a.e. μ and so supp $\mu \subset \partial D$. This implies that $d \mu=d \delta_{r=1} d \theta / 2 \pi$ because μ is a radial measure. The converse is clear.

Proposition 4. Suppose $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ and C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into H^{2}.
(1) $\nu_{0}(\{a\})>0$ for $0 \leq a \leq 1$ if and only if $d \theta / 2 \pi\left(\left\{e^{i \theta} ;\left|\phi\left(e^{i \theta}\right)\right|=a\right\}\right)>0$.
(2) $d \nu_{0}=d \delta_{r=1}$ if and only if ϕ is an inner function in H^{2}.
(3) ν_{0} is a discrete measure if and only if $|\phi|=\sum_{n=1}^{\infty} a_{n} \chi_{E_{n}}$ where $0 \leq a_{n} \leq 1$, and $d \theta / 2 \pi\left(E_{n}\right)=\nu_{0}\left(\left\{a_{n}\right\}\right) \quad(n=1,2, \cdots)$.

Proof. Since $\nu_{0}(G)=d \theta / 2 \pi\left\{e^{i \theta} ; \mid \phi\left(e^{i \theta)} \mid \in G\right\}\right)$ for a Borel set G in $[0,1]$ by Theorem 2, it is easy to see.

Proof. This is just (2) of Proposition 4.

Now we consider when $d \nu=r d r d \theta / \pi$ or $d \mu=r d r d \theta / \pi$.

Proposition 5. If C_{ϕ} is an isometric operator from L_{a}^{2} into $H^{2}(\mu)$, then $\mu(\{z \in$ $\bar{D} ;|\phi|=b\}=0$ and $\int_{\bar{D}}(b-|\phi|)^{-1} d \mu=\infty$ for any $0 \leq b \leq 1$.

Proof. It is clear by Theorem 2.

Corollary 2. If C_{ϕ} is an isometric operator from L_{a}^{2} into H^{2}, then ϕ is not inner in H^{2}.

Proposition 6. Suppose $d \nu=d \nu_{0}(r) d \theta / 2 \pi$. If C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into L_{a}^{2}, then $\int_{0}^{1} \log r d \nu_{0}=-\frac{k}{4}+\int_{0}^{1} 2 r d r \int_{0}^{r} n(s, B) \frac{d s}{s}+\log |B(0)|-$ $\lambda([0,2 \pi])$
$+\int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi$, where the inner part of ϕ is $z^{k} B Q, B$ is a Blaschke procuct with $B(0) \neq 0, Q(z)=\exp -\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} d \lambda$ is a singular inner function. Hence if ϕ is a shricht function, then $\int_{0}^{1} \log r d \nu_{0}=-\frac{1}{4}+\int_{0}^{2 \pi} \log \left|\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi$.

Proof. It is clear by Proposition 2.

§5. Nevanlinna counting function

Suppose ν or μ is the normalized Lebesgue measure or the normalized area measure. We assume that ϕ is a non-constant function in H^{∞} with $\|\phi\|_{\infty}=1$. The Nevanlinna counting function of ϕ, N_{ϕ}, is defined on $D \backslash\{\phi(0)\}$ by

$$
N_{\phi}(w)=\sum_{\phi(z)=w} \log \frac{1}{|z|}
$$

where multiplicities are counted and $N_{\phi}(w)$ is taken to be zero if w is not in the range of ϕ. Corollary 4 seems to be interesting in spite of Corollary 3.

Theorem 4. Suppose $d \nu=d \nu_{0}(r) d \theta / 2 \pi$. Then, C_{ϕ} is an isometric operator
from $H^{2}(\nu)$ into H^{2} if and only if

$$
N_{\phi}(z)=\int_{|z|}^{1} \log \frac{r}{|z|} d \nu_{0}(r)
$$

for nearly all z in D.

Proof. The 'only if' part was proved in [6, Lemma 3]. If $N_{\phi}(z)=\int_{|z|}^{1} \log \frac{r}{|z|} d \nu_{0}(r)$ for nearly all z in D, by the Littlewood-Paley theorem (see [3]),

$$
\begin{aligned}
& \int_{0}^{2 \pi} \phi^{n}\left(e^{i \theta}\right) \bar{\phi}^{m}\left(e^{i \theta}\right) d \theta / 2 \pi \\
& \quad=2 n m \int_{\bar{D}} z^{n-1} \bar{z}^{m-1} N_{\phi}(|z|) d A(z) \\
& =4 n m \delta_{n m} \int_{0}^{1} r^{n+m-1}\left(\int_{r}^{1} \log \frac{s}{r} d \nu_{0}(s)\right) d r \\
& =4 n m \delta_{n m} \int_{0}^{1} d \nu_{0}(s) \int_{0}^{s} r^{m+n-1}\left(\log \frac{s}{r}\right) d r \\
& =\frac{4 n m}{(n+m)^{2}} \delta_{n m} \int_{0}^{1} s^{n+m} d \nu_{0}(s)
\end{aligned}
$$

When $n=m, \int_{0}^{2 \pi}\left|\phi\left(e^{i \theta}\right)\right|^{2 n} d \theta / 2 \pi=\int_{0}^{1} s^{2 n} d \nu_{0}(s)$ for $n=0,1,2, \cdots$. Hence by Theorem 1 and its proof, C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into H^{2}.

Lemma. $D \backslash\left\{z \in D ; \phi^{\prime}(z)=0\right\}$ can be decomposed into an at most countable disjoint collection $\left\{R_{n}\right\}$ of "semi-closed" polar rectangles, on each of which ϕ is schricht.

Proof. It is known in [9, p186].

Corollary 3. Suppose ϕ is a finite-to-one map. Then C_{ϕ} is not an isometric operator from L_{a}^{2} into H^{2}.

Proof. By Lemma, there exists the inverse ψ_{n} of the restriction of ϕ to R_{n}. Let $w \in \phi\left(R_{j_{1}}\right)$. If ϕ is an ℓ to 1 map , then there exist j_{2}, \cdots, j_{ℓ} such that $\psi_{j_{1}}(z)=$ $\psi_{j_{2}}(z)=\cdots=\psi_{j_{\ell}}(z)=w$. Hence there exists a small disc Δ in $\phi\left(R_{j_{1}}\right)$ such that

$$
N_{\phi}(z)=\sum_{z=\phi(w)} \log \frac{1}{|w|}=\sum_{t=1}^{\ell} \log \frac{1}{\left|\psi_{j_{t}}(z)\right|}
$$

for all $w \in \triangle$. Therefore there exists a subdisc \triangle_{0} in \triangle such that $N_{\phi}(z)$ is harmonic on \triangle_{0}. On the other hand, by Proposition 5

$$
N_{\phi}(z)=2 \int_{|z|}^{1}\left(\log \frac{r}{|z|}\right) r d r=\frac{|z|^{2}-1}{2}+\log \frac{1}{|z|}
$$

This contradicts that $N_{\phi}(z)$ is harmonic on \triangle_{0}.

Theorem 5. Suppose ϕ is a contractive function in H^{∞} such that ϕ is a finite-toone map and $|\phi|=\sum_{j=1}^{\ell} a_{j} \chi_{E_{j}}$ where $0<a_{j}<a_{j+1}, \sum_{j=1}^{\ell} \chi_{E_{j}}=1$ and E_{j} is a measurable set in ∂D where $1 \leq \ell \leq \infty$. If the inner part of $z-\phi$ is a Blaschke product for each $z \in D$, then C_{ϕ} is not an isometric operator from $H^{2}(\nu)$ into H^{2} for any $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ if $\ell \neq 1$.

Proof. Suppose C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into H^{2} for some $d \nu=d \nu_{0}(r) d \theta / 2 \pi$. By Proposition $4, \nu_{0}$ is a discrete measure and $d \theta / 2 \pi\left(E_{j}\right)=$ $\nu_{0}\left(\left\{a_{j}\right\}\right)(j=1,2, \cdots)$. Since $\phi(0)=0$, by Lemma 2 in [6] and Proposition 7

$$
\begin{aligned}
N_{\phi}(z) & =\int_{0}^{2 \pi} \log \left|z-\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi+\log \frac{1}{|z|} \\
& =\int_{|z|}^{1} \log \frac{r}{|z|} d \nu_{0}(r)
\end{aligned}
$$

for $z \in D \backslash\{0\}$. If $|z| \leq a_{1}$, then

$$
\begin{aligned}
& \int_{|z|}^{1} \log \frac{r}{|z|} d \nu_{0}(r)=\sum_{j=1}^{\infty}\left(\log \frac{a_{j}}{|z|}\right) \nu_{0}\left(\left\{a_{j}\right\}\right) \\
& \quad=\sum_{j=1}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log \frac{1}{|z|}+\sum_{j=1}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log a_{j} \\
& \quad=\log \frac{1}{|z|}+\sum_{j=1}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log a_{j} .
\end{aligned}
$$

Hence if $|z| \leq a_{1}$ then

$$
\int_{0}^{2 \pi} \log \left|z-\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi=\sum_{j=1}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log a_{j}=\alpha
$$

If $a_{1}<|z| \leq a_{2}$, then

$$
\begin{gathered}
\int_{|z|}^{1} \log \frac{r}{|z|} d \nu_{0}(r)=\sum_{j=2}^{\infty}\left(\log \frac{a_{j}}{|z|}\right) \nu_{0}\left(\left\{a_{j}\right\}\right) \\
=\sum_{j=2}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log \frac{1}{|z|}+\sum_{j=2}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log a_{j} \\
\int_{0}^{2 \pi} \log \left|z-\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi
\end{gathered}=-\nu_{0}\left(\left\{a_{1}\right\}\right) \log \frac{1}{|z|}+\sum_{j=2}^{\infty} \nu_{0}\left(\left\{a_{j}\right\}\right) \log a_{j} .
$$

where $\beta \neq 0$
For each $z \in D$, put

$$
z-\phi(\zeta)=q_{z}(\zeta) h_{z}(\zeta) \quad(\zeta \in D)
$$

where $q_{z}(\zeta)$ is inner and $h_{z}(\zeta)$ is outer. Since ϕ is a finite-to-one map, \boldsymbol{q}_{z} is a finite Blaschke product by hypothesis and so

$$
q_{\phi(t)}(\zeta)=\prod_{j=1}^{n} \frac{\zeta-b_{j}(t)}{1-\overline{b_{j}(t) \zeta}} \quad(t \in D)
$$

Then, since $\phi(0)=0$,

$$
\phi(t)=(-1)^{n}\left(\prod_{j=1}^{n} b_{j}(t)\right) h_{\phi(t)}(0) \quad(t \in D)
$$

Put $D_{r}=\{t \in \mathbb{C} ;|t| \leq r\}$ for $0<r<1$. If both ϕ and ϕ^{\prime} have no zeros on ∂D_{r} then there is a division $\left\{D_{r}^{j}\right\}_{1 \leq j \leq n}$ of D_{r} such that ϕ is one-to-one on D_{r}^{j} for $1 \leq j \leq n$. For, ϕ is conformal in a neighborhood of each point on ∂D_{r} and so $\arg \phi$ is increasing on, ∂D_{r}. Put $\phi_{j}=\phi \mid D_{r}^{j}$ and $b_{j}(t)=\phi_{j}^{-1}(\phi(t))$ for $1 \leq j \leq n$. Then $b_{j}(t)$ is analytic except $\phi^{\prime}(t)=0$ when $\phi(t)$ in $\phi\left(D_{r}\right)$. Hence $h_{\phi(t)}(0)$ is analytic except $\phi^{\prime}(t)=0$ and $\bigcup_{j=1}^{n}\left\{t \in D ; b_{j}(t)=0\right\}$ when $\phi(t)$ in $\phi\left(D_{r}\right)$. Since $\phi(0)=0,\left\{t \in D ;|\phi(t)|<a_{1}\right\}$ is a $j=1$ nonempty open set. We can choose r such that $\left\{t \in D ;|\phi(t)|<a_{1}\right\} \cap \phi\left(D_{r}\right) \neq \emptyset$. If $|\phi(t)| \leq a_{1}$, by what was proved above,

$$
\begin{aligned}
\alpha & =\int_{0}^{2 \pi} \log \mid \phi(t)-\phi\left(e^{i \theta}\right) d \theta / 2 \pi \\
& =\int_{0}^{2 \pi} \log \left|h_{\phi(t)}\left(e^{i \theta}\right)\right| d \theta / 2 \pi=\log \left|h_{\phi(t)}(0)\right|
\end{aligned}
$$

Hence $\left|h_{\phi(t)}(0)\right|=e^{\alpha}$. and so $h_{\phi(t)}(0)$ is constant on D_{r}. If $a_{1}<|\phi(t)| \leq a_{2}$, by what was proved above,

$$
\begin{aligned}
& \beta \log \frac{1}{|\phi(t)|}+\gamma=\int_{0}^{2 \pi} \log \left|\phi(t)-\phi\left(e^{i \theta}\right)\right| d \theta / 2 \pi \\
& =\int_{0}^{2 \pi} \log \left|h_{\phi(t)}\left(e^{i \theta}\right)\right| d \theta 2 \pi=\log \left|h_{\phi(t)}(0)\right|
\end{aligned}
$$

and so $\left|h_{\phi(t)}(0)\right|=e^{\gamma}|\phi(t)|^{\beta}$. Since there exists $0<r<1$ such that $\left\{t \in D ; a_{1}<\right.$ $\left.|\phi(t)|<a_{2}\right\} \cap \phi\left(D_{r}\right) \neq \emptyset$, this implies that $|\phi(t)|$ is constant there and so ϕ is constant on D. This contradicts that ϕ is a finite-to-one map. Therefore C_{ϕ} is not isometric.

If ϕ is a one-to-one map then it is known [4, Theorem 3.17] that the inner part of $z-\phi$ is a Blaschke product for each $z \in D$. Hence we need not such a hypothesis in Theorem 5. Unfortunately we could not prove it in general, that is, for a finite-to-one map.

§6. Rudin's orthogonal function

In this section, we study Rudin's orthogonal functions. By Theorem 1, if C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ then ϕ is a Rudin's orthogonal function. Proposition 7 implies the converse. This was proved by the author [6] when $d \mu=d \theta / 2 \pi$. The proof is valid for an arbitrary μ. However we give a new proof due to K. Izuchi.

Proposition 7. If ϕ is a Rudin's orthogonal function in $H^{2}(\mu)$ then there exists a unique radial measure ν such that C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$ where $d \nu=d \nu_{0}(r) d \theta / 2 \pi$ and $1 \in \operatorname{supp} \nu_{0}$.

Proof. Put $\nu_{0}=\mu_{|\phi|}$ and $d \nu=d \nu_{0} d \theta / 2 \pi$, then Theorems 1 and 2 imply the proposition.

Corollary 4, Suppose ϕ is a finite-to-one map and ϕ is a Rudin's orthogonal function. If the inner part of $z-\phi$ is a Blashke product for each $z \in D$ and $|\phi|=\sum_{j=1}^{\ell} a_{j} \chi_{E_{j}}$ where $0 \leq a_{j}<a_{j+1}, \sum_{j=1}^{\ell} \chi_{E_{j}}=1$ and E_{j} is a measurable set in ∂D where $1 \leq \ell \leq \infty$, then $|\phi|=1$ and so ϕ is a finite Blaschke product.

Proof. If ϕ is a Rudin's orthogonal function, then by Proposition 7 and Theorem $5, \ell=1$ and so ϕ is a finite Blashke product.

In Corollary 4, if ϕ is one-to-one map then the inner part of $z-\phi$ is a Blaschke product (see [4.Theorem 3.17]). Hence we can take off such a condition. However in such a case Corollary 4 is not new. In fact, P. S. Bourdon [3] showed that if ϕ is univalent and a Rudin's orthogonal function then ϕ is just the coordinate function z.

§7. Final remark

The research in this paper gives more general one. Suppose $0<p<\infty$ and $p \neq 2 . T$ is an isometric operator from $H^{p}(\nu)$ into $H^{p}(\mu)$ with $T 1=1$ if and only if $T=C_{\phi}$ for some ϕ in H^{∞} with $\|\phi\|_{\infty}=1$ and C_{ϕ} is an isometric operator from $H^{p}(\nu)$ into $H^{p}(\mu)$. For the 'if' part is trivial. For the 'only if' part, if T is isometric and $T 1=1$, then by [5, Theorem 7.5.3] $T(f g)=T f \cdot T g$ a.e. μ and $\|T f\|_{\infty}=\|f\|_{\infty}$ for all $f \in \mathcal{P}, g \in \mathcal{P}$. Hence if $\phi=T z$ then ϕ belongs to H^{∞} and $\|\phi\|_{\infty}=1$. Therefore $T f=C_{\phi} f(f \in \mathcal{P})$ and so $T f=C_{\phi} f\left(f \in H^{p}(\nu)\right)$. When $p \neq 2$, if C_{ϕ} is an isometric operator from $H^{p}(\nu)$ into $H^{p}(\mu)$, then C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$. For by [5, Theorem 8.5.3], for all $f \in \mathcal{P}$ and $g \in \mathcal{P}$

$$
\int_{\bar{D}} C_{\phi} f \cdot \overline{C_{\phi} g} d \mu=\int_{\bar{D}} f \bar{g} d \mu
$$

and $\left\|C_{\phi} f\right\|_{\infty}=\|f\|_{\infty}$. This implies that C_{ϕ} is an isometric operator from $H^{2}(\nu)$ into $H^{2}(\mu)$.

We give two open problems :
(1) Are there any isometric C_{ϕ} from L_{a}^{2} into H^{2} ?
(2) When ν_{0} is a discrete measure and not a dirac measure, are there any isometric C_{ϕ} from $H^{2}(\nu)$ to H^{2} where $d \nu=d \nu_{0}(r) d \theta / 2 \pi$?

Acknowledgement. The author wishes to express his sincere gratitude to the referee for his many helpful suggestions and advices. In particular, he formulates and improves the original Theorem 2 to the present one.

References

1. M. Anderson, Topics in Complex Analysis, Universetext : Tracts in Mathematics, Springer.
2. C. Bishop, Orthogonal functions in H^{p}, preprint.
3. P. S. Bourdon, Rudin's orthogonality problem and the Nevanlinna counting func-
tion, Proc. Amer. Math. Soc. 125(1997), 1187-1192.
4. P. L. Duren, Theory of H^{p} Spaces, Academic Press, New York, 1970.
5. T. Nakazi and T. Watanabe, Properties of a Rudin's orthogonal function which is a linear combination of two inner functions, Sciential Mathematical Japonical Online, 7 (2002), 347-352.
6. T. Nakazi, The Nevanlinna counting functions for Rudin's orthogonal functions, Proc. Amer. Math. Soc. 131(2003), 1267-1271.
7. W. Rudin, Real Complex Analysis, Third Edition, McGraw-Hill Series in Higher Mathematics
8. W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer-Verlag, 1980
9. J. H. Shapiro, Composition Operators and Classical Function Theory, SpringerVerlag, 1993
10. C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, preprint.

Department of Mthematics
Hokkaido University
Sapporo 060-0810, Japan
nakazi@math.sci.hokudai.ac.jp

Received July 28, 2005
Revised July 20, 2006

[^0]: *This research was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

