A NOTE ON THE RADON-NIKODYM TYPE THEOREM FOR OPERATORS ON SELF-DUAL CONES

YASUHIDE MIURA

Abstract

Let $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$be a standard form of a von Neumann algebra. We consider an order for operators preserving a self-dual cone \mathcal{H}^{+}. Let A, B be positive semi-definite operators on \mathcal{H} such that A preserves \mathcal{H}^{+}and B belongs to a strong closure of the positive part of an order automorphism group on \mathcal{H}^{+}. We prove that if A is majorized by B, then there exists a positive semi-definite operator c in the center $Z\left(\left.Q \mathcal{M}\right|_{Q \mathcal{H}}\right)$ with $\|c\| \leq 1$ such that $\left.Q A\right|_{Q \mathcal{H}}=\left.c B\right|_{Q \mathcal{H}}$ where Q is a support projection of B.

1. Introduction

Let \mathcal{H} be a complex Hilbert space with an inner product (\cdot, \cdot). A convex cone \mathcal{H}^{+} in \mathcal{H} is said to be self-dual if $\mathcal{H}^{+}=\left\{\xi \in \mathcal{H} \mid(\xi, \eta) \geq 0 \forall \eta \in \mathcal{H}^{+}\right\}$. We denote the isometric involution with respect to \mathcal{H}^{+}by J. Put $\mathcal{H}^{J}=\mathcal{H}^{+}-\mathcal{H}^{+}$. Then $\mathcal{H}^{J}=\{\xi \in \mathcal{H} \mid J \xi=\xi\}$. Every element $\xi \in \mathcal{H}$ is written as $\xi=\xi_{1}+i \xi_{2}$ for $\xi_{1}, \xi_{2} \in \mathcal{H}^{J}$. The set of all bounded linear operators on \mathcal{H} is denoted by $L(\mathcal{H})$. We denote the set of all operators in $L(\mathcal{H})$ preserving \mathcal{H}^{J} by $L(\mathcal{H})^{J}$. For a fixed self-dual cone \mathcal{H}^{+}, we shall denote for $A, B \in L(\mathcal{H})^{J}$ by

$$
A \unlhd B
$$

if $(B-A)\left(\mathcal{H}^{+}\right) \subset \mathcal{H}^{+}$. Then the relation ' \unlhd ' defines an ordered vector space on $L(\mathcal{H})^{J}$. The group of all order automorphisms on \mathcal{H}^{+}is denoted by $G L\left(\mathcal{H}^{+}\right)$. We shall write ' \leq ' as the usual order defined on the set of all Hermitian operators on \mathcal{H}.

Recall a self-dual cone associated with a standard von Neumann algebra in the sense of Haagerup [2], which appears in the form $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$where \mathcal{M} is a von

[^0]Neumann algebra on \mathcal{H}. For example, put for $A \in \mathcal{M}$

$$
\hat{A}: \xi \mapsto A J A J \xi \quad \text { for all } \quad \xi \in \mathcal{H}
$$

Then $\hat{A} \unrhd O$ from the standard form.
In A. Connes [1] and B. Iochum [3], they characterized an element of $G L\left(\mathcal{H}^{+}\right)$for an orientable or a facially homogeneous cone \mathcal{H}^{+}. In this note we shall investigate the strong closure of the positive part of $G L\left(\mathcal{H}^{+}\right)$from the point of view of the inequality concerned with the order for operators preserving a self-dual cone associated with a standard form.

2. Main Results

We need some lemmas to prove the main theorem.
Lemma 2.1. For a standard form $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$,

$$
\|X J X J\|=\|X\|^{2}
$$

holds for all $X \in \mathcal{M}$.
Proof. We first assume $X=X^{*}$. Then for each spectral projection P of X, the projection $P J P J$ becomes a spectral projection of $X J X J$. Here we remark that $P J P J \neq O$. Indeed, using the fact that $J Z J=Z^{*}$ for each element Z in the center of \mathcal{M}, the central support of P is equal to that of $J P J$. Hence we have $P J P J \neq O$. Take the spectral projection P such that the difference $X P-\|X\| P$ is small. Then the difference $(X J X J) P J P J-\|X\|^{2} P J P J$ is also small and we obtain the desired equality.

In the general case, for X, we obtain that

$$
\begin{aligned}
\|X J X J\|^{2} & =\left\|(X J X J)^{*}(X J X J)\right\|=\left\|X^{*} X J X^{*} X J\right\| \\
& =\left\|X^{*} X\right\|^{2}=\|X\|^{4}
\end{aligned}
$$

This completes the proof.
Lemma 2.2. For a standard form $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$, if $A, B \in \mathcal{M}$ and $A \geq O, B \geq O$, then the following conditions are equivalent:
(i) $O \leq A \leq B$.
(ii) $O \leq A J A J \leq B J B J$.

Proof. The implication (i) \Rightarrow (ii) is immediate from the commutativity of A and $J A J$. The implication (ii) \Rightarrow (i) is shown as follows:

We may assume A and B to be invertible. Let $B^{-\frac{1}{2}} J B^{-\frac{1}{2}} J$ operate on (ii) by multiplication from the right and left. Then

$$
B^{-\frac{1}{2}} A B^{-\frac{1}{2}} J B^{-\frac{1}{2}} A B^{-\frac{1}{2}} J \leq I
$$

It follows from Lemma 2.1 that

$$
\left\|B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right\|^{2}=\left\|B^{-\frac{1}{2}} A B^{-\frac{1}{2}} J B^{-\frac{1}{2}} A B^{-\frac{1}{2}} J\right\| \leq 1 .
$$

Hence $\left\|B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right\| \leq 1$, so $B^{-\frac{1}{2}} A B^{-\frac{1}{2}} \leq I$. Consequently $A \leq B$.
Lemma 2.3. For a standard form $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$, suppose that $A \in L(\mathcal{H})$, and $B \in \mathcal{M}$ is an injective operator with a dense range. Then, $O \unlhd A \unlhd B J B J$ if and only if there exists an element $C \in Z(\mathcal{M})$ with $O \leq C \leq I$ such that $A=C B J B J$.

Proof. Consider the polar decomposition $B=U|B|$ of B. By the assumption on B, we obtain that U is a unitary element of \mathcal{M}, and so $\hat{U}=U J U J \unrhd O$. Hence $\hat{U}^{*} \unrhd O$ since $\left(\hat{U}^{*} \xi, \eta\right)=(\xi, \hat{U} \eta) \geq 0$ for all $\xi, \eta \in \mathcal{H}^{+}$. Then we may assume that B is positive semi-definite. Let $B=\int_{0}^{\|B\|} \lambda d E_{\lambda}$ be a spectral decomposition of B. Put $P_{n}=\int_{\frac{1}{n}}^{\|B\|} d E_{\lambda}$ for $n \in \mathbb{N}$. Since $P_{n} \in \mathcal{M}$ implies $\hat{P}_{n}=P_{n} J P_{n} J \unrhd O$, it follows that

$$
O \unlhd \hat{P}_{n} A \hat{P}_{n} \unlhd \hat{P}_{n} \hat{B} \hat{P}_{n} .
$$

Since $P_{n} B P_{n}\left(=B P_{n}\right)$ is invertible on $P_{n} \mathcal{H}$, where the inverse shall be denoted by $\left(P_{n} B P_{n}\right)^{-1}$ if there is no possibility of confusion, it follows that

$$
\left(\hat{P}_{n} \hat{B} \hat{P}_{n}\right)^{-1}={\widehat{P_{n} B P_{n}}}^{-1}=\left(\left(P_{n} B P_{n}\right)^{-1}\right)^{\wedge} .
$$

This means that $\hat{P}_{n} \hat{B} \hat{P}_{n}$ is an order isomorphism of $\hat{P}_{n} \mathcal{H}$. This yields

$$
O \unlhd \hat{P}_{n} A \hat{P}_{n}\left(\hat{P}_{n} \hat{B} \hat{P}_{n}\right)^{-1} \unlhd \hat{P}_{n} .
$$

Then, under the reduced standard form $\left(\left.\hat{P}_{n} \mathcal{M}\right|_{\hat{P}_{n} \mathcal{H}}, \hat{P}_{n} \mathcal{H},\left.\hat{P}_{n} J\right|_{\hat{P}_{n} \mathcal{H}}, \hat{P}_{n} \mathcal{H}^{+}\right)$, there exists an element c_{n} in an order ideal $Z_{\hat{P}_{n} \mathcal{H}^{+}}$of $\hat{P}_{n} \mathcal{H}$ with $\left\|c_{n}\right\| \leq 1$ such that

$$
\hat{P}_{n} A \hat{P}_{n}\left(\hat{P}_{n} \hat{B} \hat{P}_{n}\right)^{-1} \xi=c_{n} \xi
$$

for all $\xi \in \hat{P}_{n} \mathcal{H}$. Here, in a standard form $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$, the orrder ideal of \mathcal{H} is defined as

$$
Z_{\mathcal{H}^{+}}=\{T \in L(\mathcal{H}) \mid \exists \alpha>0,-\alpha I \unlhd T \unlhd \alpha I\} .
$$

By [3, Theorem VI.1.2 (iii)] we obtain that $c_{n} \in Z\left(\left.\hat{P}_{n} \mathcal{M}\right|_{\hat{P}_{n} \mathcal{H}}\right)$. We note that $Z\left(\left.\hat{P}_{n} \mathcal{M}\right|_{\hat{P}_{n} \mathcal{H}}\right)=\left.Z(\mathcal{M})\right|_{\hat{P}_{n} \mathcal{H}}$. Since $\hat{P}_{n} \leq \hat{P}_{n+1}$ and \hat{P}_{n} commutes with \hat{B} and c_{m} for $m \geq n$, it follows for $\xi \in \hat{P}_{n} \mathcal{H}$ that

$$
\begin{aligned}
c_{n+1} \xi & =\hat{P}_{n} c_{n+1} \hat{P}_{n} \xi=\hat{P}_{n}\left(\hat{P}_{n+1} A \hat{P}_{n+1}\left(\hat{P}_{n+1} \hat{B} \hat{P}_{n+1}\right)^{-1}\right) \hat{P}_{n} \xi \\
& =\hat{P}_{n} A \hat{P}_{n}\left(\hat{P}_{n} \hat{B} \hat{P}_{n}\right)^{-1} \xi=c_{n} \xi .
\end{aligned}
$$

Put $\mathcal{S}=\bigcup_{n=1}^{\infty} \hat{P}_{n} \mathcal{H}$, which is a dense set in \mathcal{H}. Then we define the operator

$$
C \xi=\lim _{n \rightarrow \infty} c_{n} \hat{P}_{n} \xi \text { for all } \xi \in \mathcal{S}
$$

From the boundedness of $\left\{c_{n} \hat{P}_{n}\right\}$ the operator C has a continuous extension on \mathcal{H}, which shall be denoted by the same notation. Thus $0 \leq C \leq I$. Furthermore, when $m \geq n, c_{m} \hat{P}_{m}$ commutes with both $\hat{P}_{n} X \hat{P}_{n}$ and $\hat{P}_{n} J X J \hat{P}_{n}$ with all $X \in \mathcal{M}$. This yields that $C \hat{P}_{n} X \hat{P}_{n}=\hat{P}_{n} X \hat{P}_{n} C$ and $C \hat{P}_{n} J X J \hat{P}_{n}=\hat{P}_{n} J X J \hat{P}_{n} C$. In view of $\hat{P}_{n} \rightarrow I$ as $n \rightarrow \infty$, we have $C X=X C$ and $C J X J=J X J C$, and so $C \in Z(\mathcal{M})$. Consequently,

$$
\begin{aligned}
A & =\mathrm{s}-\lim _{n \rightarrow \infty} \hat{P}_{n} A \hat{P}_{n} \\
& =\mathrm{s}-\lim _{n \rightarrow \infty} c_{n} \hat{P}_{n} \hat{B} \hat{P}_{n} \\
& =C \hat{B} .
\end{aligned}
$$

The converse implication holds from the following fact. If $C \in Z(\mathcal{M})$ with $O \leq$ $C \leq I$, then $I-C \geq O$, and so $I-C=(I-C)^{\frac{1}{2}} J(I-C)^{\frac{1}{2}} J \unrhd O$. Hence $\hat{B}-C \hat{B}=(I-C) \hat{B} \unrhd O$. This completes the proof.

Theorem 2.4. Suppose that $\left(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^{+}\right)$is a standard form. Let $A, B \in L(\mathcal{H})$ and $A \geq O, B \geq O$. Suppose that B is a strong limit of a monotone net (in the sense of ' \leq ') of the positive semi-definite operators from $G L\left(\mathcal{H}^{+}\right)$.
(i) There exists a positive semi-definite operator K from \mathcal{M} such that $B=$ $K J K J$.
(ii) If $O \unlhd A \unlhd B$, then
(1) there exits a positive semi-definite operator c from the center $Z\left(\left.\hat{P} \mathcal{M}\right|_{\hat{P} \mathcal{H}}\right)$ with $\|c\| \leq 1$ such that $\left.\hat{P} A\right|_{\hat{P} \mathcal{H}}=\left.c B\right|_{\hat{P} \mathcal{H}}$;
(2) $O \unlhd\left(\left.\hat{P} A\right|_{\hat{P} \mathcal{H}}\right)^{\lambda} \unlhd\left(\left.B\right|_{\hat{P} \mathcal{H}}\right)^{\lambda}$ for all $\lambda \in[0, \infty)$.

Here $\hat{P}=P J P J$ for the support projection P of K.
Proof. (i): A positive semi-definite operator from $G L\left(\mathcal{H}^{+}\right)$is written in the form $K_{0} J K_{0} J$ for some invertible positive semi-definite operator $K_{0} \in \mathcal{M}$ by [1, Theorem 3.3]. In the case that B is a strong limit of a decreasing net $\left\{K_{i} J K_{i} J\right\}$ of such invertible positive semi-definite operators K_{i}, it follows from Lemma 2.2 that $\left\{K_{i}\right\}$ is also decreasing. Since $\left\{K_{i}\right\}$ is bounded, there exists a positive semi-definite operator $K \in \mathcal{M}$ which is a strong limit of $\left\{K_{i}\right\}$. Thus $B=K J K J$. In the case that B is a strong limit of an increasing net $\left\{K_{i} J K_{i} J\right\}$ of invertible positive semi-definite operators K_{i}, since a strong limit of a bounded increasing net of invertible positive semi-definite operators is invertible, B belongs to $G L\left(\mathcal{H}^{+}\right)$.
(ii): We first claim that if P is a support projection of K then $P J P J$ is a support projection of $K J K J$. This follows from the fact that for any two positive semidefinite operators A, B such that $A B=B A$, we obtain $s(A B)=s(A) s(B)$. Here $s(\cdot)$ means a support projection. Indeed consider the abelian von Neumann algebra generated by A and B. Then

$$
s(A B)=\mathrm{s}-\lim _{n \rightarrow \infty}(A B)^{\frac{1}{n}}=\mathrm{s}-\lim _{n \rightarrow \infty} A^{\frac{1}{n}} B^{\frac{1}{n}}=s(A) s(B)
$$

Next, since $\hat{P}=P J P J \unrhd O$, the assumption $O \unlhd A \unlhd B$ implies $O \unlhd \hat{P} A \hat{P} \unlhd$ $\hat{P} B \hat{P}$. We obtain that the restriction operator $\left.K\right|_{\hat{P} \mathcal{H}}$ is an injective positive semidefinite operator in $\left.\hat{P} \mathcal{M}\right|_{\hat{P} \mathcal{H}}$ with a dense range. By Lemma 2.3 we can then choose a positive semi-definite operator c from the center of $\left.\hat{P} \mathcal{M}\right|_{\hat{P} \mathcal{H}}$ with $\|c\| \leq 1$ satisfying $\left.\hat{P} A\right|_{\hat{P} \mathcal{H}}=\left.c B\right|_{\hat{P} \mathcal{H}}$. Thus (1) holds. Furthermore, since for every $\lambda \in[0, \infty)$,

$$
\left(\left.B\right|_{\hat{P} \mathcal{H}}\right)^{\lambda}-\left(\left.\hat{P} A\right|_{\hat{P} \mathcal{H}}\right)^{\lambda}=\left.\left(I-c^{\lambda}\right) B^{\lambda} J B^{\lambda} J\right|_{\hat{P} \mathcal{H}} \unrhd O,
$$

we obtain (2). This completes the proof.
Acknowledgements. The author would like to thank the referee for useful suggestions. This work is supported by Grant-in-Aid for Academic Group Research No. 14 of Iwate University.

References

[1] A. Connes, Caractérisation des espaces vectoriels ordonnées sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24 (1974), 121-155.
[2] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271-283.
[3] B. Iochum, Cônes Autopolaires et Algèbres de Jordan, Lecture Notes in Mathematics, 1049, Springer-Verlag, Berlin, 1984.
(Yasuhide Miura) Department of Mathematics, Faculty of Humanities and Social Sciences, Iwate University, Morioka, 020-8550, Japan
E-mail address: ymiura@iwate-u.ac.jp

Received July 27, 2009
Revised November 27, 2009

[^0]: 2000 Mathematics Subject Classification. 46L10, 47B65.
 Key words and phrases. Order isomorphism, operator inequality, Radon-Nikodym theorem, selfdual cone, standard form of von Neumann algebra.

