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In this series of talks, I will discuss two ways of

relating the topology of a smooth projective variety X

(over ffi ) with the fixed point set of a one dimensional

group of automorphisms (either 1 = 0., or I* = G ) onSL m

X . These ideas are summarized in the following diagrams:

/-.x JPixed point set X I I Integral homology I
[of a £E* action on XJ (groups Hs(X,Z) J

(2)

Zeros of a holo-
morphic vector field Complex cohomology

on X with isolated
zeros

ring H"(X,ffi)

If X admits a (C* action with X finite and nontrivial,

then X also has a holomorphic vector field with isolated

zeros. The connection between the diagrams (1) and (2) is

not clear, however, and seems to be one of the basic open

questions in this area (c.f. §2.5).
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2 Holomorphic C* Actions and Vector Fields

This paper is divided into two parts, the first four chap-

ters deal with E actions, and the next five with holomorphic

vector fields. I have tried to keep the presentation on

a nontechnical level. Several examples but very few proofs

have been included. A few unsolved problems have also been

mentioned.

I would like to thank the University of Notre Dame for

support under the Kenna Lectureship Series.
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1. ffi* ACTIONS ON PROJECTIVE VARIETIES

A good place to begin a discussion of £ actions is

with the fact that a holomorphic representation of ffi* on a

finite dimensional complex vector space V , say p : IE* •*•

GL(V) , induces a holomorphic action of ffi* on V , that

is a holomorphic map u : ffi x v -»• V such that y(l,v) = v

and p(x1X2,v) » u(X1,u(X23v)) . (We shall often write

X-v for y(x,v) when speaking of a ffi* action.) The fact

that p is a linear representation means that each X e ffi*

preserves lines through the origin in V , so u descends

to give a holomorphic action of ffi* on 3P(V) ,

V : ffi* x jp(v) -*• I>(V) .

A basic result about finite-dimensional representations

of ffi* says that V decomposes uniquely into a direct

sum of weight spaces V, 9 kg 2, i.e. V = © Vk(k e S) ,
k #where v € V. if and only if u(X5v) = X v for all X € ffi

The k e S such that V, £ {0} are called the weights

of the 1C action on V .

By a holomorphic 1C action on a complex protective

variety X , we mean a holomorphic map n : OJ* x x •*• X

satisfying the properties mentioned above. It is well known

that any holomorphic action of 1C on fl33Pn arises through

a one parameter subgroup X : ID* •* 3PGL(n,E) , hence up to
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projective transformation a I* action on ffinPn is of the

form

(i.D x.cz0 ,z1 , . . . ,zn] = cxa°z0,xaiz1,..,xanzn]

where aQ,a.,,...,a c Z2 .

One frequently encounters the situation in which X

is an invariant subvariety of a ffi3Pn with respect to ffi*

action of the form (1.1) on Q23Pn . In this case the natural

map 01 x x •* X defines a 1C action on X .

Example 1. The variety V(Zg5 + Ẑ Z*0 + Z-̂ zb in

ffiUP3 with action X-[Z^Z-^Z^Z-] - [X3Z0,X
10Z13X

5Z2,Z3] .

Example 2. Grassmannians. Any ffi* action on IDn

permutes k-planes through the origin, hence defines a 03*

action on the Grassmannian Gk(ffi
n) . It is not hard to

see that the image of Gk(ffi
n) in IP(AkEn) under the

Plucker imbedding is 03 invariant with respect to the ID*

action on IP(A ffin) given by the k exterior power
krepresentation X •* A x .

Notice that any ffi action on CE3Pn has fixed points,

i.e. points x so that X-x = x . Indeed the connected

components of the fixed point set are the linear subspaces

of Q3IPn which correspond to eigenspaces of the induced

linear action on ffin . Clearly any closed invariant
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subset K of ffi]Pn has fixed points: namely if x e K

then lim X-x and lim X-x are both fixed points in K .
X-K) X^«

For convenience we set

xn = lim X-x and x = lim X-x
0 X-M) °° X->»

What is suggested by this construct is to consider the
m*

connected components of the fixed point set X (suppose

these are labelled X,,...,X ) and for each such component

X. its "plus and minus cells" X. and X" , namely

X* - {x e X : XQ c X±} , and X~ - {x € X : x^ e X±}

These "cells" turn out to be the fundamental objects that

lead to connections between the topology of X and the
ffl»

topology of X . We will frequently refer to them simply

as B-B cells after A. Bialynicki-Birula who first proved

the main structure theorem fo'r them CB-B] (which will be

discussed in §2).

Example 3- Let ffi* act on ffilP2 by X-CZ0,Z-L,Z2] =

CZ0,XZ1,X
2Z2] . Clearly the fixed points are [1,0,0] ,

[0,1,0] , and [0,0,1] . Then, [1,0,0]+ = E3P2-V(Z0) ,

[0,1,0]"*" = V(ZQ) - {[0,0,1]} and [0,0,1]+ - [0,0,1] . In

each case the plus cell is an affine space-
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Example 4. Consider the action on X = Gp(ffi ) induced

by the action X- (z0,z.,,z2,z.-) = (X zQ,X z-^X
 zp»x zo)

ii
on 03 where aQ > a.̂ ^ > a2 > a^ . For a pair of independent

jh
vectors u,v e ffi , let <u,v> denote the 2-plane they

span. We will compute <e.,,e«> 9 where {e. : 0 £ i £ 3}
4denotes the standard basis of ffi . It suffices to consider

lim X-V for 2-planes of the form V = < anen ̂ -cue., , 3n
en +

u u -1 -1 u

B-j_e.. + 32
e2 + ̂ QeQ > where

X-V

(an-a,) , (a, -a..)

Since an > an > a0 > aQ , it follows that lim X-V =
u x d J X-^0

<a.,e1,3oeo> = <e-L,eo>. To give an invariant characterization

of <e..,e~> , we recall the definition of Schubert cycles

in G2(E ) . (See also CKL]). If k-i*b2 are Intese3?s so

that 1 <; b-ĵ  < b2 <> 4 , set

1
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i o o LL li
where 33 c ffi c ffij c ffi is the standard flag in ID .

Note that if c^ 5^ 0 , then V £ 0(1,4) and if 3g ? 0 ,

then V / 0(2 ,3) • Thus the above calculation shows that

<e1,e3>+ » 0 ( 2 , 4 ) - 0(1,4) - 0(2 ,3) . It follows that

<e-, ,eo>T = 0 ( 2 , 4 ) . The Schubert cycles o(b- . ,bp) on

Gp(E ) are ordered by inclusion via the lexicographic

order on the (b., ,bp) . This is shown in the diagram below.

By a similar argument, < e . , e . > = 0(1+1, j+1) if

0 <. i < J * 3 .

dimension 0 1 2 3 4

)-ffi-< 0(1,3) 0(2,4)
V >
0(2,3)

A useful feature of this diagram (sometimes called the Hasse

diagram) is that one can see a free homology basis of any

0(1,3) rnamely itself and the Schubert cycles that precede

it in the diagram.

2. THE B-B DECOMPOSITION

The structure theorem of Bialynicki-Birula [B-B]

describes the structure of the plus and minus cells on X

when X is a complete, smooth variety with G action

over an arbitrary algebraically closed field. Carrell and

Sommese CCS-,] and Fujiki [Pu] showed that this theorem goes

through without change to compact Kaehler manifolds .



g Holomorphic C* Actions and Vector Fields

Recently, however, Sommese has found an example of a compact

Moishezon manifold X with a E action for which the B-B

decomposition X = UX. exists but not all of the canonical
j

maps X. •> X. , x •* XQ , are continuous CS2] • For a smooth

projective variety X with fixed point components X̂ ,...,

X the theorem says the following:

THEOREM 1. (i) For each i = l,...,r , the natural

map p± : X* ->• X± , x * XQ , is the projection of a holomorphic

fibre bundle whose fibres are all ffi* equivariantly iso-
m.

morphic -to a fixed £ d .

(ii) In fact, if x € X, , then p^Cx) is

1C equivariantly isomorphic to TX(X)/TX(XI) with ffi*

action induced by the representation X H- dX of C* inx
GL(T (X)) . (dXY denotes the differential of the mapx x
y •* X • y at x.)

(iii) X^ is a Zariski open subset of its

Zariski closure. Hence X. (the topological closure) is

a closed subvariety of X containing X. as a Zariski

open.

(iv) There exists a unique component, say
IP* +

X-ĵ  , of X"' so that x£ is Zariski open in X . X][ is

called the source of X .

A completely analogous result holds for the minus



J. B. Carrell 9

decomposition of X . The distinguished component X. so

that X" is Zariski open in X is called the sink of X .

We will always label the sink as Xr .

COROLLARY. Suppose either the source or sink of X

is rational. Then X is rational i.e. X is birationally

equivalent to ffi3Pn .

For a proof see CCS.,3 • *n "the case, say, of an

isolated source x , then X is a compactification of the

vector space N ({x}) .

An important, but easy to establish, fact is that if

X is a smooth invariant subvariety of JD3Pn , then there

exists a Morse function f on X that has the property

of increasing on the 3R orbits in X . In fact, let V

denote infinitesimal isometry associated to S c ffi*, and

let n denote the Pubini-Study metric on D3IPn . One finds

f by solving the equation i(V)Q = dP on D2IPn and then

restricting P to X . Let

O Q
"ET 7 7 ~I — To I 7 I /Y I 7 IJ?L4n,...,£ J - la.. \ £. /il^j

U II J_ _L J.

as long as coordinates [Zg,...,Z ] have been chosen so that

X-[Z0,...,Zn] = Cx
a°Z0,...,x

anZn] . The following are not

hard to verify using the contraction identity i(V)fl = dP :

(i) f=P|X is a Morse function on X whose critical
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submanif olds are X-, , . . . 3X ;

(ii) f is strictly increasing on the H+ orbits of

nonfixed points;

(iii) if X is not contained in a hyperplane of ffiIPn ,

then X]_ = XnCsource of DJ3Pn ) and Xp = Xn(sink of ffi3Pn ) ;

and

(iv) the Morse index of f on X± is dim^N"^) ,

x e X., where N~(X. ) denotes the subspace of T_(X)i x i x
generated by vectors of negative weight (it is actually a

subspace of the normal space to X. at x ) .

D3*In the compact Kaehler casea assuming X 7* 0 , there

is a Morse function satisfying (i),(ii), and (iv) due to

Prankel CPr] and Matsushima. Its importance here is in

guaranteeing that there is no sequence of points xla...,x,f f i * I K

in X - X so that (x.) and (x) lle in tne same

component for i=l,...,k-l and (XI)Q anc* (xir)« also

lie in the same component.
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Examples of such "quasi-cycles" are known in the non Kaehler

case (see CJu] and CS23) •

The Prankel-Matsushima Morse function is applied in

a different manner in [At] .

Example 5. (G/B) . Let G be a semi-simple

algebraic group, B a Borel subgroup, H a fixed maximal

torus in B and W = NG(H)/CQ(H) be the Weyl group of

H in G . It is well known (see e.g. [H]) that G/B is

a smooth projective variety and that H acts holomorphically

on G/B by left translation: v(h,gB) = (hg)B . Moreover

(G/B)H = {gB : g e NQ(H)} and gB depends only on g e W .

Thus the correspondence g •> gB sets up a one to one
IT

correspondence between W and the fixed point set (G/B) ,

and we may unambiguously refer to wB . A one-parameter

subgroup X : ID* •* H is called regular if (G/B)ffi = (G/B)H

under the action y(t,gB) = (X(t)g)B of ffi* .

By a theorem of Konarski [Kon] , the plus decomposition

of G/B associated to X is B invariant provided the

source of X is eB . This can be used to identify the

associated plus decomposition and the Bruhat decomposition.

In fact, for each w e W ,

(1.2) (wB)+ = B(wB) (the B orbit of wB e G/B)

To see this note that BwB c (wB) by Konarski!s



12 Holomorphic C* Actions and Vector Fields

result. Since the plus cells (wB) are disjoint and the

Bruhat cells B(wB) cover G/B , the proof of (1.2) is

complete.

Another treatment of the Bruhat decomposition using

1C actions appears in [A-,] .

We now turn our attention to possibly singular pro-

jective varieties X invariantly imbedded in a ffilPn . For

example we can now consider actions on Schubert cycles and,

more generally, on the generalized Schubert varieties X.

which are closures of the plus cells. Although the B-B

decomposition is no longer always locally trivial, one can

single out a natural class of actions (which always exist

in Schubert varieties) on which the B-B decomposition is

still nice enough. To do so, suppose X is endowed with

an analytic Whitney stratification whose strata are ID*

invariant. (For example, the canonical Whitney stratification

of X is always invariant CW]). The Whitney stratification

on X is called singularity preserving as X -*• 0 (resp.

singularity preserving as X •*• « ) if, for any stratum A ,

x e A implies XQ e A (resp. x^ c A ) . Intuitively, this

means that XQ is just as singular as x is.

Example 6. Let Y denote the cone in ffilP^ over a
2

smooth algebraic curve X c ffilP with vertex

x - [0,0,0,1] € ffiE^ - ffilP2 . The natural action of ffi*
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on Y induced by the action

[ZQ,Z13Zp,XZ-] on ffiH?^ has source X and sink {x> .

Y can be stratified with strata {x} and Y - {x} and

this renders the action singularity preserving as X •> 0 .

Since {x} is an isolated singular point on Y , the action

is not singularity preserving as X •* « for any Whitney

stratification of Y . Note that although the cells

Y - {x} and {x} of the plus decomposition are locally

trivial affine space bundles, the minus cell x~ = Y - X

is not .

The next theorem partially answers the question of

what structure a singular invariant subvariety must have.

The proof will appear in CCG]

THEOREM 2. If X is a D3 invariant subvariety

ffiIPn whose ffi* action is singularity preserving as X -> 0

with respect to some invariant Whitney stratification
ffi*of X 9 then for each connected component X. of X ,

the natural projection p. : X. •> X. renders xl" a
j j J j

topologically locally trivial affine space bundle. The

fibres are biregularly (and equivariantly) isomorphic to
m1 +some ffi J (depending only on X. ) .

3. THE HOMOLOGY BASIS THEOREM

Recall that the classical Basissatz of Schubert
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calculus CKL] says that the Schubert cycles form a homology

basis for G, (ffin) . To be precise, fix a flag ffi1 c ffi2 c
XV

... c JCn in JDn . Then for any increasing k-tuple

(a,,...,a.) of integers so that 1 < a., < a2 < ... < a, £ n ,

set

(1.3) 0(a1,...,ak) = {V € Gk(E
n) : dimffi(V n ID*

1) ^ 1}

The ft(a.,,...,ak) are projective varieties called Schubert

cycles (or Schubert varieties) whose associated homology

classes in H.(Gk(ffi
n),ZZ ) we denote by [&(a,,...,a. )] .

The Basissatz says: For each m with 0 £ m £ k(n-k) ,

the [Q(a.j,... ,ak)H with J. 1(a. - j) = m form a basis

of H2m(Gk(ffi
n),ZZ) .

Even showing that n(a.,,... ,ak) is a projective

variety is somewhat complicated (see e.g. [KL]). However,

by a calculation similar to that in Example 4, there exists

a ffi action on Gk(ffi
n) so that \ X. = fl(a.,,...,ak)

for some component X. . Consequently, by the theorem of
J

Bialynicki-Birula, n(a-L,...,ak) is automatically a sub-

variety of Gk(fl3
n) .

A more interesting fact, however, is that there exists

an analog of the Basissatz for any smooth (and many singular)

# —projective variety with ffi action in which the X.T play
j

a role similar to the role played by the Schubert cycles
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(with respect to a fixed flag) in Gk(ffi
n) . In fact, if

Xffi is isolated, the xt form a homology basis of HB(X,ZZ)

For this reason, we sometimes refer to the X. (and X" )

as generalized Schubert varieties. Before stating this

generalization of the Basissatz, let us mention that using

the Prankel-Matsushima Morse function f , Prankel showed

in CPr] (see also CKob]) that

(i) bk(X) = IjtVx.^j
5 where Xj = dlm]RNx(XJ) =

«J

(ii) X has torsion if and only if XE does.

THEOREM 3 CCS2] . Let X be a smooth projective

variety with 1C action having fixed point components

X,,...,X . Let m. (resp. n.) denote the fibre dimension

over (C of p. : X. •* X. (resp. q. : X" •* X. ) . Then there
j j J J J J

exist canonical plus and minus isomorphisms

(1.4) ,k : •jHk.2llljUJ,B) -Hk(X,2Z)

and

(1.5) vk : ®j
H
k_2n.

(Xj'2;) * Hk(X'ZZ)
J

By dualizing these isomorphisms to cohomology over ID

and using the Hodge decomposition Hk(X,D3) = ® Hp(X,flq)
p+q=k

one obtains the following result.

COROLLARY [CS23 . The plus and minus Isomorphisms
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induce isomorphisms

p-m. q-ni.
(1.6) TT* : H p (X, f l q ) + § H J ( X j a f i °)

and

(1.7) y* : HP<X fa*> - 9^'^ (Xj ,Q
q-nJ )

By taking dimensions (over IE ) we get

= I - . -
J J

which is a result obtained by several authors: independently

by Luzstig and Wright [Wr] for isolated fixed points via

Morse theory and independently by Pujiki [Pu] and Iversen

using mixed Hodge structure.

There are several consequences that relate the source

and the sink to each other and to X .

(a) H°(x,nq) s H°(x1,o
q) = H°(X

(b) ir

(c) there exist exact sequences

0 -> K* -> Pic(X) -^ Pic(X1) ̂  0

0 -> K" -> Pic(X) -> Pic(Xr) •> 0
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where K+ (resp. K" ) is the ZZ-module of divisors in

X generated by the X? (resp. X~ ) which are divisors

in X .

Another relationship between X and X is

(d) Index(X) - Llndex(X.)
J J

The proofs of (a) - (d) are contained in CCSp] . (d)

is also proved in CPu] .

4. A GENERALIZATION OP THE HOMOLOGY BASIS THEOREM

One can ask whether the homology basis theorem is

also true for singular invariant subvarieties in ffi3Pn .

The answer is, not surprisingly, no in general. However,

for actions which we call "good", the answer is yes. Among

the spaces with a good action are the generalized Schubert

varieties X. in a smooth X which are themselves unions

of plus cells in X (i.e. there exist !,,...,!. so that

xt = xt u ... u X* ) due to the fact that the plus cells
J _1 ^

in xt are xl" ,...,xt and the fact that, since X is
J H xk

smooth, the X. are locally trivial affine space bundles.
1k

The strategy for extending the (plus) homology basis theorem

is to single out a class of actions with plus cells being

locally trivial affine space bundles for which a plus

homomorphism with natural properties can be defined. The
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proof then uses the Thorn isomorphism. It seems to us that

the class of good actions does not give the optimal

generalization .

ffi*For any component X. of X , let r . denote the
J J

closure of the graph of p. : X. •> X. in X x x. 9 and let
J J j j

g. : r. •*• X. be the projection.
0 J J

DEFINITION. An action ID* x x + X is good as X -* 0
ffi*if, for each connected component X. of X , the following

j
conditions hold:

(i) the projection p. : X. •*• X. is a topologically
J J J

locally trivial affine space bundle, and

(ii) X. has an analytic Whitney stratification such

that for each stratum A ,

closure{(p.(x),x) e X. x x|x e A+}

where A"1" = {x e X : X e A) .

The condition (ii) means one can unambiguously write

r. for gT (I) c r. . It is easy to construct a space XH J J
with a point XQ in the source X., of X having the

property that g" (XQ) 3 closure{ (XQ,X) :x e XQ} . Let

Y = E3P1 x 1E3P2 with the action X- (lzQ9z^1'9 Cwo,w]L,w2] ) =

,Xz..];[w,w5W]) , and let X be Y with the point
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([0, !];[!, 0,0]) blown up. Now take XQ = ([1,0]; [1,0,0]) .

The reason for condition (ii) is to allow us to construct

a wrong way map g : H(X..,ZZ) -> H (r..,ZZ) . If we try: Hk(X. . ,ZZ) -> Hk+2m ( r . . ,ZZ) .

"~to define g( cycle) = closure g"~( cycle) , then the point

XQ in the above example will certainly cause a problem.

We must therefore be able to stratify X. so that the set

of bad points in each stratum is a subvariety of the

stratum and then consider only cycles on X. that are

transverse to the strata. Thus a nice complex of transverse

cycles is obtained on X. that admits a wrong way chain
J

map into the chains of r. . In the example above we may
" *JCstratify the components of X with one stratum each.

Nice 0-cycles and 1-cycles in X, will avoid XQ . When
#a wrong way homomorphism g exists, the plus homomorphism

is defined as the composition

(1.8) Hk(Xj,ZZ)-̂ H (r̂ ZZ)* H (X,S)
J u

where the latter map is induced by the projection r. •*• X .
j

We then have

THEOREM 4 [CG]. If the action ffi* x X •* X is good

as X -> 0 , then the plus isomorphisms (1.8) are valid for

all k . Moreover, for almost every k cycle z on X. ,
J

the class of PT,(Z) is represented by the k cycle

p"1(z) on X .
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Examples of actions that are good as X •»• 0 :

(i) if X is smooth, then any X* in X that is a
j

union of plus cells in X with the induced E action;

(ii) any X in which each X. is smooth.
J

It is hoped that a more general setting in which the

plus isomorphisms are valid will be found. At the present,

all the examples we know of singular varieties with a

plus isomorphism have a good action. Hopefully, it will

eventually be shown that the plus isomorphisms are valid

whenever the plus cells are locally trivial affine space

bundles.

Example 7. Let Y be, as in Example 6, the cone with
o p 2

vertex x e DOT - ID3P over a smooth curve X in ffi]P .

Then the action defined in Example 6 is good as X -> 0 but

not good as X -*• « . The plus isomorphism takes the form

H0({x» * HQ(Y) , H±(X) * H±+2(Y) , 0 s i <; 2 .

These are the well known Thorn isomorphisms CMS] . There

is no minus isomorphism however if the genus of X is

greater than zero.

Example 8. The Schubert cycle X = Q(2,4) in Gp(ffi )

with action induced by X- (z-̂ ẑ ẑ ẑ ) = (z1,z2,z3,x""
1zlt)
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has two fixed point components: the source X-^ is a D2IP

and the sink X2 is a ffiHP containing the singular point.

The plus decomposition of X is locally trivial, and since

X* is X - X2 and X* s EIP2 , both plus cells are smooth.

Therefore this action is good as X -* 0 . The minus

decomposition fails to be locally trivial. In fact one

can easily verify that if V denotes the singular point

ffi2 of X , then V" « ffi2 while W" a ffi for any other 2

plane W € Xp • The plus and minus homomorphisms take the

form

Hk-4(Xl) ® Hk(X2} * Hk(X) * W ® Hk-2(X2)

The minus homomorphism is neither injective nor surjective.

It would be interesting to know if there exist examples

of actions that are singularity preserving as X •*• 0 that

are not good as X •*• 0 . We mention a partial result from

CCG].

THEOREM 5. Let X have an action that is singularity

preserving as X -»• 0 . Suppose that for any stratum A of
ffi*X and for any component X. of X , either A n X. = 0

_______ — — _ w t)

or (A n X.) = A n X. . Then the action is good as X ->• 0

We close this chapter with two questions.

1. In the case of a good action, how does the mixed
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Hodge structure on X relate to the mixed Hodge structure

on X1*?

2. If X has a not necessarily good action with

isolated fixed points, do the odd homology groups of X

vanish?

5- HOLOMORPHIC VECTOR FIELDS AND THE COHOMOLOGY RING

It is a basic fact that the cohomology ring of a smooth

protective variety X admitting a holomorphic vector

field V with isolated zeroes Z ̂  0 is determined on Z .

To be precise let Z denote the variety with structure

sheaf 0Z = flx/iCV)^
1 where i(V) : flp -> flP"1 denotes the

contraction of holomorphic p-forms to (p-l)-forms. Then

i(V) defines a complex of sheaves

o .

which is locally free resolution of 0^ since V has

isolated zeros.

It follows from general facts that there exists a

spectral sequence with E"p*q = Hq(X,Qp) abutting to

H°(X,0Z) . The key fact proved in [CL-j,] is that if X

is compact Kaehler, then this spectral sequence degenerates

at E., as long as Z / 0 . As a consequence of the

finiteness of Z and i(V) being a derivation, we have
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THEOREM 6 CCL23. If X is a smooth projective variety

admitting a holomorphic vector field V with Z = zero(V)

finite but nontrivial, then

(i) Hp(X,flq) =0 if p / q (consequently

H2p(X,E) - HP(X,QP) and H2p+1(X,ffi) = 0 ) , and

(ii) there exists a filtration

H°(X,0Z) - Pn = P^ = ... =P1 =F 0.

where n = dix X , such that F-jF.1 c Pj_+-| and having the

property that as graded rings

(2.D s V2p(x-ffi) •
For example, if V has only simple zeros, in other

words if Z is nonsingular, then H (X,0Z) is precisely

the ring of complex valued functions on Z . Thus,

algebraically, H (X,0Z) can be quite simple. The difficulty

in analyzing the cohomology ring is in describing the

filtration P .

Example 9- For each holomorphic action of ffi* , one

also has the infinitesimal generator, i.e. the holomorphic

vector field V obtained by differentiating the action

with respect to X :
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Clearly, the fixed point set of ffi coincides with zero

set of V . One can easily show that the infinitesimal

generator of the ffi* action (1.1) on E3P11 in local affine

coordinates ^ • Z-̂ ZQ,...,̂  = zn/
zo at the flxed point

[1,0,..., 0] is the holomorphic vector field

(2 .2 ) V = IJ.1(a±-a0)c1

on

Let us continue this example by exhibiting the filtration.

The holomorphic vector field (2.2) on JC3Pn has isolated

zeros if aQ < a.. < ... < a . Also, the cohomology ring

of DJIPn , © H "l3I3Pn ,03), has the structure of a polynomial

ring, on one generator of degree two, truncated at degree

2n . That generator is in fact the cohomology class of

the closed two form ft on Q3IPn . Now since Z is non-

singular and finite, (̂ z\ *
 ffi for each ? £ Z so

H (ZjO™) is the ring of all complex valued functions on
o

Z . We will let (XQ,...,An) denote the function whose

value at [1,0,..., 0] is XQ etc. Then it can be shown

that

P0 - < (!,...,!)> * H°(ffi]P
n, 03)

Px =<(!,...,!), (aQ,...,an)>

and (a0,...,an) is sent to ft under the isomorphism.
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(2.1) . In general,

For example, the linear independence of the (aQ,...,a J

for 0 < i £ n follows from the van der Monde determinant

det an n (a. -a.)
1^ 4 J -1-

Example 10. Vector fields on G/B . Let k denote

the Lie algebra of H . We call a vector v e h regular

if the set of fixed points of the one parameter group

exp(tv) of H acting on G/B by left translation is

Hexactly (G/B) . Set V = exp(tv) | txB() so that Z -

zero(V) = (G/B)H . Clearly, the zeros of V are all

simple.

6. BOREL'S THEOREM AND HOLOMORPHIC VECTOR FIELDS

For w € W and v e k , w.v will denote the action

of W on k . W thus acts effectively on k and on

h* in the Usual way: w-f(v) = f(w -v) for f e fe* . To

every character a e X(H) , one associates the holomorphic

line bundle La = (G x QJ)/B on G/B where (g,z)b =

(gb,a(b )z) and where a has been extended to B by the
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usual convention. Now da e h* and since G is semi-simple,

the da , for all a e X(H) , span h . Thus there is a

well defined linear map 0 : /i* + H (G/B,E) determined by

the condition 3 (da) = ̂ (1̂ ) for any a e X(H) . Let 3

also denote the algebra homomorphism 3 : R = Sym(ft*) -*

H*(G/B,JC) extending 3 , where Sym(fe*) is the symmetric

algebra of ft* . W acts on R , so denote by I,, (resp.

Iw) the ring of invariants of ¥ in R (resp. f e I,,

such that f(0) = 0 ) . Borel proved that 3 is a surjective

homomorphism whose kernel is R I,, . Consequently, since

R I™ is a homogeneous ideal, 3 induces

an isomorphism of graded rings

(2.3) 3 :

The purpose of this section is to show how Borel !s

theorem relates to vector fields. Note that H (G/B,0«) =ej
wC for any vector field on G/B generated by a regular

vector in ft . We will begin with a more detailed description

of H°(G/B,0Z) . Define a linear map ^v : h* + H°(G/B,(?Z)

by ¥y(w)(w) = -wa>(v) . Then ¥y can be extended to an

algebra homomorphism ¥y : R -»• H (G/B,0Z) . For any v e h ,

let I denote the ideal in R generated by all $ e ITF
¥ W

such that f(v) » 0 . The ring R/Iy is only graded when

I is homogeneous, i.e. only when v = 0 and R/IW = R/RI,
+
T .v v w

However R/IV is always filtered by degree. Namely, if
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p - 0,1,..., set (R/Iv)p = Rp/Rp n Iy where Rp -

{f e R : deg f <, p> . Notice that Iy c ker¥y ; for if

(j> e I,r and 4>(v) = 0 , then for all w e W , #__(*) (w) =w »

(w#)(v) - <|>(v) = 0 . In fact it is shown in EC] that

for v in a dense open set in h9 ¥ induces an isomorphism

(2.4) ?v :R/Iy + H°(G/B,0Z)

preserving the filtration, i.e. ?y((R/Iv) ) = F .

Consequently, for each p , the natural morphism F-.p -* P

is onto.

The first step in the proof is to identify elements

in H (G/B,07) that determine the Chern classes c., (L )L JL a

for a e X(H) . To accomplish this we recall the theory of

V-equivariant Chern classes. A holomorphic line bundle L

on X is called V-equivariant if the derivation V : 0V •*• 0YA A

lifts to a derivation V : 0X(L) + 0X(L) ; i.e. a ffi-linear

map satisfying V(fs) = V(f)s + fV(s) if f e 0X ,

s e 0X(L) . Since V(f) = i(V)df , V defines a global

section of End(0v(L) ®n 0^) s 0 ; i.e. V e H°(X,0™) .X 0X Z Z Z

It is shown in CCLp] that

(i) V e P.. and has image c., (L) under the isomorphism

(2.1) , and

(ii) every line bundle on X is V-equivariant if

Z * 9 -
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The calculation of ci(La)
 is provided by the following

lemma

Lemma. Given a e X(H) there exists a lifting V

of V to 0(L ) so that in H°(0/8,0,,) , V (wB) =a ii a

-da(w~ -v) where v € k is the regular vector corresponding

to V .

In other words, ty (da)w = -(w-da)(v) = -da(w~ -v)

so, since the da span k , v̂(^ )
 c P^ • The remainder

of the proof is outlined in [C] . Complete details will

appear in [A23 .

To prove Borel!s theorem (2.3), note that we have, for

each regular v c k , a commutative diagram

H2(G/B,E)

where 1 is an isomorphism, and ¥ is surjective.

Consequently 3 is surjective. Moreover, this results in

a commutative diagram for each p > 1

-" F~/F.

(2.5)
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where V is surjeetive and i is an isomorphism. Thus

3 : R •*• H*(G/B,C) is surjective. To complete the proof,

one must show that ker 3 = R I™ . But because dim R/R Iw =

dirnH0 (G/B,0Z) = |W| , it suffices to show that RI* c ker 3,

and this is surprisingly easy. In fact, if f e R n RI^ >

then v̂(f) <= F -L due to the fact that *v(Iy)
 c PO -

Hence, by commutativity of (2.5), 3(f) = 0, and Borel!s

theorem is proved.

7- HOLOMORPHIC VECTOR FIELDS WITH ONE ZERO

So far we have considered only vector fields with

simple isolated zeros, i.e. vector fields with the maximal

number of zeros. At the other extreme are vector fields

with exactly one zero. Suppose V has exactly one zero

at p € X and let V = £a.3/3z. in holomorphic local

coordinates near p . Then H (XjO,,) = l[zn,... ,z I/, oL ± n \â ,...,an
so the cohomology ring H*(X,ffi) is the graded ring

associated to a certain filtration of lECz.,,... ,z ]/(a.,,... ,a )

Let's consider a basic example.

Example 11. Let V be the holomorphic vector field

on ffi]Pn generated by exp(tM) where M is the (n+l)x(n+l)

matrix
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The unique zero of V is [1,0,...,0] , and in the affine

coordinates C-, *•••,£„ at [1,0,...,0],

hence H°(03]Pn, 0^) = ffiU-^/U^4"1) . This is already the

cohomology ring of ffi3Pn . In, fact using the theory of

equivariant Chern classes, it is shown in CCLo] that c-j

corresponds to c.,(0(l)) under the isomorphism of Theorem 6

The existence of the grading on H (JDIPn, 0Z) follows from

the fact that the D3 action A- [ZQ,Z, , . . . ,Z ] =

[Z0,AZ1,. . .,A
nZn] on ffi3P

n has the property dA-V - A-1V

which implies that the functions that define the ideal

i(V)fl are homogeneous (with respect to the action) and

hence that H (Q3]Pn, 0Z) is graded. In general we know

the following

THEOREM 7 CACLS] . Let X be a protective manifold

having a holomorphic vector field with only isolated zeros

but having zeros. Suppose there exists a 01 action

(A,x) •*• A-x on X so that dA-V = \f for some integer

k 7* 0 . Then H°(X,0Z) is a graded ring in which the

filtration by degree coincides with the filtration P.

of Theorem 6. Consequently, H (X,(?z) and H*(X,Q3) , the

cohomology ring of X with complex coefficients, are
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isomorphic graded rings.

Applications of this theorem to the algebraic homogeneous

spaces G/P will appear in a later paper. In the G/P

case a regular unipotent one-parameter subgroup of G will

generate a holomorphic vector field with exactly one zero

and this subgroup will imbed in an SL(2,JD) c G by the

Jacobson-Morosov Lemma CJa] . The maximal torus in this

SL(2,ffi) provides the 02* action of Theorem 7 where k = 2 .

Thus H" (G/P,02) can be viewed as an analytic ring. Its

relations will be reflected in the structure of an in-

finitesimal neighborhood of the zero. It would be interesting

to know if the generalized Schubert cycles on G/B , i.e.

the closures of the Bruhat cells, admit an intrinsic

characterization in the ring H (G/B,0Z) . The Poincare

duals of these classes in H* (G/B,ID) are calculated

explicitly in CBGG] . We will return to this question in

§9.

8. A REMARK ON RATIONALITY

The condition of Theorem 7 that X admit a holomorphic

vector field V and a 02* action so that dX-V = XV for

some integer k / 0 is equivalent to requiring "that

X-^CtJ-X" 1 = 4>(Xkt) for all X e 02* , t e 0] , where

$ : E •* Aut(X) is the one parameter subgroup (of the group

Aut(X) of automorphisms of X ) generated by V . When
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the identity component AutQ(X) is semi-simple and <J> is

a unipotent one parameter subgroup, i.e. a GQ action
d

[H] , the Jacobson-Morosov Lemma CJa] guarantees the

existence of an SL(2,ffi) c AutQ(X) in which $(03) =

(fo l]:t £ ^l ' If (X*x) "* X"x denotes the E* action

on X induced by the maximal torus in SL(2,ffi) , then

X"1 = $U2t) . Using this fact, it is possible to

prove a result of Deligne CD] .

THEOREM 8 Suppose X is a smooth projective variety

such that Aut(X) is semi-simple. Suppose that there

exists a holomorphic vector field on X generated by a GQa.
action whose fixed point set is rational (as a projective

subvariety of X ) . Then X is rational.

Outline of proof. By a theorem of Sommese CS.,] ,

if AutQ(X) is semi-simple, then any E c AutQ(X) has

fixed points on X . It follows, by Blanchard's theorem

CM, p. 25] , that X can be imbedded in some ffilP so

that each g e SL(2,Q3) c Aut(X) is induced by a projective

transformation. By Theorem 7.1 of CCS«] , V is tangent

to the fibres of the plus cells in X , hence the sink X

of X is contained in zero(V) . Therefore, assuming

that X is not contained in any hyperplane of HIP ,

X = X n L = zero(V) n L for some linear subspace L of

ffi]PN . It follows that the sink X of X is rational,
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so X is rational, by the corollary to Theorem 1.

The question of whether the existence of a holomorphic

vector field on X having isolated zeros implies X is

rational has been considered by Lieberman in [L-.ljCLp] ,

and by Deligne CD] . By the induction argument in [Lp]

one can reduce this problem to showing the

Conjecture; A smooth protective variety that admits a

holomorphic vector field with exactly one zero is rational.

9- CLOSING REMARKS

Borel's Theorem R/RIy H H*(G/B,ffi) has another

interpretation due to Kostant [Kos] . Namely, R/RI,,

can be seen to be the ring EC firm] of functions on the

(nonreduced) variety h n n , where n is the nilpotent

cone in Q . A problem of Kostant is to understand in an

intrinsic manner how Schubert calculus works in EC firm] •

The isomorphism of Theorem 7 may shed some light on this

problem since we now have available the fact that H"(G/B,ffi)

is isomorphic to H (G/B,0Z) for the vector field associated

to any regular element in n • In the same spirit as Kostant,

one may ask

Question. Suppose V is a holomorphic vector field

with one zero having an -associated E* action so that
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dA-V = XCk £ 0). Find intrinsically the elements in

H^CX.O™) associated to the xt by Poincare* duality.
* J
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