arbitrary closed subsets by the formula

$$\dim(V(\boldsymbol{\alpha})) = \dim(A/\boldsymbol{\alpha})$$

where on is an arbitrary ideal of A.

If M is a finitely generated A-module we define

$$\dim(M) = \dim(\operatorname{Supp}(M)) = \dim(A/\operatorname{ann}(M)).$$

Here we use the fact, mentioned in the preliminaries, that Supp(M) is the closure in Spec(A) of Ass(M), and Ass(M) consists of the prime ideals associated to ann(M).

If ${\tt N} \subset {\tt M}$ is another A-module we see trivially that

$$\dim(N) \leq \dim(M)$$
$$\dim(M/_N) \leq \dim(M)$$

In fact $\operatorname{ann}(N) \supset \operatorname{ann}(M)$, $\operatorname{ann}(M/_N) \supset \operatorname{ann}(M)$. A non-trivial statement, proved in Bourbaki's, chapter IV, §2, is the following:

<u>Theorem 1.2</u>. dim(M) = 0 if, and only if, M has finite length, in the composition series sense.

§2. HILBERT-SAMUEL POLYNOMIAL Let H be a graded ring, i.e.

where H_n are (additive) groups and $h_n \cdot h_m \in H_{n+m}$, for $h_n \in H_n$, $h_m \in H_m$. Clearly H_n is an H_0 -module. We assume:

- a) H_{Ω} is an artinian ring
- b) H is generated (as an H_O -algebra) by finitely many elements of H_1 .

An H-module M is called graded if $M = \bigoplus_n M_n$, where M_n are $H_0 - n$ modules and

$$\mathbf{H}_{n} \mathbf{M}_{p} \subset \mathbf{M}_{n+p}$$

If M is a finitely generated H-module, then M_n is a finitely generated H_0 -module and (since H_0 is artinian) M_n has finite length.

<u>Definition 2.1</u>. The Hilbert-Samuel Polynomial of M, χ (M, n), is given by

$$\chi(M, n) = \text{length}_{H_0} M_n$$
 for large n.

Of course one needs to prove that $\chi(M, n)$ is indeed a polynomial. In fact

<u>Theorem 2.1</u>. (Hilbert) Let H, M be as stated above. Then there exists a polynomial $P(X) \in Q[X]$, which achieves integer values for integer values of X and such that, for all sufficiently large n,

$$\chi(M, n) = P(n)$$

<u>Proof</u>: Since H is finitely generated over H_0 by H_1 , we have a homogeneous epimorphism (of degree 0)

$$H_{o}[X_{1},...,X_{r}] \xrightarrow{C} H \rightarrow 0$$

and M becomes a finitely generated $H_0[X_1, \ldots, X_r]$ -module. Now length H_0 M_n is independent of whether we consider M as an H-module or an $H_0[X_1, \ldots, X_r]$ -module (since c is onto). Hence we may assume $H = H_0[X_1, \ldots, X_r]$.

We proceed by induction on r. When r = 0, $H = H_0$ and, since

M is finitely generated by, say, $m_i \in M_{n_i}$, we have $M_n = 0$ if $n \ge \max_i \{n_i\}$. Hence $\chi(M, n) = 0$ for n sufficiently large.

Let $\varphi_r: M \to M$ be given by $\varphi_r(m) = X_r \cdot m$. Then φ_r is a homogeneous morphism of degree 1 and we have

Since length $_{H_{\alpha}}(\cdot)$ is an additive function we have

$$\chi(M, n+1) - \chi(M, n) = \chi(C, n+1) - \chi(N, n)$$

For $n \in N$, $c \in C$ we have $X_r \cdot n = 0$, $X_r \cdot c = 0$, hence N and C are $H_0[X_1, \ldots, X_{r-1}]$ modules, and, by induction, $\chi(C, n+1) - \chi(N, n)$ is a rational polynomial in n, for sufficiently large n. A standard argument now shows that $\chi(M, n)$ is also a rational polynomial, for n sufficiently large.

For the remainder of this section we assume that A is a noetherian, semi-local ring.

<u>Definition 2:2</u>. Let φ be an <u>ideal of A</u>. We say that φ is an <u>ideal of definition of A</u>, if the ring A/φ is artinian.

We recall here that a ring A is called artinian if it satisfies the descending chain condition or, equivalently, if every prime ideal of A is maximal.

We assert:

<u>Proposition 2.1</u>. Let ϕ be an ideal of A. The following three conditions are equivalent.

a) 🛷 is an ideal of definition of A

b) A/4 has finite length (in the composition series sense)

c) $\mathcal{T} \supset \mathcal{W}^k$, where \mathcal{W} denotes the radical of A. Proof:

b) \implies a) is immediate, since A/ \mathscr{Y} satisfies both chain conditions. a) \implies b) follows from the fact that an artinian ring is also noetherian.

c) \Longrightarrow a) follows from the following observation: if $\gamma \supset W^k$ and a prime ideal p contains γ' , then p is one of the maximal ideals of A. To see that a) \Longrightarrow c) we observe first, that since A/γ' is artinian, $rad(A/\gamma') =$ the set of nilpotents in A/γ' . Now, clearly, $rad(A/\gamma') = \varphi(\pi')$, where $\varphi: A \rightarrow A/\gamma'$ is the canonical epimorphism.

If γ is an ideal of definition of A and M is a finitely generated A-module, M/ γ M is a finitely generated A/ γ -module (in fact M/ γ M \sim M \otimes A A/ γ), hence M/ γ M has finite length.

Theorem 2.2. (Hilbert-Samuel) Let A, γ , M be as above. Then

- a) M/0 ⁿ M has finite length
- b) length $A(M/a/n M) = P_{a/n}(M, n)$ is a polynomial in n for n sufficiently large.

<u>Proof</u>: We prove a) by induction on n. When n = 1 the assertion is precisely the observation we made previous to the statement of the theorem. Clearly, for all k, $\frac{k}{2}$, $\frac{k}{2}$, $\frac{k+1}{2}$ is a finitely generated A-module (A noetherian). Hence $(M/\sigma'_{/}M) \otimes_{A} \frac{\delta'_{/}k}{2}$ is a finitely generated A-module. The epimorphism

$$(M/\mathcal{A} M) \otimes \mathcal{A} ^{k}/\mathcal{A} ^{k+1} \rightarrow \mathcal{A} ^{k} M/\mathcal{A} ^{k+1} M$$

given by $\overline{m} \otimes \overline{q} \dashrightarrow \overline{qm}$ (here \overline{m} , \overline{q} denote the equivalence classes

of m \in M, q $\in \mathscr{Y}^k$) shows that \mathscr{Y}^k M/ \mathscr{Y}^{k+1} M is a finitely generated A-module. Finally the exact sequence

$$(\bigstar) \quad 0 \rightarrow q^n \, M/q^{n+1} \, M \rightarrow M/q^{n+1} \, M \rightarrow M/q^n \, M \rightarrow 0$$

and the induction assumption prove a).

To prove b) we define

$$H = \operatorname{gr}_{\boldsymbol{y}} (A) = \bigoplus_{i \ge 0} (\boldsymbol{y}^{i}/\boldsymbol{y}^{i+1})$$
$$M' = \operatorname{gr}(M) = \bigoplus_{i \ge 0} (\boldsymbol{y}^{i} M/\boldsymbol{y}^{i+1} M)$$

where $\eta^0 = A$. Since $H_0 = A/q$ is artinian, H is generated over H_0 by finitely many elements of $H_1 = q/q^2$ (any A-basis of q will do) and M' is a finitely generated H-module (any A-basis of M will do); we can apply Theorem 2.1 and get

length($\eta^n M/\eta^{n+1} M$) = a polynomial in n for n >> 0. (We write n >> 0 for "...n sufficiently large".)

From the above exact sequence (*) we get

 $length(M/g^{n+1}M) - length(M/g^{n}M) = length(g^{n}M/g^{n+1}M)$

or

 P_{γ} (M, n + 1) - P_{γ} (M, n) = a polynomial in n for n >> 0. The theorem is proved.

<u>Note</u>: The geometrical significance of the polynomial P_{φ} (M, n) was discovered by Serre, and it is the following. Let H, M' be as in the proof of the theorem. Let X = Proj(H), \mathcal{J} = the sheaf over Proj(H) associated to the graded module M': then for every n, P_{φ} (M', n) = \sum_{i} (-1)ⁱ length H¹(X, \mathcal{J} (n)). We do not go into further details, except to point out that, for $n \gg 0$ H¹(X, $\mathcal{J}(n)$) = 0, which throws a better light on the somewhat unsatisfactory statement of b), (for $n \gg 0$).

Let now A, \mathcal{Y} , M be as usual. A filtration $M = M_0 \supset M_1 \supset \ldots \supset M_n \supset \ldots$ is called a \mathcal{Y} - good filtration of M if $\mathcal{Y} M_n \subset M_{n+1}$, with equality holding for $n \ge n_0$. We assert

<u>Proposition 2.2</u>. Under the above hypotheses, for $n \gg 0$ length_A(M/M_n) = P((M_n), n) = a polynomial in n of degree and coefficient of the term of highest degree equaling those of P \mathcal{M} (M, n).

<u>Proof</u>: As in the proof of theorem, we prove by induction on n that M/M_n has finite length. In fact M/M_1 is an A/9 module finitely generated, and

$$0 \rightarrow M_n/M_{n+1} \rightarrow M/M_{n+1} \rightarrow M/M_n \rightarrow 0$$

and $\eta'(M_n/M_{n+1}) = 0$, whence M_n/M_{n+1} is an A/η -module and has finite length.

Consider now the module M_{n_o} . It is a finitely generated A-module and $M_{n+n_o} = \sqrt[4]{n_n_o}$. Hence, by theorem 2.2

 $length(M_n / M_{n+n_o}) = a polynomial in n, for n >> 0.$

The exact sequence

$$0 \rightarrow M_{n_{o}}/M_{n+n_{o}} \rightarrow M/M_{n+n_{o}} \rightarrow M/M_{n_{o}} \rightarrow 0$$

shows that $length(M/M_n)$ is a polynomial in n for n >> 0. The

inclusions

$$q^{n+n}$$
 $M \subset M_{n+n} \subset q^n M \subset M_n$

give exact sequences

$$0 \to M_{n+n_{o}} / \mathscr{Y}^{n+n_{o}} M \to M / \mathscr{Y}^{n+n_{o}} M \to M / M_{n+n_{o}} \to 0$$
$$0 \to \mathscr{Y}^{n} M / M_{n+n_{o}} \to M / M_{n+n_{o}} \to M / \mathscr{Y}^{n} M \to 0$$
$$0 \to M_{n} / \mathscr{Y}^{n} M \to M / \mathscr{Y}^{n} M \to M / M_{n} \to 0$$

whence

$$P_{\gamma}(M, n+n_{o}) \ge P((M_{n+n_{o}}), n+n_{o}) \ge P_{\gamma}(M, n) \ge P((M_{n}), n).$$

Since P_{γ} and P are polynomials, they must have the same degree

and the same highest degree coefficient, Q.E.D.

<u>Proposition 2.3</u>. Let q', q' be ideals of definition of A, M a finitely generated A-module. Then P_q , $P_{q'}$, are polynomials of the same degree.

<u>Proof</u>: Since rad(q') = rad(q') = w' we have (A is noetherian) $q \supset q'^p$ and $q' \supset q^m$, for some m. Hence

$$0 \rightarrow q''^{n} M' q'^{nm} M \rightarrow M/q'^{nm} M \rightarrow M/q''^{n} M \rightarrow 0$$

whence P_{φ} , $(M, n) \leq P_{\varphi}$ (M, mn) and similarly

$$\mathbb{P}_{\eta}(M, n) \stackrel{\leq}{=} \mathbb{P}_{\eta}(M, pn)$$

and the proposition is proved.

Definition 2.3. Let A, M be given as above. Then deg P_{q}

26

(which, by the proposition above is independent of φ) is denoted by d(M).

Proposition 2.4. Let A be as usual, and let

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

be an exact sequence of finitely generated A-modules. Then, for any ideal ϕ of definition of A:

$$deg[P_{\eta}(M) - P_{\eta}(M') - P_{\eta}(M'')] \leq d(M') - 1 \leq d(M) - 1$$

<u>Proof</u>: By the Artin-Rees lemma (B.C.A., III, 3, corollary 1) the submodules $M_n^{i} = \gamma^n M \cap M'$ of M' form a γ - good filtration of M'. By proposition 2.2 we have (*) $P_{\gamma}(M^{i})$ and $P(M_{n}^{i})$ have the same degree and the same highest degree coefficient. The exact sequence

$$0 \rightarrow q^n \mathsf{M} \cap \mathsf{M}' \rightarrow q^n \mathsf{M} \rightarrow q^n \mathsf{M}'' \rightarrow 0$$

gives an exact sequence

$$0 \rightarrow M' / q^n M \cap M' \rightarrow M / q^n M \rightarrow M'' / q^n M'' \rightarrow 0$$

whence

$$P_{\eta}(M, n) - P_{\eta}(M'', n) - P(M'_{n}, n) = 0$$

 \mathbf{or}

$$P_{\eta}(M) - P_{\eta}(M'') - P(M'_n) = 0$$

Hence

$$P(M'_n) = P_{\mathcal{Y}}(M) - P_{\mathcal{Y}}(M'')$$

and, by (*),

 $P_{y}(M') = P_{y}(M) - P_{y}(M'') + a polyn. of degree at most <math>d(M') - 1$.

The first inequality is proved. The second follows immediately from observing that $0 \leq P_{\gamma}(M^{\dagger}, n) \leq \dot{P}_{\gamma}(M, n)$, for $n \gg 0$, whence

$$\operatorname{deg} \operatorname{P}_{\boldsymbol{\gamma}}(\mathsf{M}^{\boldsymbol{\dagger}}) \stackrel{\leq}{=} \operatorname{deg} \operatorname{P}_{\boldsymbol{\gamma}}(\mathsf{M}).$$

Let M be a finitely generated A-module, and let $y_1, \ldots, y_k \in \mathbf{N}$ be a set of generators of \mathbf{N} . Then $M/y_1 M + \ldots + y_k M$ is an A/\mathbf{N} -module and hence has finite length. With this in mind we give the following:

<u>Definition 2.4</u>. We denote by s(M) the smallest integer k satisfying the following condition:

there exist k elements x_1, \ldots, x_k in \checkmark such that

 $M/x_1 M + \ldots + x_k M$ has finite length

We are now in the position of proving the main result of dimension theory, namely

<u>Theorem 2.3</u>. (Krull-Chevalley-Samuel) Let A be a semilocal noetherian ring, M a finitely generated A-module. Then dim(M) = d(M) = s(M).

<u>Proof</u>: (Serre). We shall prove 1) $\dim(M) \leq d(M)$

- 2) $d(M) \leq s(M)$
- 3) $s(M) \leq dim(M)$.

We start with the following

Lemma 2.1. Let $x \in \mathcal{N}$, consider the exact sequence

$$0 \rightarrow {}_{\mathbf{X}}^{\mathbf{M}} \rightarrow \mathbf{M} \xrightarrow{\boldsymbol{\phi}} \mathbf{M} \rightarrow \mathbf{M}/\mathbf{x}\mathbf{M} \rightarrow \mathbf{0}$$

where $\varphi(m) = xm$. Then

- ii) Let (p_1, \ldots, p_m) denote those points of Supp(M) such that dim $(A/p_1) = \dim(M)$, $i = 1, \ldots, m$. If $x \notin \bigcup_{i=1}^{m} p_i$ then dim $(M/xM) \leq \dim(M) - 1$
- iii) deg[P $q(x^M)$ Pq(M/xM)] $\leq d(M)$ 1, where q is any ideal of definition of A.

Proof:

i) Let N = M/xM, and let $y_1, \ldots, y_k \in \mathcal{N}$ such that $N/y_1 N + \ldots + y_k N$ has finite length and k = s(N). The isomorphism

ii) We start with a word about the p_1 's. By definition we have dim(M) = dim(A/_{ann(M)}). If p_1 , p_2 ,..., p_t , $t \ge m$, denote the prime ideals associated to ann(M) in A one easily sees that

$$\dim(M) = \max \dim(A/ P_i).$$
$$1 \le i \le t$$

Hence the prime ideals mentioned in the statement of ii) are to be found among the points of Ass(M).

We have to compare dim(A/ann(M/xM)) with dim(A/ann M) Let $\mathcal{P}_1, \ldots, \mathcal{P}_t$ be those prime ideals in A associated to ann(M/xM) and such that dim(M/xM) = dim(A/ \mathcal{P}_j). Then, for some i_j , $1 \leq i_j \leq t$, we have $\mathcal{P}_j \supset \mathcal{P}_{i_j}$. Let $\mathcal{P}'_0 \subset \mathcal{P}'_1 \subset \ldots \subset \mathcal{P}'_k$ be a chain of prime ideals of maximal $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ length in A/ann(M/xM), i.e. $k = \dim(M/xM)$. The prime ideal \mathcal{P}'_0 corresponds to a prime ideal \mathcal{P} of A containing ann(M/xM) and, from $k = \dim(M/xM)$ one sees that $\mathcal{P} = \mathcal{P}_j$ for some j. We proceed in steps.

Case 1.
$$\mathcal{P}_{j} \supset \mathcal{P}_{i_{j}}$$
, $i_{j} > m$. Then
dim(M/xM) = dim A/ $\mathcal{P}_{j} \leq \dim A/\mathcal{P}_{i_{j}} < \dim(M)$

and ii) is proved in this case.

<u>Case 2</u>. $\mathcal{Y}_{j} \supset \mathcal{P}_{i_{j}}, i_{j} \leq m$. Then (since $x \in \mathcal{Y}_{j}$), $\mathcal{Y}_{j} \supset \mathcal{P}_{i_{j}}$ and the chain $\mathcal{P}_{i_{j}} \subset \mathcal{Y}_{j} \subset \cdots$ shows that $i_{j} \neq i_{j} \neq j$ dim(M) $\geq k + 1$ and ii) is proved in this case also. iii). We have two exact sequences

$$0 \rightarrow {}_{\mathbf{X}}{}^{\mathbf{M}} \rightarrow {}^{\mathbf{M}} \rightarrow {}^{\mathbf{X}}{}^{\mathbf{M}} \rightarrow 0$$
$$0 \rightarrow {}^{\mathbf{X}}{}^{\mathbf{M}} \rightarrow {}^{\mathbf{M}} \rightarrow {}^{\mathbf{M}}{}^{\mathbf{X}}{}^{\mathbf{M}} \rightarrow 0$$

Now

$$deg[P_{\gamma}(x^{M}) - P_{\gamma}(M/x^{M})] =$$

deg[($P_{\mathcal{Y}}(x^{M}) + P_{\mathcal{Y}}(x^{M}) - P_{\mathcal{Y}}(M)$) + ($P_{\mathcal{Y}}(M) - P_{\mathcal{Y}}(x^{M}) - P_{\mathcal{Y}}(M^{X}M)$] and, by proposition 2.2 the right hand side is the degree of the sum of two polynomials, one of degree $\leq d(M) - 1 \leq d(M) - 1$, the other of degree $\leq d(M) - 1 \leq d(M) - 1$. The lemma is proved. Now we return to the proof of the theorem.

1) dim(M) \leq d(M). We proceed by induction on d(M). d(M) = 0. Then P_{(Y}(M) = constant, whence

length $(M/q^n M) = \text{length } (M/q^{n+1} M)$ for n >> 0.

The exact sequence

$$0 \rightarrow \boldsymbol{g}^{n} \, M/\boldsymbol{g}^{n+1} \, M/ \rightarrow M/\boldsymbol{g}^{n+1} \, M \rightarrow M/\boldsymbol{g}^{n} \, M \rightarrow 0$$

shows length $(q^n M/q^{n+1} M) = 0$ whence $q^n M = q^{n+1} M$. Now, we take q = W, and then we have $\bigcap_{n \ge 0} w^n = (0)$, whence $q^n M = 0$ for n >> 0. Hence M is an A/q^n -module, and since A/q^n is artinian, its dimension is 0, whence dim(M) = 0. Hence 1 holds when d(M) = 0.

Choose a prime $\mathcal{P}_0 \in Ass(M)$ such that dim(M) = dim(A/ \mathcal{P}_0). Since \mathcal{P}_0 is the annihilator of an element m \in M, the submodule N = Am \subset M is isomorphic to A/ \mathcal{P}_0 . By proposition 2.4 we have

 $d(N) \leq d(M)$

and

$$\dim(N) = \dim(M)$$

Hence it suffices to prove 1) for N. Let

 $\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \mathcal{P}_{2} \ldots \subset \mathcal{P}_{n}$ be a chain of maximal length in A, $\downarrow \qquad \downarrow \qquad \downarrow$

corresponding to a chain of maximal length in A/P_0 (note that $n = +\infty$ is a priori possible). If $P_1 \cap \mathcal{W} \subset P_0$, then $P_0 \supset \mathcal{W}$, whence is maximal (because A is semi-local), a contradiction. Choose $x \in p_1 \cap w$, $x \notin p_0$.

We have

$$N/xN = (A/xA) \otimes A N$$

and, from proposition 18 of B.C.A., II, §4 we get

$$Supp(N/xN) = Supp(N) \cap V(x).$$

Hence p_1 , p_2 ,..., $p_n \in \text{Supp}(N/xN)$, whence $\dim(N/xN) \stackrel{\geq}{=} n - 1$ (in particular, if $\dim(N/xN)$ is finite, so is n). Now trivially the homomorphism $A/p_0 \rightarrow A/p_0$ given by $\overline{a} \xrightarrow{} x\overline{a}$ is injective, hence $x^N = 0$. By lemma 2.1 we get $d(N/xN) \stackrel{\leq}{=} d(N) - 1 \stackrel{\leq}{=} d(M) - 1$, and by induction $\dim(N/xN) \stackrel{\leq}{=} d(N/xN)$ (and we have proved that n is finite). Now

$$\dim(\mathbf{M}) = \mathbf{n} \leq \dim(\mathbf{N}/\mathbf{x}\mathbf{N}) + \mathbf{1} \leq d(\mathbf{N}/\mathbf{x}\mathbf{N}) + \mathbf{1} \leq d(\mathbf{M})$$

and 1) is proved. We observe here that we have actually shown dim(M) $< + \infty$.

2) $d(M) \leq s(M)$. Let $\{x_i\}_{1 \leq i \leq n}$ be elements of n' such that, letting $\mathfrak{N} = x_1 \wedge \dots + x_n \wedge \mathfrak{N}$, we have length $(M/\mathfrak{M}) < +\infty$ and n = s(M). Let $\mathfrak{A} = \mathfrak{OL} + \mathfrak{M} \cap \operatorname{ann}(M)$. We have ann $(M/\mathfrak{M} \wedge \mathfrak{M}) \supset \mathfrak{M}$, hence the prime ideals in $\operatorname{Ass}(M/\mathfrak{M})$ are maximal, and therefore $\mathfrak{M} \supset \mathfrak{M}^k$ for some k, i.e. \mathfrak{M} is an ideal of definition of Λ . Now clearly $\mathfrak{M}^m \wedge \mathfrak{M} = \mathfrak{OL}^m \wedge \mathfrak{M}$, whence $\mathfrak{M} \wedge \mathfrak{M} = \mathfrak{M}^m \wedge \mathfrak{M} \wedge \mathfrak{M}^{m+1} \wedge \mathbb{N} = \mathfrak{M}^m \wedge \mathfrak{M} \wedge \mathfrak{M}^{m+1} \wedge \mathbb{N}$. Let z_1, \dots, z_r be a minimal set of generators of M over Λ . Then the elements $\{x_1^{\nu_1} \dots x_n^{\nu_n} \cdot z_i\}$ $1 \leq i \leq r, \nu_1 + \dots + \nu_n = m$ are a set of generators of $\mathfrak{M} \wedge \mathfrak{M}^{m+1} \wedge \mathbb{M}$ over Λ/\mathfrak{M} . Let length $(\Lambda/\mathfrak{M}) =$

 $a(a < + \infty \text{ since } A/q)$ is artinian). Now

length
$$(q^m M/q^{m+1} M)$$
 = length $(a^m M/a^{m+1} M) \leq$
a.r. $\binom{n+m-1}{n-1}$ = a polyn. in m of degree n - 1.

The exact sequence

$$0 \rightarrow q^{m} \text{ M}/q^{m+1} \text{ M} \rightarrow \text{M}/q^{m+1} \text{ M} \rightarrow \text{M}/q^{m} \text{ M} \rightarrow 0$$

shows 2).

3) $s(M) \leq \dim(M)$. We proceed by induction on $\dim(M)$ (which is finite by 1). $\dim(M) = 0$. Then length $(M) < + \infty$ (since A/ann M is artinian) and no elements of w are needed to have length $(M/x_1M+\ldots+x_kM)$ $< + \infty$. Hence s(M) = 0 and 3) holds. Let $n = \dim(M) \geq 1$. Let $\{ \mathcal{P}_i \}_{1 \leq i \leq m}$ be those elements of Ass(M) such that $\dim(M) =$ $\dim(A/\mathcal{P}_i)$. Since $n \geq 1$ the \mathcal{P}_i are not maximal. We assert:

 $w \notin \bigcup_{i=1}^{m} \mathcal{P}_{i}.$ In fact, if $w \in \bigcup_{i=1}^{m} \mathcal{P}_{i}$, then, by proposition 2 of B.C.A., II, §1, we have $w \in \mathcal{P}_{i}$ for some i, a contradiction, since \mathcal{P}_{i} is not maximal. Hence we can choose $x \in w$, $x \notin \bigcup_{i=1}^{m} \mathcal{P}_{i}$. By lemma 2.1 we have $s(M) \leq s(M/xM) + 1$

and dim $(M/xM) \leq dim(M) - 1$. Hence, by induction

$$s(M/xM) \leq dim(M/xM)$$

and finally

$$s(M) \leq s(M/xM) + 1 \leq dim(M/xM) + 1 \leq dim(M),$$

Q.E.D.

Appendix

We give a brief description of the geometrical meaning of the three numbers $\dim(M)$, s(M), d(M).

We admit right off that d(M) is a far-reaching concept leading in particular to certain results of intersection theory, and we shall limit ourselves to a geometrical interpretation of dim(M) and s(M).

dim(M) is the simplest of the two. It simply gives the maximal length of irredundant descending chains of <u>irreducible</u> subsets of Supp(M). (Such chains must necessarily terminate with a closed point.)

s(M) has a somewhat more sophisticated interpretation. Remembering that $Supp(M/xM) = Supp(M) \cap V(x)$ and that length $(M) < + \infty \iff \dim(M) = 0 \iff \dim(Supp(M)) = 0 \iff$ (by above remark) $\iff Supp(M)$ consists of a finite number of closed points. We see that s(M) is the smallest number of "hypersurfaces" (the V(x)'s) such that their intersection with Supp(M) is zero dimensional.

There is a fourth integer that one should introduce in this connection, but which is related to the previous three, in general, by an inequality rather than equality.

Let A be a local ring, m its maximal ideal. The A-module m/m^2 is (clearly!) annihilated by m, hence m/m^2 is an A/m module, i.e. a vector space over k = A/m. $\dim_k(m/m^2)$ is the fourth integer we wish to consider. We assert:

Proposition 2.5.

 $s(A) \leq \dim_k(m/m^2).$

<u>Proof</u>: Let x_1, \ldots, x_n be elements of m such that their equivalence classes (mod m^2) form a basis of m/m^2 over A/m. We assert that x_1, \ldots, x_n form a system of generators of m. Let

$$M = x_1 \land \oplus x_2 \land \oplus \dots \oplus x_n \land$$
$$N = \mathcal{M}.$$

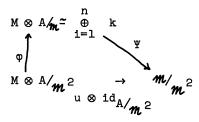
and let $u: \mathbb{M} \to \mathbb{N}$ be defined by $u(\mathbf{a}_1 \mathbf{x}_1 \oplus \ldots \oplus \mathbf{a}_n \mathbf{x}_n) = \sum \mathbf{a}_i \mathbf{x}_i$. Let $\mathcal{M} = \mathcal{M}^2 \subset rad(\mathbb{A}) = \mathcal{M}$. Now

$$N \otimes A/m^{2} \cong m/m^{2}$$

$$u \otimes id_{A/m^{2}}: M \otimes A/m^{2} \to m/m^{2}$$

is surjective, since we have the commutative diagram

and



and φ , Ψ are surjective. By Nakayama's lemma we have that u is surjective, which proves that x_1, \ldots, x_n form a system of generators of \mathcal{M} . Hence $A/x_1A + \ldots + x_nA = k$ and $\text{length}_A(k) < + \infty$.

Hence
$$s(A) \leq n = \operatorname{rank}_{k}(\mathcal{M}/\mathcal{M}^{2}),$$
 Q.E.D.

We show with an example that $s(A) < \operatorname{rank}_{k}(\mathfrak{m}/\mathfrak{m}^{2})$ does happen. We observe first of all that (trivially) <u>any</u> set of generators of \mathfrak{m} gives rise to a set of generators of $\mathfrak{m}/\mathfrak{m}^{2}$ over k. Hence $\dim_{k}(\mathfrak{m}/\mathfrak{m}^{2}) = \operatorname{smallest}$ number of generators of \mathfrak{m} . Let now

$$R = \mathbf{C}[\mathbf{X}, \mathbf{Y}]/(\mathbf{Y}^2 - \mathbf{X}^3) = \mathbf{C}[\mathbf{x}, \mathbf{y}]$$

$$p = \mathbf{x}R + \mathbf{y}R$$

$$A = Rp$$

$$m = P^A p$$

We make (without proof) the following assertions: (b), c) have easy proofs)

Hence it follows that p is maximal and that s(A) = dim(A) = 1. But m is <u>not</u> principal, in fact $dim_{A/m}(m n^2) = 2$. To see this, consider the diagram

$$m \cap R = p^{-R}$$

We see that $\dim_{A/m}(m/m^2) = \text{smallest no. of generators of}$ $m \leq 2$ (x, y generate m). However, were m principal, so would p be. Now were it so, the inverse image of p under $C[X, Y] \rightarrow R$ would be principal mod $(Y^2 - X^3)$, which is easily seen to be impossible. Hence $\dim_{C}(m/m^2) = 2$. (Note that A/m = C). From dim R = 1 one obtains dim(A) = 1, whence $s(A) = 1 < \dim_{C}(m/m^2)$.

When the local ring A is such that $s(A) = \dim_{A/m} (m/m^2)$ we say that A is a regular local ring. The geometrical interpretation of the number

 $\dim_{A/m}(m/m^2)$ is the following: it is the number of linearly independent linear forms (modulo forms of higher degree). This corresponds to the classical concept of the dimension of the tangent space.

If A is not a local ring, one can still talk about dim(A), and one trivially gets the formula

$$\dim(A) = \sup(\dim(A_m))$$

where m. ranges over the maximal ideals of A.

We give a brief description of the situation when dim(A) = 0, 1.

 $\underline{\dim(A)} = 0$. Then A is artinian, hence semi-local. Let $\mathbf{w} = \operatorname{nil} \operatorname{radical}(A)$. We get $A/\mathbf{w} \simeq \oplus A/\mathbf{w}_1$, i.e. A/\mathbf{w} is a direct sum of fields. Spec(A) consists of a finite number of closed points, and the local rings are <u>primary rings</u> (i.e. some power of the maximal ideal is 0). In fact, since A is artinian, so is $A_{\mathbf{w}_1}$, whence $(\mathbf{w}_1 A_{\mathbf{w}_1})^n = (\mathbf{w}_1 A_{\mathbf{w}_1})^{n+1}$, $n \gg 0$, and $\bigcap_n (\mathbf{w}_1 A_{\mathbf{w}_1})^n = (0)$. Furthermore we have

$$A = \Gamma(\text{Spec } A, A) = \oplus A_{m_1}$$

which is easily seen from the fact that Spec(A) consists of a finite number of closed points.

 $\underline{\dim(A)} = 1$. In this case the prime ideals of A are either minimal or maximal, and there are only finitely many minimal primes, with at least one, say p, such that $\dim(A/p) = 1$. If A is local, all minimal primes have this property. There are infinitely many maximal primes, if A is not semi-local.

A typical example of this case are the <u>Dedekind rings</u>, i.e. noetherian, integrally closed domains A such that every prime ideal $\mathcal{P} \subset A$, $\mathcal{P} \neq (0)$ is maximal. It follows that all local rings A_p are valuation rings.

We note however that, while in the case A = C[X] all local rings A_p are isomorphic, when A = Z we obtain <u>distinct</u> local rings, for distinct **b**.

One can get more one-dimensional examples in the following way: Let A be a Dedekind ring, K its field of quotients, L a finite extension of K. Then any ring B, with $A \subseteq B \subseteq L$, is one dimensional (and need not be Dedekind). (Krull-Akizuki theorem, B.C.A., VII, §2.) Other examples are the <u>orders</u> of A in L, i.e. rings contained in A, with field of quotients L (hence not integrally closed when they are different from A).

If A is one dimensional local ring which is a Dedekind domain (i.e. integrally closed), then A is a valuation ring (See Lang, "Introduction to Algebraic Geometry", theorem 1, p. 151, or B.C.A., VI).

The geometrical interpretation of the notion of Dedekind rings is seen by observing that, if A is a Dedekind domain, Spec(A) consists of one minimal prime and maximal primes whose local rings are integrally closed whence regular. Classically this corresponds to the notion of an irreducible, non-singular curve.

Let A = C[X, Y], and let $f(X, Y) \in C[X, Y]$. Then a classical statement in Algebraic Geometry is that the irreduc-

ible components (in the Zariski topology) of the variety of zeros of f(X, Y) have codimension ≤ 1 . We generalize the above situation with the following:

<u>Theorem 2.4</u>. Let A be a noetherian ring, $x_1, \ldots, x_n \in A$, $\mathcal{O}_{L} = x_1 A + \ldots + x_n A$. Let **p** be a minimal prime in Ass(A/ \mathcal{A}_{L}). Then $\operatorname{codim}(V(p)) = \operatorname{dim}(A_p) \leq n$

(When n = 1 this is the well-known "Hauptidealsatz").

<u>Proof</u>. We have the inclusions $A_p \supset pA_p \supset \alpha A_p$. Since p is minimal in Ass (A/α) , there are no primes of A properly included between p and α , hence $A_p/\alpha A_p$ has a unique prime ideal (namely $p(A_p/\alpha A_p)$), and is therefore Artinian, whence of finite length. Now $A_p/\alpha A_p \approx$ $A_p/x_1 A_p + \dots + x_n A_p$, whence $\operatorname{codim}(V(p)) = \dim A_p =$ $s(A_p) \leq n$, Q.E.D.

Theorem 2.4 is an example of how we can apply our local dimension theory to a global situation.

Some final results concerning the notion of dimension:

Theorem 2.5. (Artin-Tate). Let A be a noetherian integral domain. Then the following conditions are equivalent:

- a) A is semi-local of dimension ≤ 1
- b) (0) is an isolated point in Spec(A)
- c) there exists an f \in A such that A_{f} is a field.

Proof: We give a cyclic proof.

a) \Longrightarrow b). Since A is integral, (0) \in Spec(A). Since A is semi-local, there are a finite number of closed points, $\{m_1\}, \ldots, \{m_n\}$ in Spec(A). Since dim(A) \leq 1, Spec(A) consists precisely of $\{(0)\}, \{m_1\}, \ldots, \{m_n\}$ and b) follows.

b) ===> c) Since (0) is isolated in Spec(A), and the open subsets $\{D(f)\}_{f \in A}$ form a basis for the Zariski topology of Spec(A), there exists $f \in A$ such that D(f) = (0). But $D(f) = \text{Spec } A_f$, whence A_f has <u>only one</u> prime ideal, namely (0), and c) follows.

c) \Longrightarrow a) Let $p \neq (0)$ be any point of Spec(A). The injection $A \rightarrow A_f$ shows, since A_f is a field, that $l \in p A_f$. Hence $f \in p$. We assert:

(*) every minimal prime ideal of A/fA is maximal.

In fact, since A/fA is noetherian, let p_1, \ldots, p_k be the minimal prime ideals of A/fA. Assume that one of them, say p_1 , is not maximal. Let $m \supset p_1$ be maximal. Since p_j is minimal, we have $m \neq p_j$, j = 2, ..., k. If $m \subset \bigcup_{i=1}^k p_j$, then $m = p_j$ for some j, which we have just shown not to be the case. So $m \notin \bigcup_{j=1}^{n} p_{j}$ i.e. there exists g' $\in m$ such that g' $\not\in p_j$, j = 1, ..., k. Let $g \in A$ such that g' = g + fA. Let 1 be a minimal ideal of Ass(A/gA). By theorem 2.4 $\operatorname{Codim}(V(q)) \leq 1$, and clearly $\operatorname{Codim}(V(q)) = 1$, since $q \neq (0)$ and A is an integral domain. Therefore 🛷 is a minimal prime of A, hence $f \in \mathcal{Y}$ and $\mathcal{Y} \cdot A/fA$ is a minimal prime of A/fA, i.e. $\eta \cdot A/fA = p_j$ for some j. Clearly $g \in \eta$, hence $g' \in p_j$, is a contradiction. Therefore assertion (*) above is proved, and every non zero prime ideal of A is hence maximal. Furthermore the only prime ideals of A are (0) and the inverse images of p_1, \ldots, p_k . Hence A is semi-local and dim(A) = 1.

40

<u>Proposition 2.6</u>. Let A be a noetherian semi-local ring, M a finitely generated A-module, $x \in \mathbf{w} = rad(A)$. Then

$$\dim(M/xM) \ge \dim(M) - 1$$

and equality holds if, and only if, x belongs to none of those minimal primes $p \in Ass(M)$ such that dim(M) = dim(A/p).

Proof: By theorem 2.3 and lemma 2.1 we have

$$\dim(M/xM) = s(M/xM) \stackrel{\geq}{=} s(M) - 1 = \dim(M) - 1.$$

Now assume that x belongs to none of those minimal primes $p \in Ass(M)$ such that dim(M) = dim(A/p). Again by theorem 2.4 and lemma 2.1 we have

$$\dim(M/xM) \leq \dim(M) - 1$$

whence equality holds. Conversely, assume that equality holds. Let $p_1, \ldots, p_k \in Ass(M)$ such that $\dim(M) = \dim(A/p_j)$, $j = 1, \ldots, k$. Then clearly $p_j \notin Supp(M/xM)$ (since, for any M, $\dim(M) = \dim(Supp(M)) = Sup (\dim A/p) = Sup (\dim A/p)$). $p \in Supp(M) \qquad p \in Ass(M)$

More quickly, since $p_j \in \text{Supp}(M)$ and $\text{Supp}(M/xM) = \text{Supp}(M) \cap V(x)$, $x \notin p_j$. Q.E.D.

We define a notion extensively used in Algebraic Geometry.

<u>Definition 2.5</u>. Let A be a noetherian semi-local ring. A set of elements $x_1, \ldots, x_n \in \mathscr{N}$ is called a system of parameters of the finitely generated A-module M if $n = \dim(M)$ and $M/x_1 M + \ldots + x_n M$ has finite length.

Note that, by the remark preceding definition 2.5 and theorem 2.4 every A-module admits a system of parameters.

We prove

Proposition 2.7. Let A, M be as in the above definition. Let $x_1, \ldots, x_k \in \mathcal{N}$. Then

$$\dim(M/x_1 M + \ldots + x_k M) \stackrel{\geq}{=} n - k$$

and equality holds if, and only if, the system x_1, \ldots, x_k can be imbedded in a system of parameters of M.

Proof: We proceed by induction on k.

When k = 1 the inequality holds by Proposition 2.6. Furthermore equality holds if and only if x belongs to none of the primes p in Ass(M) with dim(M) = dim(A/p). Let $x_1, \ldots, x_{n-1} \in \mathcal{N}$ such that s(M/xM) = n - 1, $(M/xM)/x_1(M/xM) + \ldots + x_{n-1}(M/xM)$ has finite length. (See definition 2.5) Then x, x_1, \ldots, x_{n-1} is a system of parameters of M. Conversely, if x can be imbedded in a system of parameters, say x, x_1, \ldots, x_{n-1} then $s(M/xM) \leq n - 1$ and, by Proposition 2.6, dim(M/xM) = n - 1. Q.E.D.

The equality

$$M/x_1 M + ... + x_k M = (M/x_1 M + ... + x_{k-1} M)/x_k (M/x_1 M + ... + x_{k-1} M)$$

shows, by the induction assumption, the desired inequality. Assume now dim($M/x_1 M + ... + x_k M$) = n - k. Then, letting N = $M/x_1 M$

 $\dim(N/x_2 N + ... + x_k N) = (n - 1) - (k - 1)$

and

$$(n-1)-(k-1) \ge \dim(N) - (k-1) \ge \dim(M) - 1 - (k-1) = n-k$$

whence dim(N) - k + l = n - k or dim(N) = n - l. By the induction assumption, $\{x_2, \ldots, x_k\}$ can be imbedded in a system of parameters of N, say $\{x_2, \ldots, x_k, x_{k+1}, \ldots, x_n\}$ (here we must use dim(N) = n - l). Then clearly $\{x_1, x_2, \ldots, x_n\}$ is a system of parameters of M.

Conversely, if $\{x_1, x_2, ..., x_k, x_{k+1}, ..., x_n\}$ is a system of parameters of M, let N = M/x₁ M. Then N/x₂ N +...+x_n N has finite length, whence s(N) \leq n - 1. By Proposition 2.6 we have

whence dim(N) = n - 1. Hence $\{x_2, \ldots, x_k, \ldots, x_n\}$ is a system of parameters of N, and, by the induction assumption

$$\dim(N/x_2 N + ... + x_k N) = (n - 1) - (k - 1) = n - k$$

The proposition is proved.

We finish this section with a few remarks about the nature of the function Ψ :Spec(A) \rightarrow N given by

$$\Psi(\mathbf{p}) = \dim(\mathbf{A}\mathbf{p})$$

where A is any noetherian ring. It is obviously not continuous, otherwise it would have to be constant when Spec(A)is connected (e.g. when A is an integral domain), and trivial examples show this is not the case (say A = k[X, Y]).

We do nevertheless have some information, namely, by proposition 1.1,

$$\dim(A/p) \leq \dim(A).$$

The latter is geometrically interpreted as follows: If $x \in \overline{y}$, then dim $(V(j_x)) \leq \dim(V(j_y))$.

Dimension is a very coarse invariant, i.e. were we to consider the equivalence classes of affine varieties of a given dimension, we would obtain huge classes of highly non isomorphic varieties.

§3. DEPTH

The next numerical invariant we shall study in the notion of <u>depth</u>. We assume throughout this section that A is a noetherian local ring with maximal ideal **11**, and that M is a finitely generated A-module.

<u>Definition 3.1</u>. a) an element $x \in A$ is called M-regular if the homomorphism $\varphi: M \to M$ given by $\varphi(m) = xm$ is injective.

b) a sequence $\{x_1, \ldots, x_n\}$ of elements of A is called M-regular if x_i is $M/x_1 M + \ldots + x_{i-1} M$ regular, $1 \leq i \leq n$.

<u>Remark</u>. Clearly every $x \notin m$ being invertible is M-regular for every module M. Hence we shall confine our attention to those M-regular elements which belong to m. With regard to b) we state, without proof, the fact that the sequence $\{x_1, \ldots, x_n\}$ is M-regular if, and only if all sequences $\{x_{\sigma(1)}, \ldots, x_{\sigma(n)}\}$ $\sigma \in S_n$ are M-regular, where S_n denotes the group of permutations on n symbols. (Grothendieck, E.G.A., Ch. O, §15.1, I.H.E.S. no 20) The above statement is false if A is not noetherian.

44

and