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Introduction

Let K be a compact set in the n-dimensional complex space Cn,
H(K) be a space of holomorphic functions on K, H'(K) be the space
of linear continuous functionals over H(K). We will write down the
value of the functional // E H'(K] on the function h G H(K) in
the form of <//, h>. The numbers of the form C^(/LA) = <^ZV>
are called the moments of the analytical functional JJL, where Zv =
Z"1... Z%n is a holomorphic monomial of the degree |z/| = v\ + . . . +
i/n; Z - (Zi , . . . , Zn) E Cn, i/ - (z / i , . . . , i/n) G Z£.

The problem arising from a number of applications (computa-
tional tomography [1], inverse problem of the potential theory [2],
quadrature formulae [3], and even production functions theory [4]) is
to reconstruct a functional from H'(K] through its moments.

The necessary and sufficient condition of uniqueness of a func-
tional p. G H'(K), which has the fixed moments {Ci/(/x)} is polyno-
mial convexity of the compact set K, since polynomial convexity of
K is necessary and sufficient in order that any function from H(K]
will be approximated by holomorphic polynomials (A. Weil, 1932).

If a functional /J, is given by positive measure on the compact
set K c Rn C Cn then the considered problem is called the classical
moment problem. This classical problem is effectively and completely
solved only for the case n = 1 (see [5]).

In connection with applications the problem of the approximate
reconstruction of the functional IJL G H'(K) through the finite num-
ber of moments Cv, \v\ < N is of particular interest. In the classical
theory this problem is called the Markov moment problem. In order
to solve this problem it is necessary to answer at least the following
questions:
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70 Cn-capacity and Multidimensional Moment Problem

1. What is a guaranteed estimate of the accuracy of the pos-
sible reconstruction of the functional p G H'(K) if the moments
Ci/(A*)j H ^ N and certain norm of the functional y, are known?

2. How to find actually the functional /j, G H'(K] with a priori
given moment CV(IJL),\V\<N and with some suitable norm?

It turned out that these questions are closely connected with sev-
eral modern themes from several complex variables.

Namely, for exact answer to the question 1, it is used the results
of the theory of extremal plurisubharmonic functions and of the com-
plex Monge-Ampere equation on the parabolic manifolds obtained in
the papers [6]-[22] and also the theory of the Fantappie-Martineau
analytical functional [23]-[27]. The modern variants of the interpola-
tional formulae of the Jacobi type for the holomorphic functions in
the hyperconvex domains [28], [29] are very useful for the answer to
the question 2.

In this article we give a suitable answer to the question 1 and
indicate the simplest applications. The constructive answer to the ques-
tion 2 will be given in the other paper.

§1. The results.

The compact subset K C Cn is called regular (see [8], [9], [14])
if there exists (and unique) a continuous solution UK of the following
exterior Dirichlet problem for the complex Monge-Amp&re equation:
UK(Z] is a plurisubharmonic function in Cn\K,

= 0 in

UK(Z)=log\Z\ + 0(l) as|Z|->oo

UK(Z) = 0 if Z G dK.

The compact subset K C Cn is called (see [23]-[26]) linear
convex if for any point W G Cn\K a set of complex hyperplanes
passing through W and not crossing K is non-empty and contractible.

The compact K is called strictly linear convex if its boundary dK
is smooth and for any point W G dK the complex tangent hyperplane

have the unique point of contact {W} with dK and this
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contact not higher than the first order. Any linear convex compact set
K may be represented in the form of

where KI D K% D . . . is a sequence of strictly linear convex compact
sets. Besides, there takes place the monotonic convergence for regular
linear convex compact sets K

Uj(Z) -> UK(Z] for j -* oo, Z E Cn\# , (1.2)

where [/^(Z) = UK^Z}- smooth solutions of the type (1.1) of the
Monge- Ampere equation in Cn\Kj. Existence and uniqueness of such
solutions for strictly linear convex compact sets is proved in [17].

We suppose without loss of generality that a linear convex com-
pact K contains the origin of coordinates in Cn. We define a domain/^'
dual to the compact set K by the formula

K1 = {p E (Cn)' : pZ + 1 ̂  0 for Z E K}.

For the domain K1 we have such a representation

where K[ c K'2 C . . . is a sequence of strictly linear convex domains
dual to jKj.

According to Lempert [11], [12] there exist smooth solutions
Vj = VK*. of the Monge-Ampere equations in the domains jR^
Vj(p) is a plurisubharmonic function in /fj\{0}

Besides, O(l) = 5J(|f)+Oj(|p|), where S'j is a smooth function
on CF1-1, i.e., fiJ(A -p) = S»,VA € C.



72 Cn-capacity and Multidimensional Moment Problem

The following nice formula is valid ([17], p. 882)

Vjtp) = -Ui(Z(p)), (1.4)

where

-i

is a diffeomorphism of the domain Kj\{0} on Cn\Kjm,

dV^ = (dVj dVA
dp ~\dPl^"'dpnJ'

It follows from (1.2), (1.4), in particular, that there takes place a
monotonic convergence

VS(P) -> VHp), j-»oo, Pex'\{o}, (1.5)

where VK> (p) is a continuous solution of the Monge- Ampere equation
of the type (1.3) in the domain #'\{0}.

For regular linear convex compact sets K so called [16], [22]
Robin functions of the compact set K and of the domain K1 are
defined and continuous on CPn~l

A-*oo

s
A-»0

where C € Cn : |£| = 1 is identified with a point of CPn~l.
Following Lelong [21] we shall call the functions 7(£) =

exp(-S(0) and y(C) = exp(-S"(C))5 C e CP71'1 capacitative indi-
catrices of the compact K and of the domain K1 respectively.

Due to the statement of convergence of the Robin functions from
Bedford-Taylor ([22], p. 163) it follows from (1.2) and (1.5) that

(1.7)
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where 7^ and 7^ are capacitalive indicatrices of the compact set Kj
and of the domain Kj respectively.

The following explicit relation between indicatrices 7 and 7'
implies from (1.3), (1.4), (1.6), (1.7)

. (-.8)

where C G Cn : |C| = 1.
The most important examples of linear convex and simultane-

ously regular compact sets are compact sets in Cn, which are closures
of the bounded linear-convex domains in Cn with smooth boundary
or closures of the bounded convex domains in Rn c Cn. In partic-
ular, for the complex ball K = {Z E Cn : \Z\ < R} it is well
known that UK(Z] = In ̂ . W. Stoll [10] obtained necessary and
sufficient property of UK(Z] which characterizes the manifolds equiv-
alent to the complex ball. For the real ball K = {Z = x + iy E Cn :
\x\ < R,y = 0} M. Lundin [19] obtained the following nice formula

The entire function /i(£) of the variable ( E Cn of the form

(1.9)

where £Z = Ci^i + - • >+CnZn, is called the Fourier-Laplace transform
of the analytical functional fi G Hf(K).

For the functional /j, E Hf(K) where K is a regular compact set,
we define semi-norms of the form

6 = ,

\h(Z)\<l, ZeK6,
 ( '

where K6 = {Z E Cn : UK(Z) < 8}, 6 > 0, UK satisfies (1.1).
The following result gives a sufficiently exact answer to the ques-

tion 1 for functional with support on the regular linear convex com-
pact.

Theorem. Let K be a regular linear convex compact in Cn and
7;(C) be a capacitative indicatrix of the domain K1. Then

A) for any N E /+ any functional // E H'(K) with the moments
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Cv(n) = Ofor 1 1/| < TV, any £ G Cn, |f | = 1, o/iy A G C and /or
6 > 0 tfzere takes place the following inequality

where O#,f (e) -> 0 if e -> 0; d(KiKs) = inf |l+p-*|, z G #,p G J^'
B) for any ( G Cn, |(| = 1, any N G Z+ ^rg gjcw/5 the func-

tional p. = ILLN^ G Hf(K) with the moments Cv(p) = Ofor \t/\ < N
and with estimates of the form

(1.12)

s S

where f](Z] is any smooth Cn'-valued function of the variable Z G
dKs with the property [26]: for all Z G dKs and W £ K we have

1 + r)(Z) • Z = 0 and 1 + ri(Z) -W ^0; u(Z) = A <
j=i

A *
For the case when the compact set If is a strictly linear convex

then the compact set K& for any 6 > 0 is also strictly linear convex

[17]. Using in this case S = 0 and r](Z] = d-^j^- / (z • ac/^z)) we
\ /

obtain from (1.13) that the functionals //jv,c have a uniformly bounded
norm ||//||o-

The theorem, roughly speaking, means that if the moments
CV(IJL)I \v\ < N are known for the finite measure /JL with the support
on the K then its Fourier-Laplace transform /i(£) is reconstructed

with accuracy of the order \\LL\\ \ / fv^ ) and not better, in
\7/(jcl)^+1)/

general. It is important to express capacitative indicatrix 7'(C/|Cl) ifl
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geometric terms in order to use such an estimate. For general case
it is not simple. However, the following statement is valid for the
particular case when the compact set K and direction £ are real.

Proposition. Let K be a closure of the bounded convex domain
in Rn C Cn. Then the following equality is valid

1 = Usup(C • x) - inf (C • x)] (1.14)
4 IxzK xtK J

for any real C e Rn, |C| = 1-
Remark. If we drop demand of the regularity of the linear convex

compact set in the theorem then the theorem is still valid if we will
write in the statement that ( E CPn~1\J5 where E is some polar
subset of CP71"1. In addition, instead of the function UK(Z) of the
form (1.1) it is necessary to use extreme plurisubharmonic function
[8], [9] of the form

UK(Z) = sup{U(Z) : U is plurisubharmonic on Cn\K}

U(Z) < log \Z\ + 0(1), U(Z) < 0 on 6K.

The necessary properties of the Robin function for such extremal func-
tions are obtained by P. Lelong [21] and E. Bedford, B. Taylor [22].

This theorem supposes may be more clear interpretation in terms
of the best approximations of the function exp(£ • Z) by polynomials
on the compact set K.

Let us define the numbers

where PN is a polynomial of the degree TV in Z = (Zi, . . . , Zn).

Consequence 1. The following equality takes place

^ N • EHN(K, e«z) = e • |CI/V(C/IC|)

for any regular linear convex compact set K C Cn and any C £ Cn.
Note, that the result of the consequence 1 may be considered as
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complement of the following general approximating result of Siciak
[6], [9]. In order that / G H(KS) (see (1.10) it is necessary and
sufficient that

Tim

Now we will give an application of the theorem to one of compu-
tational tomography problem — to an estimate of the accuracy of the
Radon transform inversion through the finite number of directions.

The transform of the type
r\ /»

,s) = — /

where 5 € R,u € Sn~l = {u e R1 : \u\ = 1} is called the Radon
transfrom for a finite measure ^ with compact support in IP1.

The finite subset fi of the sphere Sn~l is called N-solvable [1]
if any polynomial PN(%) of the degree N is represented in the form

where PNJLJ is a polynomial of degree N of the variable u • x. For the
number of elements fi in fi we have the estimate

Conversely, if the inequality (1.16) is held and elements in fi are in
the general position then J) is JV-solvable (see [1]).

If the Radon transform R^u, s), u G fi is known for the measure
IJL and £7 is TV-solvable, then the moments Cv(p) of the order |z/| < N
are known for the measure p, due to (1.15).

Hence from the theorem we obtain the following consequence.

Consequence 2. Let a support of the finite measure p, belong to
the closure of the bounded convex domain K C Rn and let the Radon
transform Rp(w, s) of the measure IJL is equal to zero for directions u
belonging to N -solvable subset £1 Then the Fourier-Laplace transform
MO for any C £ C71 admits the estimate of the form (Lll).
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Note, that due to (1.14) we have 7;(C) = 2 for the real unit
sphere Kl = {x G Rn : \x\ < 1} and for real directions £ G Sn~l.
So, for this case the consequence 2 yields a preciser estimate:

sup

for any 9 < 2/e.
It is interesting to associate this result with the following Logan-

Louis estimate (see [1]):
under the conditions of the consequence 2 we have

for K = Kl and for any 6 < 1.

§2. The proof of the theorem.

This proof essentially uses the notion of the Fantappie indicatrix
of the analytical functional.

The holomorphic function of the type

in the domain K1 is called the Fantappie indicatrix of the analytical
functional IJL G Hf(K). Immediately from the definition (2.1) it follows
that the equality C^(//) = <jn, Z"> = 0 for |i/| < TV is equivalent to
the equalities

for |i/| < AT, z/= (z/!,...,^n).
The Fantappie transform ^^(p) is simply expressed through the

Fourier-Laplace transform /i(()
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(2.3)

Martineau [24] obtained a general formula expressing
through 3>n(p) on the basis of the Cauchy-Fantappie-Leray formula
(see [27], [29]). Here we will have a need of the following elemen-
tary formula.

(2-4)
{AeC:|A|=R}

where R is such that £/A e K' for any A : |A| = R.
The formula (2.4) is a simple consequence of the classical

Cauchy formula. In fact, substituting the Cauchy representation

exd\'2=i /
XeC:\\\=R

in the equality (1.9) we obtain

I f
= ̂  J

The formula (2.4) allows to obtain necessary estimate for /x(^) on
the basis of suitable estimates for ^(C/A). We will obtain estimates
for $M(£/A) from equalities (2.2) and from the following immediate
estimate.

<
1+pZ

(2.5)

where ||̂ ||a is a norm of the form (1.10), Ka = {Z € C" : UK(Z) <
a}, P€IC.

Suppose, further, ^ = {Z e C" : UK(Z) < 6}, K's = {p €
^' : Vjf'(p) + S < 0}, 5 > 0, where UK and VK> are the functions
satisfying (1.1), (1.5).
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Consider now the plurisubharmonic function

This function is negative in the domain K'6 c K! due to (2.5). The
estimate ^/s(p) < lnH + O(l)> P G K's also takes place due to
(2.2). Due to (1.5) the function VK((P)+8 satisfies the Monge-Ampere
equation (1.3) in the domain K'6. As it was shown in [18], [20] such a
function is extremal plurisubharmonic function in the following sense:

VK>(P) + 8 = sup{V/(p) : V is plurisubharmonic

V(p) < 0 and V(p) < In \p\ + O(l) in K's} (2.7)

So, ®6(p) < V^/(p) + <$. From (2.6), (2.7) it follows that

\\tt\\s
< "ylL , exp [(TV + l}(VK>(p) + 8)] (2.8)

forpel i f j .
Substitute now the estimate (2.8) in the formula (2.4). Taking

into account (1.3), (1.5) we obtain the following inequality

for any C € Cn, 5 > 0 and for such J? that C,R~lei(f e K^ for all
y € [0,27r]. Suppose R = N + 1, we obtain

IA(C)I < d(K,Ks)

The estimate (1.11), i.e. the part A) of the theorem is proved.
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In order to prove the part B) of the theorem we shall have need
of one more formula for the capacitative indicatrix:

sup
{FeH(K'):F(0)=Q,\F(Q\<l,teK'}

(2.9)

The proof of (2.9) is based on the Lempert results [15]. Due to
(1.3), (1.5) for the solution V(p) of the Monge-Ampere equation in
the domain we have an asymptotic equality

F(AC) = log |A| - log7'(C) + 0(| A|) for A -> 0, (2.10)

where p = AC C £ Cn, |C| = 1; A G C.
Further, the following equality is valid (Lempert [15])

V$(p)= sup ln|F(p)|, (2.11)

where functions Vj satisfies (1.3).
Taking into account (1.5) from (2.11) we obtain also the equality

= supln\F(p)\. (2.12)

{F G H(K') : F(0) = O, \F\ < 1}

The equality (2.9) follows from (2.12).
Now we prove part B) of the theorem. We fix C £ Cn : |C| = 1

and N G Z+. Due to (2.10) there exists a function F G H(K'} with
the property

\F(p)\ < 1, p e K' and F(\(,} = (1(Q}-1\ + OK,((X
2)

for A -» 0

Consider, further, a holomorphic function ^(p) = FN+l(p). We
have

< li P e K1 and

(0) = 0 for M < AT. (2.14)
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Due to the Martineau theorem [23], [24] refined in [25], [26],
there exists a functional IJL G Hf(K) such that its indicatrix ^^(p)
satisfies the equality

(2.15)

where Z>$ = $ +p. It follows from (2.14), (2.15) that Cv(p) = 0
for \v\ < JV. We will prove the estimate (1.13).

Let,

A ̂

where Z — > 77 (Z) is any smooth mapping with the property: for any
Z e dK6 and W € if we have 1 + rf(Z) • Z = 0 and 1+ r](Z}W ^
0. Let /i be any bounded holomorphic function on KS. Due to the
Cauchy-Fantappie-Leray formula we have (see [24]-[26]):

= j<p,h>= LpMi. (2.16)

The estimate (1.13) is an immediate consequence of (2.16). We will
prove now the estimate (1.12). Taking into account formulae (2.4),
(2.15) we obtain the equality

{teC:\t\=R}

Due to (2.13) for the function * f ̂ J and \t\ = N + 1 we have

inequalities

iJV+l

/ A ^ "+1

W(o • *
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N+l N+1

Substituting (2.18) into (2.17) we have

A(AC) = (n - l)\(-l)n-l[Ji + J& (2.19)

where

T)
Computing exactly J\ and estimating J^ we find

V
• I \\I/ I—I / 1

Ti I I V ./V + n + j(]V + n)l

1 ((f)-1 • |A| - e)^1

JV+1

(2-20)

It follows from (2.19), (2.20) that
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(N + n)!

The estimate (1.12), and consequently, the theorem is proved.
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