
and

dim(A/p ) = dim(A).

The latter is geometrically interpreted as follows: If x e y,

then dim(V(Jx)) = dim(V(jy)).

Dimension is a very coarse invariant, i.e. were we to

consider the equivalence classes of affine varieties of a given

dimension* we would obtain huge classes of highly non isomorphic

varieties.

§3. DEPTH

The next numerical invariant we shall study in the notion

of depth. ¥e assume throughout this section that A is a

noetherian local ring with maximal ideal fft,, and that M is a

finitely generated A-module.

Definition 3.1. a) an element x e A is called M-regular

if the homomorphism <p:M -> M given by cp(m) = xm is injective.

b) a sequence {x-̂  ...,xn} of elements of A is called M-

regular if x^^ is M/x-ĵ  M +...+ ^_^ M regular, 1 = i = n.

Remark. Clearly every x £ m> being invertible is M-regular

for every module M. Hence we shall confine our attention to

those M-regular elements which belong to ffl,. With regard to b)

we state, without proof, the fact that the sequence {x̂ ,...,x }

is M-regular if, and only if all sequences "fx /^\, ... ,xo./x}

a e Sn are M-regular, where Sn denotes the group of permutations

on n symbols. (Grothendieck, E.G.A., Ch. 0, §15-1, I.H.E.S.

no 20) The above statement is false if A is not noetherian.



Clearly any sequence {x.̂  ...,xn) with x-ĵ  £ IM* is M-regular for

every M (since M/x-̂  M = 0), hence, keeping in mind the above

remark, we shall confine our attention to M-regular sequences

{x1, ...,xn} with xi £ HI,.

Definition 3.2. Depth (M) = maximal number of elements in

all possible M-regular sequences (of elements of -m!).

We investigate first some of the properties of the notion

of M-regularity.

Proposition 3.1.

1) x is M-regular if, and only if, x £ Up.

peAss(M)

2) if x is M-regular, dim(M/xM) = dim(M) - 1.

3) any M-regular sequence is contained in a system of

parameters of M.

4) the sequence {x̂ ,...,xr) is a maximal M-regular

sequence if, and only if, one of the following two

equivalent conditions hold

i) HomA(k, M/x-ĵ  M +...+ x M) + 0, where k = A/wt-

ii) M/X-, M +...+ x M contains a submodule

isomorphic to k.

5) let {x-̂ , ...,xr} be an M-regular sequence. Then

Horn (k, M/x M +...+ x M) = Ext r(k, M) =
A J- r **

ExtA
r~1(k, M/x-ĵ  M).

Proof; 1) Assume x is M-regular, and x e U *p
peAss(M)

Then x e b e Ass(M), for some ]0 . Now p is the annihilator

of some m =1= 0, m e M. Therefore the homomorphism



cp:M -> M, q>(mf) = xm! is not injective (cp(m) = 0, m 4s 0).

Conversely, assume x fc U ^> , and let m + 0, m e M
peAss(M)

such that xm = 0. Since m =(= 0, 0 *(= Am C M, hence Ass (Am) =|= 0

(in fact M = 0 <==> Ass(M) = 0) . Now Ass (Am) C Ass(M)

trivially, and x e Arm(Am), whence x e C\ p , a
p e Ass (Am)

contradiction .

2) This is an immediate consequence of 1) and

proposition 2.6.

3) We prove this by induction on k, where {x^ ...,xk} is

an M- regular sequence. If k = 1, then x-ĵ  is M- regular and, by

2) above and Proposition 2.7, {x^ can be imbedded in a system

of parameters of M. Let k > 1. By induction assumption and

Proposition 2.7,

dim(M/x1 M +...+ Xj^ M) «= dim(M) - k + 1,

and from M/x-, M +. . .+ xfe M = (M/x-ĵ  M +. . .+ xfc_1 M)/

xk(M/x1 M +...+ xfe_1 M) and 2) above we get (since xfc is

M/x-ĵ  M +...+ xk-1 M- regular):

dim(M/x1 M +...+ xfc M) = dim(M) - k

whence, again from Proposition 2.7, {x̂ , . . . ,x̂ } can be imbedded

in a system of parameters of M.

4) We observe that a sequence {x̂ , ...,xr) is M-regular

and maximal if, and only if, the sequence {x̂ .-.jX̂ ,} is

M/x., M-regular and maximal, hence we are reduced by induction to

the case r = 0. We observe furthermore that conditions i) and

ii) are obviously equivalent, since a non zero A-homomorphism



of k = A/yn- is injective.

Now r = 0 (and maximality), implies that there are no M-

regular elements in ft*, and by 1) above "^ = U F • There-
jpeAss(M)

fore "TWo e Ass(M) and, m being the annihilator of some non zero

x e M, k = A/7%. - Ax C M and ii) follows. Conversely, if

M D N - A/77fc = k, let x e M be a generator of N. Then r?t is the

annihilator of x, whence 7?i e Ass(M) and there are no M- regular

elements in -772., i.e. 0 is a maximal sequence of M- regular

elements, Q.E.D.

5) Let N = M/x^ M. We have an exact sequence

where cp(m) = x-, m. Hence we get

... ->ExtA
r~1(k, M) ̂ExtA

r~1(k, M) ̂

^1(k, N) ̂ExtA
r(k, M) ̂ >Extr(k, M)

Now, since x-^ eflz, cp = 0 (multiplication by x., annihilates all

elements of k) . On the other hand, by induction

ExtA
r~1(k, M) = Hom(k, M/XI M +...4 xr_1 M) = 0

since {x.,,...,x n} is not a maximal M- regular sequence. There-j- r~~ x '

fore ExtA
r~ (k, N) = ExtA

r(k, M) . As was pointed out in the

proof of 4), {xgj.-.jX } is a maximal N-regular sequence, whence

we can proceed by induction and obtain

ExtA
r""1(k, N) = ExtA

r~2(k, M/X-L M -f x2 M) = ...

= Hom(k, M/x-ĵ  M -f-. . .+ xr M),



and 5) is proved.

Corollary 3.1. Maximal M-regular sequences have the same

cardinality.

Proof; Obvious from 5).

Corollary 3.2. Let M11 = 0 M±, M± = M. Then Depth (Mk) =

Depth (M).

Proof; The isomorphism

ME1/x1M
ri+.. .+xrM

n = H/x-jMf. . .+xrM 0.. .0 H/XjMK . .+xrM

shows that any maximal if1 regular sequence is a maximal M-

regular sequence. The corollary follows from Corollary 3.1.

We now come to the main theorem concerning the notion of

depth, namely:

Theorem 3.1. Let A be a noetherian local ring, M a

finitely generated A-module. Then

i) depth (M) = 0 is equivalent to -%e Ass(M).

ii) if x em, is M-regular then depth (M/xM) =

depth (M) - 1.

iii) depth (M) = inf dim(A/to ) = Sup dim(A/to ) =
peAss(M) ' peAss(M) '

dim(M).

Proof; i) This is a restatement of 1), Proposition 3.1.

ii) Let {x2,...,x } be a maximal M/xM-regular

sequence. If x is M-regular, then {x, Xp,...,x } is a maximal

M-regular sequence, whence depth (M) = depth (M/xM) + 1.

iii) We prove this by induction on n = depth (M). If

n = 0, then 1ft, e Ass(M), whence, trivially



0 = inf dim(A/p ) = sup dim(A/̂  ) = dim(M).
jpeAss(M) p €Ass(M)

In the Induction step we shall make use of the following:

Lemma 3.1. Let t em, be M- regular, p e Ass(M). Then

any minimal prime containing f) + At belongs to Ass(M/tM).

Proof ; By Proposition 4 of B.C. A., IV, §1, there exists

a submodule M1 C M and an exact sequence

such that Ass(M') = {f>}; Ass(M") = Ass(M) - { Jo} . By 1 of

Proposition 3.1* t is both M1- regular and M"- regular and the

diagram

0 0 0
4 4 1

0 -» M1 -» M -» M" -> 0
^ i 4

0 -» Mf -» M -» M" -^0
^ 4 i

0 -* M'/tM1 -^ M/tM -> Mn/tM" -> 0
4 ^ 4
0 0 0

is obviously commutative and exact, whence

Ass (M f AM • ) C Ass (M/tM) . We have

Supp(M f / tM') = Supp(M r ) n V(t).

If <tf is a minimal prime containing p + At, then from the

above 4>f is a minimal prime of Supp(Mf/tMf ), whence

-Of e Ass(MVtM) and we are done.

We return to the proof of iii) of theorem 3.1. Assume

depth (M) = n. Let x e m, be M-regular, N = M/xM. By

ii) of theorem 3.1* depth (N) = n - 1. Let t> be any point in



Ass(M), and let ̂ be a minimal prime containing p + Ax.

Clearly <W 3 fa (since x ^ p ) and by the lemma -^ e Ass(N).

By the induction assumption we have

n -

and clearly dim(A/̂  ) = dim(A/4p) - 1. Hence n =

for all p e Ass(M), iii) follows.

Appendix

Not only is the function d:Spec(A) -» N given by

d(p) = depth (A£ ) not continuous, but the concept of depth

is a considerably more sensitive invariant than dimension. In

particular depth (A ̂  ) bears no relation to depth (A), contrary

to the behavior of dimension. To see this, let A be any local

ring, which is an integral domain, p e Spec(A), say p = (0).

Then A^ is a field, and has hence depth 0, while depth (A) is

arbitrary. On the other hand let AQ be any local integral

domain, 4itx its unique maximal ideal, k = A /__ . Consider
O O O/ TfVj

the A -module A = A 0k, and define on A a ring structure

by defining (a, x)«(af, xf) = (aa1, ax1 + a'x). One easily

checks that A is a local ring, with m,Q 0 kQ as unique maximal

ideal, and that every non-unit in A is a zero divisor, whence

depth (A) = 0. However, if dim(AQ) = 2, and pQ is a non zero,

non maximal prime ideal of AQ then p = pQ 0k is a prime

ideal in A and A p - AQ ̂  . Now depth (AQ ̂  ) = 1 since A p
• IO i O ' O

is an integral domain.



The following result is due to Hartshorne and gives a

geometrical significance to the notion of depth.

(Hartshorne) Let A be a local ring with depth (A) = 2.

Then Spec (A) - {*H*} is a connected topological space.

In particular, the local ring of the unique point of

intersection of two sufficiently general planes in four

dimensional affine space is a 2-dimensional ring whose depth

(by Hartshorne fs result) is = 1. This shows that, in the

inequalities iii) of Theorem 3.1* strict inequality is

possible. This justifies the following:

Definition 3.3. Let A be a noetherian local ring, M a

finitely generated A-module. M is said to be a Cohen- Mac au lay

module (C-M module) if depth (M) = dim(M). If A is an

arbitrary noetherian ring (not necessarily local), A is said to

be a Cohen- Macaulay ring if, for every maximal ideal -frL of A,

the local ring A^, is Cohen- Macau lay.

We illustrate the notion of C-M modules with a few

examples.

1) dim(M) = 0, M + 0. Then, from iii) of theorem 3-1, M

is C-M. Here the notion of C-M modules is redundant.

2) dim(A) = 1, A a noetherian local ring. Then, if A is

C-M, depth (A) = 1, which is equivalent to saying,

since dim(A) = 1, that fft t Ass (A). Hence a non C-M

ring of dimension 1 is a local ring in which all non-

units are zero divisors. For example if A = k[x, y],
2 2where k is any field and x y = xy =0, and

xA + yA, one easily checks that A^ is a non

C-M ring of dimension 1.



3) dim(A) = 2. Here we limit ourselves to showing that

every 2-dimensional, integrally closed local integral

domain is C-M. To see this, let x e m, x ̂  0. Since

A is an integral domain, x is A-regular and, since A

is integrally closed, none of the prime ideals

associated to xA is imbedded (see B.C.A., VII, §1).

Then, if fa e Ass(A/xA), it follows by the

Hauptidealsatz that p 4s **&•

Therefore -fit - U p is impossible, and a
jpeAss(A/xA)

y sift,, y t UP can be found. Therefore depth (A) = 2,
PeAss(A/xA)

and hence depth (A) = 2 = dim(A) which proves our assertion.

¥e now investigate some of the consequences of knowing

that a ring A, or a module M, are C-M.

Proposition 3.2. Let M be a C-M A-module. Then

1) For every pe Ass(M),

dim(A/p) = dim(M) = depth (M)

2) The following three conditions are equivalent:

(i) x is M-regular

(ii) dim(M/xM) = dim(M) - 1

(iii) x belongs to no prime of Ass(M)

3) If x is M-regular, M/xM is a C-M module

Proof; 1) is a trivial consequence of the definition of

C-M modules and of (iii) of Theorem 3.1.

2) (i) implies (ii) by (ii) of Theorem 3-1, and (i) is

equivalent to (iii) by 1) of Proposition 3.1. It remains to

prove that (ii) implies (i). This follows immediately from 1)
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above (all primes in Ass(M) are equidimensional) and

proposition 2.6.

3) By (ii) of Theorem 3.1 we have

depth (M/xM) = depth (M) - 1 = dim(M) - 1 = dim(M/xM)

hence M/xM is a C-M module.

We state without proof (an easy application of

proposition 2.7 and 3.1) the generalization of 2) and 3) above

to M-regular sequences.

Proposition 3.3. Let M be a C-M module. Then the follow-

ing three conditions are equivalent:

(i) {x.,...,x } is an M-regular sequence

(ii) dim(M/x1 M +...+ xr M) = dim(M) - r

(iii) {x.,, ...,xr} is embeddable in a system of

parameters.

Furthermore, if {x̂ . ,.,x } is an M-regular sequence, then

M/x-i M +...+ x M is a C-M module.

Proposition 3.̂ -. A module M, for which conditions (i),

(ii), (iii) of the previous proposition are equivalent, and

such that M/x, M +..,+ x M is C-M whenever {x,, ...,x } is an

M regular sequence, is a C-M module.

Proof; Let n = dim(M). If n = 0 there is nothing to

prove. Assume n = 1, let {x.,, ...,x } be a system of

parameters of M. Since (iii) ==> (i), x., is M-regular and

M/X-, M is a C-M module. Now since x., is M-regular

X-L t Up , whence dim(M/x1 M) = dim(M) - 1. Therefore

p€Ass(M)



dim(M) = dim(M/x1M) + 1 = depth(M/x;LM) + 1 = depth(M)

and M is C-M, Q.E.D.

Corollary 3.3. If M is a C-M module, every maximal

M-regular sequence is a system of parameters and conversely.

Proof; Obvious.

Remark. If A is a (not necessarily local) C-M integral

domain, and x e A, x 4= 0, clearly x is A-regular, whence

A/xA is again C-M. Since kfX^ .. .,Xn] is a C-M ring (we shall

prove this later), it follows from the above remark that, if

f (X.̂  .. ,,Xn), g(X1, ...,Xn) are relatively prime irreducible

elements of kfX-^ .. ,,Xn], then kfX-^ .. ,,Xn]/(f, g) is again

C-M. This throws a better light on example 2) given after

definition 3.3.

We now examine the behavior of the notion of C-M under

localization. We have

Proposition 3.5. Let M be a C-M module, to e Supp(M).

Then

1) M£ = M <8> A£ is a C-M module

2) dim(M) = dim(Mp ) + dim(M/pM)

Proof; We shall obtain proposition 3-5 as a consequence

of the following:

Proposition 3.6. Let M be a C-M module, p e Supp(M),

r = dim(M) - dim(M/pM). Then

1) There exists an M-regular sequence {x^ ...,x } with

x± e to and
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2) any such sequence gives

dim(M/x1 M +...+ xr M) = dim(M/pM) = dim(A/p ).

Proof; To prove 1) we proceed by induction on r. When

r = 0 the statement is trivial. Let r = 1. Then

dim(M/jpM) < dim(M), hence p £ Ass(M) (since the primes in

Ass(M) are equidimensional), and therefore p (t U 9f •
^eAss(M)

Let x, e p , XT k U ^ . Then xn is M-regular and the1 r -1 7eAss(M) -1

module N = M/x., M is C-M. Furthermore dim(N) = dim(M) - 1 and

N/pN - M/pM. We can hence apply the induction assumption to

N and find an N-regular sequence {x^ ...,xr} with x,.̂  e p . Now

trivially {x.,, ...,x } is an M-regular sequence with x. € to ,

and 1) is proved. 2) Let {x^9 ...,xr} be an M-regular sequence

with x| e f> . Let P = M/X-Ĵ  M +.. .+ xr M (P = M if r = 0). Now

P/pP = M/»M and from proposition 3-3 we get that

dim(P/pP) = dim(M) - r = dim(P)

and that P is a C-M module. Now clearly p e Supp(P), hence

p 3 &Q for some pQ e Ass(P). Furthermore we have

dim(P/pP) = dim(P) = dim(A/pf) for all /?f e Ass(P) (since

P is C-M). Since clearly p C Ann(P/pP)

dim(P) = dim(P/p P) = dim(A/p )

and dim(A/p) = dim (A/ f*'Q) = dim(P). Hence p = p'Q i.e.

p e Ass(P) and 2) follows.

We now prove Proposition 3-5- Let x̂ ,...,xr be an M-
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regular sequence in fp , where r = dim(M) - dim(M/SpM). Since

localization is a flat operation we have that the images of

x-̂ , . ..,xr in *p M«p are still an M^ -regular sequence. Hence

by proposition 1.1

dim(M ) - dim(M) - dim(M/cp M) = r = depth(M<> ) = dim(M )

whence 1) and 2) of proposition 3.5 follow.

Corollary 3.^« If A is a local C-M ring, A is catenary,

and for every local epimorphism A -» B, B is catenary.

Proof ; The quotient of a catenary local ring by a prime

ideal being catenary, it is enough to prove A is catenary. Let

W be a minimal prime ideal of A, *fc , <7 two prime ideals of A

such that V" C 2> C Oj . Then A ^ is a C-M ring and

dim(A ) = dim(A ) -f dim(A /J, A )

by proposition 3-5- If A1 = A/*T, and 7>", <yi f are the images of

T?, Qi in A1, this relation is equivalent to

dim(A' ) = dim(A'~ ,) + dim(A' /f* V )

hence A1 is catenary by proposition 1.2; this shows that A itself

is catenary.

Remark. The notion of C-M rings still is insufficient to

distinguish the three local rings considered in the introduction,

i.e. CJ[X, Y]/(Y2 - X3 - X2); <C[X, Y]/(Y2 - X3); <C[X, Y] (X - Y),

localized at the origin. One easily checks that all three are

C-M rings, following the procedure used in the remark after

Corollary 3.3-

We shall obtain one notion which distinguishes the three

local rings in the next section.


