
4. APPLICATIONS TO ISOMORPHISM TYPES

Some of the principal results of the preceding section can
be conveniently formulated in terms of isomorphism types.

In what follows we restrict ourselves to algebras in the
sense of 1.1 which belong to a fixed similarity type (compare
the remarks at the beginning of Section 1). This similarity
type may be entirely arbitrary, and no further restrictions are
imposed upon the algebras involved.

We assume that an isomorphism type T (A) has been correlat-
ed with every algebra A, in such a way that the isomorphism types
T(A) and T(|) of two algebras A, and B are identical if, and only
if,- the algebras A and B are isoraorphic. (We could define T(A),
for instance, as the class of all algebras which are isomorphic
to A. Such a definition, however, would involve us in certain
controversial problems of the foundations of set theory, which
we do not wish to discuss here.)

As is well known, the formulas

Ai * A, and Bt * Bt

imply

At x Bt * Aa x Bt

for anv algebras Alf Af, Blf and Bt. Hence we can define the
cardinal product a x 3 of two isomorphism types a and p so that,
for arbitrary algebras ,A and 13,

B) " T(A) x T(BJ.

This operation of cardinal multiplication can easily be extended
to arbitrary svstems of isomorphism types; with regard to finite
sequences this can .be done by recursion. The cardinal product
of a sequence ct0, <x&,..., aK>... with x < v < a will be denoted

As an easy consequence of 1.5 and 1.10 we obtain by induc-
tion

Theorem 4.1. Let
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A. • < A, +, Oot Oi,..., Og,...>

be an algebra and let a0, alt...f aK,... with x < v < « be iso-
morphism types. In order that

T(A) -

it is necessary and sufficient that there exist subalgebras A0,
At,..., AK>... of A with x < v such that

A.I~U
K<V *

and

In'accordance with conventions made at the beginning of
Section 1 we shall write T(A) for T{< A, +f 00t Ot,..., Og,...>)
in those cases in which it is clear from the context which oper-
ations are involved.

Some of the most elementary and fundamental properties of
cardinal products of isomorphism types are stated in the follow-
ing

Theorem 4.8. For .all isomorphism types a, p, and Y we have;

(i) a x p is an isomorphism type.

(ii) a x p « p x a.

(iii) a x (p x y) - (a x p) x y.

Proof: obvious.

The common isomorphism type of all algebras containing no
element different from 0 is referred to as the unit type and is
denoted by 1. We obviously have

Theorem 4.3. (i) 1 is an isomorphism type, and

for every isomorphism type a.

(ii) If a and P are two isomorphism types such that

a x p - 1,
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then

a - p « 1.

An isomorphism type T(A) is called finite, or indecompos-
able, if the algebra A itself is finite, or indecomposable, re-
spectively. In the next two theorems we state certain evident
properties of isomorphism types which are finite or indecompos-
able.

Theorem 4.4. (i) For all isomorphism types a and p, a x p
is finite if. and only if, « and P are finite.

(iij 1 is finite.

(iii) If a0, at,..., aK>... and P0» Pif-t £*»••• are isomor-
phism types such that.

ax • ax+t x pK for every x < to,

and if a0 is finite, then there exists a X < to such that PK+\
* * for every x < w.

Theorem 4.5. An isomorphism type a is indecomposable if,
and only if. a * 1 and*, for any isomorphism types P and Yt * *
p x Y implies that p • 1 or Y * 1*

We omit here inductive generalizations of various parts of
4.8-4.4 to finite sequences of isomorphism types. We notice,
however,

Corollary 4.6. For every finite isomorphism type a there
exist finite indecomposable isomorphism types a0, alf..., **»•••
with x < v < w such that

Proof: either in a purely arithmetical way by means of
4.1 (i)-(iii) and 4.4 (iii), or else with the help of 3.2 and
4.1..

We now turn to results of a less elementary character.

Theorem 4.7. Let a be a finite indecomposable isomorphism
type and let p, Yt and 8 be arbitrary isomorphism types such
that

a x 3 - y x 8.
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Then either there exists an isomorphism type t1 such that

(1) p » ef x 6 and Y * * x «'»

or else there exists an isomorphism type e fl auch that

(ii) p • Y * e" and 8 « a x s".

Proof: By 4.8 (i) there exists an algebra

A " < A, +, Oot Oi,..., Og,...>

with T(A) * a x p. Hence, bv 4.1, there are subalgebras B, C,
D, and E of A such that

( i ) A - B X C - D X E
and

(2) a - T(B), P " T(C), Y " ̂ D>t and 6 " ̂ <Ei.

By 3.7, either there exist subalgebras X1 and Y1 of D such that

(8) D - X1 x Y1 and A « Xf x c • B x yi x E,

or else there exist subalgebras X" and Y" of E such that

(4) E - Xfi x Y" and A - X" x C " B x Y11 x D.

If (8) holds, then by (1), (2), and £.18,

a « T(X») and P " T(Yf x E).
»

Hence, if ire put

s' • T(Yf),

then (i) is satisfied by 4.1. If (4) holds, we put

and verify (ii) in an analogous way. The proof is thus complete.

An isomorphism type a is called a divisor of an isomorphism
type P, in symbols, ajp, if. there exists an isomorphism type Y

for which a x Y • £• Let us agree to call an isomorphism type
a prime if a^p and, for any isomorphism types p and Y» « | P x Y
implies that <x| p or <X|Y. This definition is suggested by the
well-known fact that prime numbers can be characterized by means
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of an analogous property. Using the terminology just introduced
we can immediately derive the following corollary from Theorem
4.7:

Every finite isomorphism type which is indecomposable is
also prime.

The converse of this corollary also holds as can easily be

shown by means of 4.2 and 4.4 (iii). These results, however,
cannot be extended to arbitrary isomorphism types; there are

infinite isomorphism types which are indecomposable without be-

ing prime, as well as ones which are prime without being inde-
composable. le

The last three theorems of this section contain the funda-
mental results of our work as applied to isomorphism types.

These theorems can easily be obtained from the results of Section
3 by means of 4.1; however, they may also be derived in a purely

arithemetical way from 4.2-4.7.

Theorem 4.8 (Refinement theorem). Let a be a finite iso-
morphFsm type, and' let 0, Y, and 6 be arbitrary isomorphism

types such that

a x p » Y * o.

Then there exist isomorphism types £1, e«, e§, and e4 such that

a - et x sa, p - e§ x e4, Y " *i x e§, and. 6 - et x e4.
<*

Proof: by 3.9, 4.1, and 4.2 ( i ) , or else by 4.2, 4.6, and
4.7.

Theorems 4.7 and 4.8 can be extended by an easy induction
to f in i t e sequences (c f . Theorems 3.8 and 3.9).

Theorem 4.9 (Unique factorizat ion theorem). Every f in i t e
isomorphism type a has, apart from order, just one representa-
tion as cardinal product of indecomposable isomorphism types

(cf . Corollarv 4.5); i.e., if

19. An example of an indecomposable isomorphism type which is not
prime can be immediately obtained from a construction outlined in Jonsson
[1], The isomorphism type of a cardinal product of infinitely many two-
element groups can easily be shown to be prime, but is obviously not inde-
composable*
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a.ru
K<ft K

is another representation of this kind, then v • n, and there
exists a permutation 9 of the ordinals 0, 1,..., v - 1 such
that

for every x < v.

Proof: by 3.10, 4.1, and 4.2 (ii) or, else by 4.2, 4.3,
4.5, 4.6, and 4.7.

Theorem 4.10 (Cancellation theorem). Ij[ a is a finite
isomorphism type and if p and y are arbitrary isomorphism types
such that

a x p * a x Y,

then

3 - Y-

Proof: by 3.11, 4.1, and 4.2 (i), or else by 4.2 (i), (ii),
4.3, 4.5, 4.6, and 4.7.

Theorems 4.7-4.10 can be extended to certain classes of
infinite isomorphism types; compare here the closing remarks in
Section 3.

In conclusion it should be pointed out that all the notions
introduced in this section can be applied, not only to algebras
in the sense of 1.1, but to arbitrary systems A discussed at the
beginning of Section 1. Theorems 4.7-4.10 cannot be extended,
however, to isomorphism types of such systems. To show this,
consider the systems

At - < A, +!> and A, - < A, +, >

where the set A consists of two numbers 0 and 1 and where the
operations +1 and +« are defined by the formulas

0+tX « l+ tx • 1 and 1+iX « 0+«x « 0 for x • 0, 1.

By putting

ctt - t ( A t ) and «fl - *(A«)

we easily see that

at x at - a± x at and <x f t 9* aa;
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we also notice that the isomorphism types at and a, are indecom-
posable. This provides us with simple counterexamples for all
the fundamental theorems of the present section. In this connec-
tion it may be noticed that although the algebra A* has no zero
element, it has an element which is idempotent under the opera-
tion +, i.e., which satisfies the formula z + z • z; no such
element z occurs, however, in the algebra At or in the product
At x Af. Hence the problem arises whether our fundamental re-
sults can be extended to algebraic systems

A « < A, + >

which satisfy 1.1 (i1) and have an element z that is idempotent
under +; or, more generally, to those systems

A * < A, OQ, Otf-t Ogf«>

which satisfy conditions 1.1 (i1) and 1.1 (ii"). As we know
from Section 1, the introduction of an adequate notion of a di-
rect product for this class of algebraic systems involves various,
difficulties, and in a certain sense is impossible (even if Oo
is a binary operation). Nevertheless it seems quite plausible
that the main results of our work—in the form given in this
section—apply to the systems in question. The class of these
systems is clearly more comprehensive than the one described in
1.1, and its characterization is simpler and more natural-; for
one thing, no special operation (like +) plays a distinguished
role in such systems. Hence an extension of our results in the
direction just suggested seems very desirable.


