Holomorphic C* Actions and Vector Fields on Projective Varieties

JAMES B. CARRELL

In this series of talks, I will discuss two ways of relating the topology of a smooth projective variety X (over () with the fixed point set of a one dimensional group of automorphisms (either $\mathbb{T}=G_{a}$ or $\mathbb{K}^{*}=G_{m}$) on X . These ideas are summarized in the following diagrams:
$(1)\left\{\begin{array}{l}\text { Fixed point set } X^{\mathbb{C}^{*}} \\ \text { of a } \mathbb{K}^{*} \text { action on } X\end{array}\right\} \longrightarrow\left\{\begin{array}{l}\text { Integral homology } \\ \text { groups } H .(X, \mathbb{Z})\end{array}\right\}$
(2) $\left\{\begin{array}{l}\text { Zeros of a holo- } \\ \text { morphic vector field } \\ \text { on X with isolated } \\ \text { zeros }\end{array}\right\} \longrightarrow\left\{\begin{array}{l}\text { Complex cohomology } \\ \text { ring } H^{\circ}(X, \mathbb{L})\end{array}\right\}$

If X admits a \mathbb{U}^{*} action with $X^{\mathbb{K}^{*}}$ finite and nontrivial, then X also has a holomorphic vector field with isolated zeros. The connection between the diagrams (1) and (2) is not clear, however, and seems to be one of the basic open questions in this area (c.f. §2.5).

This paper is divided into two parts, the first four chapters deal with \mathbb{C}^{*} actions, and the next five with holomorphic vector fields. I have tried to keep the presentation on a nontechnical level. Several examples but very few proofs have been included. A few unsolved problems have also been mentioned.

I would like to thank the University of Notre Dame for support under the Kenna Lectureship Series.

1. \mathbb{e}^{*} ACTIONS ON PROJECTIVE VARIETIES

A good place to begin a discussion of \mathbb{I}^{*} actions is with the fact that a holomorphic representation of \mathbb{X}^{*} on a finite dimensional complex vector space V, say $\rho: \mathbb{X}^{*} \rightarrow$ GL(V), induces a holomorphic action of \mathbb{L}^{*} on V, that is a holomorphic map $\mu: \mathbb{\mathbb { L }}^{*} \times \mathrm{V} \rightarrow \mathrm{V}$ such that $\mu(\mathrm{I}, \mathrm{V}) \equiv \mathrm{V}$ and $\mu\left(\lambda_{1} \lambda_{2}, v\right)=\mu\left(\lambda_{1}, \mu\left(\lambda_{2}, v\right)\right)$. (We shall often write $\lambda \cdot v$ for $\mu(\lambda, v)$ when speaking of a \mathbb{L}^{*} action.) The fact that ρ is a linear representation means that each $\lambda \in \mathbb{X}^{*}$ preserves lines through the origin in V, so μ descends to give a holomorphic action of \mathbb{U}^{*} on $\mathbb{P}(V)$, $\tilde{\mu}: \mathbb{I}^{*} \times \mathbb{P}(V) \rightarrow \mathbb{P}(V)$.

A basic result about finite-dimensional representations of \mathbb{I}^{*} says that V decomposes uniquely into a direct sum of weight spaces $V_{k}, k \in \mathbb{Z}$, i.e. $V=\oplus V_{k}(k \in \mathbb{Z})$, where $v \in V_{k}$ if and only if $\mu(\lambda, v)=\lambda^{k} v$ for all $\lambda \in \mathbb{T}^{*}$ The $k \in \mathbb{Z}$ such that $V_{k} \neq\{0\}$ are called the weights of the \mathbb{C}^{*} action on V.

By a holomorphic \mathbb{L}^{*} action on a complex projective variety X, we mean a holomorphic map $\mu: \mathbb{\mathbb { d }}^{*} \times X \rightarrow X$ satisfying the properties mentioned above. It is well known that any holomorphic action of \mathbb{X}^{*} on $\mathbb{\mathbb { X }} \mathbb{P}^{n}$ arises through a one parameter subgroup $\lambda: \mathbb{\mathbb { W }}^{*} \rightarrow \mathbb{P} G L(n, \mathbb{L})$, hence up to
projective transformation a \mathbb{T}^{*} action on $\mathbb{\mathbb { P }} \mathbb{P}^{n}$ is of the form

$$
\begin{equation*}
\lambda \cdot\left[\mathrm{Z}_{0}, \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{n}}\right]=\left[\lambda^{\mathrm{a}_{0}} \mathrm{Z}_{0}, \lambda^{\mathrm{a}_{1}} \mathrm{Z}_{1}, \ldots, \lambda^{\left.\mathrm{a}_{\mathrm{n}_{Z_{n}}}\right]}\right. \tag{1.1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

One frequently encounters the situation in which X is an invariant subvariety of a \mathbb{U}^{n} with respect to $\mathbb{N}^{\text {* }}$ action of the form (1.1) on $\mathbb{\mathbb { P } ^ { n }}$. In this case the natural $\operatorname{map} \mathbb{U}^{*} \times X \rightarrow X$ defines a \mathbb{X}^{*} action on X.

Example 1. The variety $v\left(z_{0}^{15}+z_{1}^{4} z_{2} z_{3}^{10}+z_{1} z_{2}^{7} z_{3}^{7}\right)$ in $\mathbb{T} \mathbb{P}^{3}$ with action $\lambda \cdot\left[Z_{0}, z_{1}, z_{2}, z_{3}\right]=\left[\lambda^{3} Z_{0}, \lambda^{10} Z_{1}, \lambda^{5} Z_{2}, z_{3}\right]$.

Example 2. Grassmannians. Any \mathbb{T}^{*} action on \mathbb{x}^{n} permutes k-planes through the origin, hence defines a $\mathbb{\mathbb { L }}^{*}$ action on the Grassmannian $G_{k}\left(\mathbb{世}^{n}\right)$. It is not hard to see that the image of $G_{k}\left(\mathbb{\mathbb { R }}^{n}\right)$ in $\mathbb{P}\left(\wedge^{k_{\mathbb{I}}}{ }^{n}\right)$ under the Plucker imbedding is $\mathbb{\mathbb { W }}^{*}$ invariant with respect to the \mathbb{d}^{*} action on $\mathbb{P}\left(\wedge^{k} \mathbb{\mathbb { N }}^{n}\right)$ given by the $k^{\text {th }}$ exterior power representation $\lambda \rightarrow \Lambda^{k} \lambda$.

Notice that any \mathbb{X}^{*} action on $\mathbb{\mathbb { P }} \mathbb{P}^{n}$ has fixed points, i.e. points x so that $\lambda \cdot x \equiv x$. Indeed the connected components of the fixed point set are the linear subspaces of $\mathbb{\mathbb { P }} \mathbb{P}^{n}$ which correspond to eigenspaces of the induced linear action on $\mathbb{1}^{n+1}$. Clearly any closed invariant
subset K of $\mathbb{U} \mathbb{P}^{n}$ has fixed points: namely if $x \in K$ then $\lim _{\lambda \rightarrow 0} \lambda \cdot x$ and $\lim _{\lambda \rightarrow \infty} \lambda \cdot x$ are both fixed points in K. For convenience we set

$$
x_{0}=\lim _{\lambda \rightarrow 0} \lambda \cdot x \quad \text { and } \quad x_{\infty}=\lim _{\lambda \rightarrow \infty} \lambda \cdot x
$$

What is suggested by this construct is to consider the connected components of the fixed point set $X^{\mathbb{T}^{*}}$ (suppose these are labelled X_{1}, \ldots, X_{r}) and for each such component X_{i} its "plus and minus cells" X_{i}^{+}and X_{i}^{-}, namely

$$
X_{i}^{+}=\left\{x \in X: x_{0} \in X_{i}\right\}, \text { and } X_{i}^{-}=\left\{x \in X: x_{\infty} \in X_{i}\right\}
$$

These "cells" turn out to be the fundamental objects that lead to connections between the topology of X and the topology of $X^{\mathbb{T}}$. We will frequently refer to them simply as $B-B$ cells after A. Bialynicki-Birula who first proved the main structure theorem for them [B-B] (which will be discussed in 52).

Example 3. Let \mathbb{X}^{*} act on $\mathbb{T} \mathbb{P}^{2}$ by $\lambda \cdot\left[Z_{0}, Z_{1}, Z_{2}\right]=$ $\left[Z_{0}, \lambda Z_{1}, \lambda^{2} Z_{2}\right]$. Clearly the fixed points are $[1,0,0]$, $[0,1,0]$, and $[0,0,1]$. Then $[1,0,0]^{+}=\mathbb{Q} \mathbb{P}^{2}-V\left(Z_{0}\right)$, $[0,1,0]^{+}=V\left(Z_{0}\right)-\{[0,0,1]\}$ and $[0,0,1]^{+}=[0,0,1]$. In each case the plus cell is an affine space.

Example 4. Consider the action on $X=G_{2}\left(\mathbb{L}^{4}\right)$ induced by the action $\lambda \cdot\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(\lambda^{a_{0}} z_{0}, \lambda^{a} z_{z_{1}}, \lambda^{a 2_{z_{2}}}, \lambda^{a 3_{z_{3}}}\right)$ on \mathbb{T}^{4} where $a_{0}>a_{1}>a_{2}>a_{3}$. For a pair of independent vectors $u, v \in \mathbb{\mathbb { T }}^{4}$, let $\langle u, v\rangle$ denote the 2-plane they span. We will compute $\left\langle e_{1}, e_{3}\right\rangle^{+}$, where $\left\{e_{i}: 0 \leq i \leq 3\right\}$ denotes the standard basis of \mathbb{d}^{4}. It suffices to consider $\lim _{\lambda \rightarrow 0} \lambda \cdot V$ for $2-p l a n e s$ of the form $V=\left\langle\alpha_{0} e_{0}+\alpha_{1} e_{1}, \beta_{0} e_{0}+\right.$ $\beta_{1} e_{1}+\beta_{2} e_{2}+\beta_{3} e_{3}>$ where $\alpha_{1} \beta_{3} \neq 0$. Now

$$
\begin{aligned}
\lambda \cdot V & =\left\langle\lambda^{a_{0}} \alpha_{0} e_{0}+\lambda^{a_{1}} \alpha_{1} e_{1}, \sum_{i=0}^{3} \lambda^{\left.a_{i_{1}} e_{i}\right\rangle}\right. \\
& =\left\langle\lambda^{\left(a_{0}-a_{1}\right)} \alpha_{\alpha_{0} e_{0}+\alpha_{1} e_{1}}, \sum_{i=0}^{3}\left(a_{i}-a_{3}\right)_{\left.\beta_{i} e_{i}\right\rangle}\right.
\end{aligned}
$$

Since $a_{0}>a_{1}>a_{2}>a_{3}$, it follows that $\lim _{\lambda \rightarrow 0} \lambda \cdot V=$ $\left\langle\alpha_{1} e_{1}, \beta_{3} e_{3}\right\rangle=\left\langle e_{1}, e_{3}\right\rangle$. To give an invariant characterization of $\left\langle e_{1}, e_{3}\right\rangle^{+}$, we recall the definition of Schubert cycles in $G_{2}\left(\mathbb{I}^{4}\right)$. (See also [KL]). If b_{1}, b_{2} are integers so that $1 \leq b_{1}<b_{2} \leq 4$, set

$$
\Omega\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)=\left\{\mathrm{V} \in \mathrm{G}_{2}\left(\mathbb{\mathbb { L }}^{4}\right): \operatorname{dim}_{\mathbb{d}}\left(\mathrm{V} \cap \mathbb{\mathbb { L }}^{\mathrm{b}_{\mathrm{i}}}\right) \geq \mathrm{i}\right\}
$$

where $\mathbb{X}^{1} \subset \mathbb{\mathbb { L }}^{2} \subset \mathbb{\mathbb { 1 }}^{3} \subset \mathbb{X}^{4}$ is the standard flag in \mathbb{R}^{4}. Note that if $\alpha_{1} \neq 0$, then $V \notin \Omega(1,4)$ and if $\beta_{3} \neq 0$, then $\mathrm{V} \notin \Omega(2,3)$. Thus the above calculation shows that $\left\langle e_{1}, e_{3}\right\rangle^{+}=\Omega(2,4)-\Omega(1,4)-\Omega(2,3)$. It follows that $\left\langle e_{1}, e_{3}\right\rangle^{\dot{+}}=\Omega(2,4)$. The Schubert cycles $\Omega\left(b_{1}, b_{2}\right)$ on $G_{2}\left(\mathbb{X}^{4}\right)$ are ordered by inclusion via the lexicographic order on the $\left(b_{1}, b_{2}\right)$. This is shown in the diagram below. By a similar argument, $\left\langle e_{i}, e_{j}\right\rangle^{+}=\Omega(i+l, j+l)$ if $0 \leq i<j \leq 3$.

$$
\begin{aligned}
& \text { dimension } 0 \quad 1 \quad \Omega(1,4) \quad 3
\end{aligned}
$$

A useful feature of this diagram (sometimes called the Hasse diagram) is that one can see a free homology basis of any $\Omega(i, j)$: namely itself and the Schubert cycles that precede it in the diagram.
2. THE B-B DECOMPOSITION

The structure theorem of Bialynicki-Birula [B-B] describes the structure of the plus and minus cells on X when X is a complete, smooth variety with G_{m} action over an arbitrary algebraically closed field. Carrell and Sommese $\left[\mathrm{CS}_{1}\right]$ and Fujiki [Fu] showed that this theorem goes through without change to compact Kaehler manifolds.

Recently, however, Sommese has found an example of a compact Moishezon manifold X with a \mathbb{Q}^{*} action for which the B-B decomposition $X=U X_{j}^{+}$exists but not all of the canonical maps $X_{j}^{+} \rightarrow X_{j}, x \rightarrow x_{0}$, are continuous $\left[S_{2}\right]$. For a smooth projective variety X with fixed point components X_{1}, \ldots, X_{r} the theorem says the following:

THEOREM 1. (i) For each i $=1, \ldots, r$, the natural $\operatorname{map} p_{i}: X_{i}^{+} \rightarrow X_{i}, x \rightarrow x_{0}$, is the projection of a holomorphic fibre bundle whose fibres are all $\mathbb{\Phi}^{*}$ equivariantly isomorphic to a fixed \mathbb{L}^{m}.
(ii) In fact, if $x \in X_{j}$, then $p_{i}^{-1}(x)$ is \mathbb{T}^{*} equivariantly isomorphic to $T_{X}(X) / T_{X}\left(X_{i}\right)$ with \mathbb{T}^{*} action induced by the representation $\lambda \rightarrow d \lambda_{x}$ of C^{*} in $G L\left(T_{x}(X)\right)$. (d λ_{x} denotes the differential of the map $y \rightarrow \lambda \cdot y$ at x.
(iii) X_{1}^{+}is a Zariski open subset of its Zariski closure. Hence $\overline{X_{i}^{+}}$(the topological closure) is a closed subvariety of X containing X_{i}^{+}as a Zariski open.
(iv) There exists a unique component, say X_{1}, of $X^{\mathbb{T}^{*}}$ so that X_{1}^{+}is Zariski open in $X . X_{1}$ is called the source of X.

A completely analogous result holds for the minus
decomposition of X. The distinguished component X_{i} so that X_{i}^{-}is Zariski open in X is called the sink of X. We will always label the sink as X_{r}.

COROLLARY. Suppose either the source or sink of X is rational. Then X is rational i.e. X is birationally equivalent to $\mathbb{\pi} \mathbb{P}^{n}$.

For a proof see $\left[\mathrm{CS}_{1}\right]$. In the case, say, of an isolated source x, then X is a compactification of the vector space $N_{x}^{+}(\{x\})$.

An important, but easy to establish, fact is that if X is a smooth invariant subvariety of $\mathbb{T} \mathbb{P}^{n}$, then there exists a Morse function f on X that has the property of increasing on the \mathbb{R}^{+}orbits in X. In fact, let V denote infinitesimal isometry associated to $S^{l} \subset \mathbb{\mathbb { S }}^{*}$, and let Ω denote the Fubini-Study metric on $\mathbb{\mathbb { P }} \mathbb{P}^{n}$. One finds f by solving the equation $i(V)_{\Omega}=d F$ on $\mathbb{d P ^ { n }}$ and then restricting F to X. Let

$$
F\left[z_{0}, \ldots, z_{n}\right]=\sum a_{i}\left|z_{i}\right|^{2} / \Sigma\left|z_{i}\right|^{2}
$$

as long as coordinates $\left[Z_{0}, \ldots, Z_{n}\right]$ have been chosen so that $\lambda \cdot\left[Z_{0}, \ldots, z_{n}\right]=\left[\lambda^{{ }^{0}{ }_{2}} z_{0}, \ldots, \lambda^{{ }^{2} n_{Z_{n}}}\right]$. The following are not hard to verify using the contraction identity $i(V) \Omega=d F$:
(i) $f=F \mid X$ is a Morse function on X whose critical
submanifolds are X_{1}, \ldots, X_{r};
(ii) f is strictly increasing on the \mathbb{R}^{+}orbits of nonfixed points;
(iii) if X is not contained in a hyperplane of $\mathbb{E} \mathbb{P}^{n}$, then $X_{I}=X n\left(\right.$ source of $\left.\mathbb{T}_{\mathbb{P}^{n}}\right)$ and $X_{r}=X n\left(\right.$ sink of $\left.\mathbb{T}^{n}\right)$; and
(iv) the Morse index of f on X_{i} is $\operatorname{dim}_{\mathbb{R}} N_{x}^{-}\left(X_{i}\right)$, $X \in X_{i}$, where $N_{X}^{-}\left(X_{i}\right)$ denotes the subspace of $T_{X}(X)$ generated by vectors of negative weight (it is actually a subspace of the normal space to X_{i} at x).

In the compact Kaehler case, assuming $X^{\mathbb{T}^{*}} \neq \varnothing$, there is a Morse function satisfying (i), (ii), and (iv) due to Frankel [Fr] and Matsushima. Its importance here is in guaranteeing that there is no sequence of points x_{1}, \ldots, x_{k} in $x-X^{\mathbb{T}^{*}}$ so that $\left(x_{i}\right)_{\infty}$ and $\left(x_{i+1}\right)_{0}$ lie in the same component for $i=1, \ldots, k-1$ and $\left(x_{1}\right)_{0}$ and $\left(x_{k}\right)_{\infty}$ also lie in the same component.

Examples of such "quasi-cycles" are known in the non Kaehler case (see [Ju] and [$\left.S_{2}\right]$).

The Frankel-Matsushima Morse function is applied in a different manner in [At].

Example 5. (G/B). Let G be a semi-simple algebraic group, B a Borel subgroup, H a fixed maximal torus in B and $W=N_{G}(H) / C_{G}(H)$ be the Weyl group of H in G. It is well known (see e.g. [H]) that G/B is a smooth projective variety and that H acts holomorphically on G / B by left translation: $\mu(h, g B)=(h g) B$. Moreover $(G / B)^{H}=\left\{g B: g \in N_{G}(H)\right\}$ and $g B$ depends only on $\bar{g} \in W$. Thus the correspondence $\bar{g} \rightarrow g B$ sets up a one to one correspondence between W and the fixed point set ($G / B)^{H}$, and we may unambiguously refer to wB. A one-parameter subgroup $\lambda: \mathbb{I}^{*} \rightarrow H$ is called regular if $(G / B)^{\mathbb{T}^{*}}=(G / B)^{H}$ under the action $\mu(t, g B)=(\lambda(t) g) B$ of \mathbb{d}^{*}.

By a theorem of Konarski [Kon], the plus decomposition of G / B associated to λ is B invariant provided the source of λ is $e B$. This can be used to identify the associated plus decomposition and the Bruhat decomposition. In fact, for each $w \in W$,

$$
\begin{equation*}
\left.(w B)^{+}=B(w B) \text { (the } B \text { orbit of } w B \in G / B\right) \tag{1.2}
\end{equation*}
$$

To see this note that $B w B \subset(w B)^{+}$by Konarski's
result. Since the plus cells (wB) ${ }^{+}$are disjoint and the Bruhat cells $B(w B)$ cover G / B, the proof of (1.2) is complete.

Another treatment of the Bruhat decomposition using $\mathbb{1}^{*}$ actions appears in $\left[A_{1}\right]$.

We now turn our attention to possibly singular projective varieties X invariantly imbedded in a $\mathbb{X}^{\mathbf{n}}$. For example we can now consider actions on Schubert cycles and, more generally, on the generalized Schubert varieties $\overline{X_{i}^{+}}$ which are closures of the plus cells. Although the $B-B$ decomposition is no longer always locally trivial, one can single out a natural class of actions (which always exist in Schubert varieties) on which the $B-B$ decomposition is still nice enough. To do so, suppose X is endowed with an analytic Whitney stratification whose strata are \mathbb{N}^{*} invariant. (For example, the canonical Whitney stratification of X is always invariant [W]). The Whitney stratification on X is called singularity preserving as $\lambda \rightarrow 0$ (resp. singularity preserving as $\lambda \rightarrow \infty$) if, for any stratum A, $x \in A$ implies $x_{0} \in A$ (resp. $x_{\infty} \in A$). Intuitively, this means that x_{0} is just as singular as x is.

Example 6. Let Y denote the cone in $\mathbb{\mathbb { P }}{ }^{3}$ over a smooth algebraic curve $X \subset \mathbb{\mathbb { P }} \mathbb{P}^{2}$ with vertex $x=[0,0,0,1] \in \mathbb{T} \mathbb{P}^{3}-\mathbb{U} \mathbb{P}^{2}$. The natural action of \mathbb{T}^{*}
on Y induced by the action $\mu\left(\lambda,\left[Z_{0}, Z_{1}, Z_{2}, Z_{3}\right]\right)=$ $\left[Z_{0}, Z_{1}, Z_{2}, \lambda Z_{3}\right]$ on $\mathbb{T} \mathbb{P}^{3}$ has source X and sink $\{x\}$. Y can be stratified with strata $\{x\}$ and $Y-\{x\}$ and this renders the action singularity preserving as $\lambda \rightarrow 0$. Since $\{x\}$ is an isolated singular point on Y, the action is not singularity preserving as $\lambda \rightarrow \infty$ for any Whitney stratification of Y. Note that although the cells $Y-\{x\}$ and $\{x\}$ of the plus decomposition are locally trivial affine space bundles, the minus cell $\mathrm{x}^{-}=\mathrm{Y}-\mathrm{X}$ is not.

The next theorem partially answers the question of what structure a singular invariant subvariety must have. The proof will appear in [CG]

THEOREM 2. If X is a \mathbb{W}^{*} invariant subvariety $\mathbb{d} \mathbb{P}^{n}$ whose \mathbb{I}^{*} action is singularity preserving as $\lambda \rightarrow 0$ with respect to some invariant Whitney stratification of X, then for each connected component X_{j} of $X^{\mathbb{T}^{*}}$, the natural projection $p_{j}: X_{j}^{+} \rightarrow X_{j}$ renders $X_{j}^{+} a$ topologically locally trivial affine space bundle. The fibres are biregularly (and equivariantly) isomorphic to some $\mathbb{E}^{\mathrm{m}_{\mathrm{j}}}$ (depending only on $\mathrm{X}_{\mathrm{j}}^{+}$).

3. THE HOMOLOGY BASIS THEOREM

Recall that the classical Basissatz of Schubert
calculus [KL] says that the Schubert cycles form a homology basis for $G_{k}\left(\mathbb{\mathbb { L }}^{n}\right)$. To be precise, fix a flag $\mathbb{\mathbb { X }}^{1} \subset \mathbb{\mathbb { L }}^{2}$ c $\ldots c \mathbb{1}^{\mathrm{n}}$ in $\mathbb{1}^{\mathrm{n}}$. Then for any increasing k-tuple $\left(a_{1}, \ldots, a_{k}\right)$ of integers so that $1 \leq a_{1}<a_{2}<\ldots<a_{k} \leq n$, set

$$
\begin{equation*}
\Omega\left(a_{1}, \ldots, a_{k}\right)=\left\{V \in G_{k}\left(\mathbb{\mathbb { L }}^{n}\right): \operatorname{dim}_{\mathbb{\mathbb { L }}}\left(V \cap \mathbb{\mathbb { L }}^{a_{i}}\right) \geq i\right\} \tag{1.3}
\end{equation*}
$$

The $\Omega\left(a_{1}, \ldots, a_{k}\right)$ are projective varieties called Schubert cycles (or Schubert varieties) whose associated homology classes in $H .\left(G_{k}\left(\mathbb{\mathbb { L }}^{n}\right), \mathbb{Z}\right)$ we denote by $\left[\Omega\left(a_{1}, \ldots, a_{k}\right)\right]$. The Basissatz says: For each m with $0 \leq m \leq k(n-k)$, the $\left[\Omega\left(a_{1}, \ldots, a_{k}\right)\right]$ with $\sum_{j=1}^{k}\left(a_{j}-j\right)=m$ form a basis of $H_{2 m}\left(G_{k}\left(\mathbb{\mathbb { R }}^{n}\right), \mathbb{Z}\right)$.

Even showing that $\Omega\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$ is a projective variety is somewhat complicated (see e.g. [KL]). However, by a calculation similar to that in Example 4, there exists a \mathbb{L}^{*} action on $G_{k}\left(\mathbb{d}^{n}\right)$ so that $\backslash \overline{X_{j}^{+}}=\Omega\left(a_{1}, \ldots, a_{k}\right)$ for some component X_{j}. Consequently, by the theorem of Bialynicki-Birula, $\Omega\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$ is automatically a subvariety of $G_{k}\left(\mathbb{L}^{n}\right)$.

A more interesting fact, however, is that there exists an analog of the Basissatz for any smooth (and many singular) projective variety with \mathbb{U}^{*} action in which the $\overline{X_{j}^{+}}$play a role similar to the role played by the Schubert cycles
(with respect to a fixed flag) in $G_{k}\left(\mathbb{X}^{n}\right)$. In fact, if $X^{\mathbb{L}^{*}}$ is isolated, the $\overline{X_{j}^{+}}$form a homology basis of $H_{i}(X, \mathbb{Z})$. For this reason, we sometimes refer to the $\overline{X_{j}^{+}}$(and $\overline{X_{j}^{-}}$) as generalized Schubert varieties. Before stating this generalization of the Basissatz, let us mention that using the Frankel-Matsushima Morse function f, Frankel showed in [Fr] (see also [Kob]) that
(i) $b_{k}(X)=\sum_{j} b_{k-\lambda}\left(X_{j}\right)$ where $\quad \lambda_{j}=\operatorname{dim}_{\mathbb{R}^{\prime}} N_{X}^{-}\left(X_{j}\right)=\operatorname{Ind}\left(f \mid X_{j}\right.$
(ii) X has torsion if and only if $X^{\mathbb{T}^{*}}$ does.

THEOREM $3\left[\mathrm{CS}_{2}\right]$. Let X be a smooth projective variety with $\mathbb{\mathbb { W }}^{*}$ action having fixed point components X_{1}, \ldots, X_{r}. Let m_{j} (resp. n_{j}) denote the fibre dimension over \mathbb{L} of $p_{j}: X_{j}^{+} \rightarrow X_{j}$ (resp. $q_{j}: X_{j}^{-} \rightarrow X_{j}$). Then there exist canonical plus and minus isomorphisms

$$
\begin{equation*}
\pi_{k}: \oplus_{j} H_{k-2 m_{j}}\left(X_{j}, \mathbb{Z}\right) \rightarrow H_{k}(X, \mathbb{Z}) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k}: \oplus_{j} H_{k-2 n_{j}}\left(X_{j}, \mathbb{Z}\right) \rightarrow H_{k}(X, \mathbb{Z}) \tag{1.5}
\end{equation*}
$$

By dualizing these isomorphisms to cohomology over $\mathbb{\mathbb { L }}$ and using the Hodge decomposition $H^{k}(X, \mathbb{E}) \underset{p+q=k}{\oplus} H^{p}\left(X, \Omega^{q}\right)$ one obtains the following result.
induce isomorphisms

$$
\begin{equation*}
\pi^{*}: H^{p}\left(X, \Omega^{q}\right) \rightarrow \oplus_{j} H^{p-m_{j}}\left(X_{j}, \Omega=\frac{q-m_{j}}{}\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu^{*}: H^{p}\left(X, \Omega^{q}\right) \rightarrow \oplus_{j} H^{p-n_{j}}\left(X_{j}, \Omega^{q-n_{j}}\right) \tag{1.7}
\end{equation*}
$$

By taking dimensions (over © we get

$$
\begin{aligned}
h^{p, q}(x) & =\sum_{j} h^{p-m_{j}, q-m_{j}}\left(x_{j}\right) \\
& =\sum_{j} h^{p-n_{j}, q-n_{j}}\left(x_{j}\right)
\end{aligned}
$$

which is a result obtained by several authors: independently by Luzstig and Wright [Wr] for isolated fixed points via Morse theory and independently by Fujiki [Fu] and Iversen using mixed Hodge structure.

There are several consequences that relate the source and the sink to each other and to X.
(a) $H^{0}\left(X, \Omega^{q}\right) \cong H^{0}\left(X_{I}, \Omega^{q}\right) \cong H^{0}\left(X_{r}, \Omega^{q}\right)$
(b) $\quad \pi_{1}(X) \cong \pi_{1}\left(X_{1}\right) \cong \pi_{1}\left(X_{r}\right)$
(c) there exist exact sequences

$$
\begin{aligned}
& 0 \rightarrow K^{+} \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X_{1}\right) \rightarrow 0 \\
& 0 \rightarrow K^{-} \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(X_{r}\right) \rightarrow 0
\end{aligned}
$$

where K^{+}(resp. K^{-}) is the \mathbb{Z}-module of divisors in X generated by the $\overline{\mathrm{X}_{i}^{+}}$(resp. $\overline{\mathrm{X}_{i}^{-}}$) which are divisors in X.

Another relationship between X and $X^{\mathbb{T}^{*}}$ is
(d) Index $(X)=\sum_{j}$ Index $\left(X_{j}\right)$

The proofs of (a) - (d) are contained in $\left[\mathrm{CS}_{2}\right]$. (d) is also proved in [Fu].
4. A GENERALIZATION OF THE HOMOLOGY BASIS THEOREM

One can ask whether the homology basis theorem is also true for singular invariant subvarieties in $\mathbb{\mathbb { P }} \mathbb{P}^{n}$. The answer is, not surprisingly, no in general. However, for actions which we call "good", the answer is yes. Among the spaces with a good action are the generalized Schubert varieties $\overline{X_{j}^{+}}$in a smooth X which are themselves unions of plus cells in X (i.e. there exist i_{1}, \ldots, i_{k} so that $\overline{X_{j}^{+}}=X_{i_{1}}^{+} u \ldots u X_{i_{k}}^{+}$) due to the fact that the plus cells in $\overline{X_{j}^{+}}$are $X_{i_{1}}^{+}, \ldots, X_{i_{k}}^{+}$and the fact that, since X is smooth, the $X_{i_{k}}^{+}$are locally trivial affine space bundles. The strategy for extending the (plus) homology basis theorem is to single out a class of actions with plus cells being locally trivial affine space bundles for which a plus homomorphism with natural properties can be defined. The
proof then uses the Thom isomorphism. It seems to us that the class of good actions does not give the optimal generalization.

For any component X_{j} of $X^{\mathbb{C}^{*}}$, let Γ_{j} denote the closure of the graph of $p_{j}: X_{j}^{+} \rightarrow X_{j}$ in $X \times X_{j}$, and let $g_{j}: \Gamma_{j} \rightarrow X_{j}$ be the projection.

DEFINITION. An action $\mathbb{W}^{*} \times X \rightarrow X$ is good as $\lambda \rightarrow 0$ if, for each connected component X_{j} of $X^{\mathbb{T}^{*}}$, the following conditions hold:
(i) the projection $p_{j}: X_{j}^{+} \rightarrow X_{j}$ is a topologically locally trivial affine space bundle, and
(ii) X_{j} has an analytic Whitney stratification such that for each stratum A,

$$
g_{j}^{-1}(\bar{A})=\operatorname{closure}\left\{\left(p_{j}(x), x\right) \in X_{j} \times X \mid x \in A^{+}\right\}
$$

where $A^{+}=\left\{x \in X: X_{0} \in A\right\}$.

The condition (ii) means one can unambiguously write r_{A} for $g_{j}^{-1}(\mathbb{A}) \subset r_{j}$. It is easy to construct a space X with a point x_{0} in the source X_{1} of X having the property that $g_{1}^{-1}\left(x_{0}\right) \underset{\neq}{\supset}$ closure $\left\{\left(x_{0}, x\right): x \in x_{0}^{+}\right\}$. Let $Y=\mathbb{T} \mathbb{P}^{1} \times \mathbb{\mathbb { P }} \mathbb{P}^{2}$ with the action $\lambda \cdot\left(\left[z_{0}, z_{1}\right] ;\left[w_{0}, w_{1}, w_{2}\right]\right)=$ $\left(\left[z_{0}, \lambda z_{1}\right] ;\left[w_{0}, w_{1}, w_{2}\right]\right)$, and let X be Y with the point
([0, 1$] ;[1,0,0]$) blown up. Now take $x_{0}=([1,0] ;[1,0,0])$.

The reason for condition (ii) is to allow us to construct a wrong way map $g_{j}^{\#}: H_{k}\left(X_{j}, \mathbb{Z}\right) \rightarrow H_{k+2 m_{j}}\left(\Gamma_{j}, \mathbb{Z}\right)$. If we try to define $g_{j}^{\#}($ cycle $)=$ closure g_{j}^{-1} (cycle), then the point x_{0} in the above example will certainly cause a problem. We must therefore be able to stratify X_{j} so that the set of bad points in each stratum is a subvariety of the stratum and then consider only cycles on X_{j} that are transverse to the strata. Thus a nice complex of transverse cycles is obtained on X_{j} that admits a wrong way chain map into the chains of Γ_{j}. In the example above we may stratify the components of $X^{\mathbb{T}^{*}}$ with one stratum each. Nice 0 -cycles and l-cycles in X_{1} will avoid x_{0}. When a wrong way homomorphism $g^{\#}$ exists, the plus homomorphism is defined as the composition

$$
\begin{equation*}
H_{k}\left(X{ }_{j}, \mathbb{Z}\right) \xrightarrow{g^{\#}} H_{k+2 m_{j}}\left(r_{j}, \mathbb{Z}\right) \rightarrow H_{k+2 m_{j}}(X, \mathbb{Z}) \tag{1.8}
\end{equation*}
$$

where the latter map is induced by the projection $\Gamma_{j} \rightarrow X$. We then have

THEOREM 4 [CG]. If the action $\mathbb{W}^{*} \times X \rightarrow X$ is good as $\lambda \rightarrow 0$, then the plus isomorphisms (1.8) are valid for all k. Moreover, for almost every k cycle z on X_{j}, the class of $\mu_{k}(z)$ is represented by the k cycle $\overline{p_{j}^{-1}(z)}$ on X.

Examples of actions that are good as $\lambda \rightarrow 0$:
(1) if X is smooth, then any $\overline{X_{j}^{+}}$in X that is a union of plus cells in X with the induced \mathbb{x}^{*} action;
(ii) any X in which each X_{j}^{+}is smooth.

It is hoped that a more general setting in which the plus isomorphisms are valid will be found. At the present, all the examples we know of singular varieties with a plus isomorphism have a good action. Hopefully, it will eventually be shown that the plus isomorphisms are valid whenever the plus cells are locally trivial affine space bundles.

Example 7. Let Y be, as in Example 6, the cone with vertex $x \in \mathbb{T}^{3}-\mathbb{\mathbb { P }} \mathbb{P}^{2}$ over a smooth curve X in $\mathbb{C} \mathbb{P}^{2}$. Then the action defined in Example 6 is good as $\lambda \rightarrow 0$ but not good as $\lambda \rightarrow \infty$. The plus isomorphism takes the form

$$
H_{0}(\{x\}) \approx H_{0}(Y), H_{i}(X) \approx H_{i+2}(Y), 0 \leq i \leq 2 .
$$

These are the well known Thom isomorphisms [MS]. There is no minus isomorphism however if the genus of X is greater than zero.

Example 8. The Schubert cycle $X=\Omega(2,4)$ in $G_{2}\left(\mathbb{d}^{4}\right)$ with action induced by $\lambda \cdot\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{1}, z_{2}, z_{3}, \lambda^{-1} z_{4}\right)$
has two fixed point components: the source X_{1} is a $\mathbb{T P}{ }^{1}$ and the sink X_{2} is a $\mathbb{\mathbb { P }} \mathbb{P}^{2}$ containing the singular point. The plus decomposition of X is locally trivial, and since X_{1}^{+}is $\mathrm{x}-\mathrm{X}_{2}$ and $\mathrm{X}_{2}^{+} \cong \mathbb{U P}^{2}$, both plus cells are smooth. Therefore this action is good as $\lambda \rightarrow 0$. The minus decomposition fails to be locally trivial. In fact one can easily verify that if V denotes the singular point \mathbb{I}^{2} of X , then $\mathrm{V}^{-} \cong \mathbb{I}^{2}$ while $\mathrm{W}^{-} \cong \mathbb{\mathbb { I }}$ for any other 2 plane $W \in X_{2}$. The plus and minus homomorphisms take the form

$$
H_{k-4}\left(x_{1}\right) \oplus H_{k}\left(x_{2}\right) \approx H_{k}(X) \leftarrow H_{k}\left(x_{1}\right) \oplus H_{k-2}\left(x_{2}\right)
$$

The minus homomorphism is neither injective nor surjective.

It would be interesting to know if there exist examples of actions that are singularity preserving as $\lambda \rightarrow 0$ that are not good as $\lambda \rightarrow 0$. We mention a partial result from [CG].

THEOREM 5. Let X have an action that is singularity preserving as $\lambda \rightarrow 0$. Suppose that for any stratum A of X and for any component X_{j} of $X^{\mathbb{U}^{*}}$, either $A \cap X_{j}=\varnothing$ or $\overline{\left(A \cap X_{j}\right)^{+}}=\bar{A} \cap \overline{X_{j}^{+}}$. Then the action is good as $\lambda \rightarrow 0$

We close this chapter with two questions.

1. In the case of a good action, how does the mixed

Hodge structure on X relate to the mixed Hodge structure on $X^{\mathbb{T}^{*}}$?
2. If X has a not necessarily good action with isolated fixed points, do the odd homology groups of X vanish?
5. HOLOMORPHIC VECTOR FIELDS AND THE COHOMOLOGY RING

It is a basic fact that the cohomology ring of a smooth projective variety X admitting a holomorphic vector field V with isolated zeroes $Z \neq \varnothing$ is determined on Z. To be precise let Z denote the variety with structure sheaf $O_{Z}=O_{X} / i(V) \Omega^{l}$ where $i(V): \Omega^{p} \rightarrow \Omega^{p-1}$ denotes the contraction of holomorphic p-forms to (p-l)-forms. Then $i(V)$ defines a complex of sheaves

$$
0 \rightarrow \Omega^{n} \xrightarrow{i(V)} \Omega^{n-1} \rightarrow \ldots \rightarrow \Omega^{I} \rightarrow 0 \rightarrow 0
$$

which is locally free resolution of O_{Z} since V has isolated zeros.

It follows from general facts that there exists a spectral sequence with $E_{1}^{-p, q}=H^{q}\left(X, \Omega^{p}\right)$ abutting to $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}_{\mathrm{Z}}\right)$. The key fact proved in $\left[\mathrm{CL}_{1}\right]$ is that if X is compact Kaehler, then this spectral sequence degenerates at E_{1} as long as $Z \neq \varnothing$. As a consequence of the finiteness of Z and $i(V)$ being a derivation, we have

THEOREM $6\left[\mathrm{CL}_{2}\right]$. If X is a smooth projective variety admitting a holomorphic vector field V with $Z=$ zero(v) finite but nontrivial, then
(i) $H^{p}\left(X, \Omega^{q}\right)=0$ if $p \neq q$ (consequently $H^{2 p}(X, \mathbb{d})=H^{p}(X, \Omega)$ and $\left.H^{2 p+1}(X, \mathbb{d})=0\right)$, and
(ii) there exists a filtration

$$
H^{0}\left(X, O_{Z}\right)=F_{n} \supset F_{n-1} \supset \ldots \supset F_{1} \supset F_{0}
$$

where $n=\operatorname{dix} X$, such that $F_{i} F_{j} \subset F_{i+j}$ and having the property that as graded rings

$$
\begin{equation*}
\oplus_{p} F_{p} / F_{p+1} \cong \oplus_{p} H^{2 p}(X, \mathbb{L}) \tag{2.1}
\end{equation*}
$$

For example, if V has only simple zeros, in other words if Z is nonsingular, then $H^{0}\left(X, O_{Z}\right)$ is precisely the ring of complex valued functions on Z. Thus, algebraically, $H^{0}\left(X, O_{Z}\right)$ can be quite simple. The difficulty in analyzing the cohomology ring is in describing the filtration F.

Example 9. For each holomorphic action of $\mathbb{\mathbb { d }}^{*}$, one also has the infinitesimal generator, i.e. the holomorphic vector field V obtained by differentiating the action with respect to λ :

$$
\mathrm{V}_{\mathrm{x}}=\left.\frac{\mathrm{d}}{\mathrm{~d} \lambda}(\lambda \cdot \mathrm{x})\right|_{\lambda=1}
$$

Clearly, the fixed point set of \mathbb{T}^{*} coincides with zero set of V. One can easily show that the infinitesimal generator of the \mathbb{L}^{*} action (1.1) on $\mathbb{d} \mathbb{P}^{n}$ in local affine coordinates $\zeta_{1}=z_{1} / z_{0}, \ldots, \zeta_{n}=z_{n} / z_{0}$ at the fixed point [l,0,...,0] is the holomorphic vector field

$$
\begin{equation*}
V=\sum_{i=1}^{n}\left(a_{i}-a_{0}\right) \zeta_{i} \partial / \partial \zeta_{i} \tag{2.2}
\end{equation*}
$$

on $\mathbb{\mathbb { E }} \mathbb{P}^{n}$

Let us continue this example by exhibiting the filtration. The holomorphic vector field (2.2) on $\mathbb{T} \mathbb{P}^{n}$ has isolated zeros if $a_{0}<a_{1}<\ldots<a_{n}$. Also, the cohomology ring of $\mathbb{\mathbb { C }} \mathbb{P}^{n}, \oplus \mathrm{H}^{2 i}\left(\mathbb{C} \mathbb{P}^{n}, \mathbb{\mathbb { V }}\right)$, has the structure of a polynomial ring, on one generator of degree two, truncated at degree $2 n$. That generator is in fact the cohomology class of the closed two form Ω on $\mathbb{T}^{\text {n }}$. Now since Z is nonsingular and finite, $\left(O_{Z}\right)_{\zeta}=\mathbb{W}$ for each $\zeta \in Z$ so $\mathrm{H}^{0}\left(\mathrm{Z}, \mathrm{O}_{\mathrm{Z}}\right)$ is the ring of all complex valued functions on Z. We will let $\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ denote the function whose value at $[1,0, \ldots, 0]$ is λ_{0} etc. Then it can be shown that

$$
\begin{aligned}
& F_{0}=\langle(1, \ldots, 1)\rangle \simeq H^{0}\left(\mathbb{d} \mathbb{P}^{n}, \mathbb{E}\right) \\
& F_{1}=\left\langle(1, \ldots, 1),\left(a_{0}, \ldots, a_{n}\right)\right\rangle
\end{aligned}
$$

and $\left(a_{0}, \ldots, a_{n}\right)$ is sent to Ω under the isomorphism.
(2.1). In general,

$$
F_{i}=\left\langle(l, \ldots, l),\left(a_{0}, \ldots, a_{n}\right), \ldots,\left(a_{0}^{1}, \ldots a_{n}^{i}\right)\right\rangle
$$

For example, the linear independence of the $\left(a_{0}, \ldots, a_{n}\right)^{i}$ for $0 \leq i \leq n$ follows from the van der Monde determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & \cdot & \cdot & 1 \\
a_{0} & \cdot & \cdot & \cdot \\
\vdots \\
\vdots & & & \\
a_{0}^{n} & \cdots & \cdot & a_{n}^{n}
\end{array}\right)=\underset{i<j}{I I}\left(a_{j}-a_{i}\right)
$$

Example 10. Vector fields on G / B. Let h denote the Lie algebra of H. We call a vector $v \varepsilon h$ regular if the set of fixed points of the one parameter group $\exp (t v)$ of H acting on G / B by left translation is exactly $(G / B)^{H}$. Set $V=\left.\frac{d}{d t} \exp (t v)\right|_{t=0}$ so that $Z=$ $\operatorname{zero}(V)=(G / B)^{H}$. Clearly, the zeros of V are all simple.
6. BOREL'S THEOREM AND HOLOMORPHIC VECTOR FIELDS

For $w \in W$ and $v \in h$, $w . v$ will denote the action of W on h. W thus acts effectively on h and on h^{*} in the usual way: $w \cdot f(v)=f\left(w^{-1} \cdot v\right)$ for $f \varepsilon h^{*}$. To every character $\alpha \varepsilon X(H)$, one associates the holomorphic line bundle $L_{\alpha}=(G \times \mathbb{I}) / B$ on G / B where $(g, z) b=$ $\left(g b, \alpha\left(b^{-1}\right) z\right)$ and where α has been extended to B by the
usual convention. Now $d \alpha \varepsilon h^{*}$ and since G is semi-simple, the da, for all $\alpha \in \mathrm{X}(\mathrm{H}), \operatorname{span} h^{*}$. Thus there is a well defined linear map $\beta: h^{*} \rightarrow H^{2}(G / B, \mathbb{I})$ determined by the condition $\beta(d \alpha)=c_{1}\left(L_{\alpha}\right)$ for any $\alpha \in X(H)$. Let β also denote the algebra homomorphism $\beta: R=\operatorname{Sym}\left(h^{*}\right) \rightarrow$ $H^{*}(G / B, \mathbb{I})$ extending β, where $\operatorname{Sym}\left(h^{*}\right)$ is the symmetric algebra of h^{*}. W acts on R, so denote by I_{W} (resp. I_{W}^{+}) the ring of invariants of W in R (resp. f εI_{W} such that $f(0)=0)$. Borel proved that B is a surjective homomorphism whose kernel is $R I_{W}^{+}$. Consequently, since $R I_{W}^{+}$is a homogeneous ideal, β induces an isomorphism of graded rings

$$
\begin{equation*}
\bar{\beta}: R / R I_{W}^{+} \underset{\rightarrow}{\sim} H^{\bullet}(G / B, C) \tag{2.3}
\end{equation*}
$$

The purpose of this section is to show how Borel's theorem relates to vector fields. Note that $H^{0}\left(G / B, O_{Z}\right)=$ C^{W} for any vector field on G / B generated by a regular vector in h. We will begin with a more detailed description of $H^{0}\left(G / B, O_{Z}\right)$. Define a linear map $\Psi_{V}: h^{*} \rightarrow H^{0}\left(G / B, O_{Z}\right)$ by $\Psi_{v}(\omega)(w)=-w \cdot \omega(v)$. Then Ψ_{v} can be extended to an algebra homomorphism $\psi_{v}: R \rightarrow H^{0}\left(G / B, O_{Z}\right)$. For any $v \varepsilon h$, let I_{V} denote the ideal in R generated by all $\phi \varepsilon I_{W}$ such that $\phi(v)=0$. The ring R / I_{v} is only graded when I_{v} is homogeneous, i.e. only when $v=0$ and $R / I_{v}=R / R I_{W}^{+}$. However R / I_{v} is always filtered by degree. Namely, if
$p=0,1, \ldots$, set $\left(R / I_{v}\right)_{p}=R_{p} / R_{p} \cap I_{v}$ where $R_{p}=$ $\{f \varepsilon R: \operatorname{deg} f \leq p\}$. Notice that $I_{v} \subset \operatorname{ker}{ }_{V}$; for if $\phi \varepsilon I_{W}$ and $\phi(v)=0$, then for all $w \in W, \psi_{V}(\phi)(W)=$ $(w \cdot \phi)(v)=\phi(v)=0$. In fact it is shown in $[C]$ that for v in a dense open set in h, ψ_{v} induces an isomorphism

$$
\begin{equation*}
\bar{\Psi}_{v}: R / I_{v} \rightarrow H^{0}\left(G / B, O_{Z}\right) \tag{2.4}
\end{equation*}
$$

preserving the filtration, i.e. $\bar{\Psi}_{v}\left(\left(R / I_{v}\right)_{p}\right)=F_{p}$. Consequently, for each p, the natural morphism $F_{1}^{\otimes p} \rightarrow F_{p}$ is onto.

The first step in the proof is to identify elements in $H^{0}\left(G / B, O_{Z}\right)$ that determine the Chern classes $c_{1}\left(L_{\alpha}\right)$ for $\alpha \in X(H)$. To accomplish this we recall the theory of V-equivariant Chern classes. A holomorphic line bundle L on X is called V-equivariant if the derivation $V: O_{X} \rightarrow \mathrm{O}_{\mathrm{X}}$ lifts to a derivation $\tilde{V}: O_{X}(L) \rightarrow O_{X}(L)$; i.e. a \mathbb{T}-linear map satisfying $\tilde{V}(f s)=V(f) s+f \tilde{V}(s)$ if $f \varepsilon O_{X}$, $s \varepsilon O_{X}(L)$. Since $V(f)=i(V) d f, \tilde{V}$ defines a global section of $\operatorname{End}\left(O_{X}(L) \otimes_{O_{X}} O_{Z}\right) \cong O_{Z}$; i.e. $\tilde{V} \varepsilon H^{0}\left(X, O_{Z}\right)$. It is shown in $\left[\mathrm{CL}_{2}\right]$ that
(i) $\tilde{\mathrm{V}} \varepsilon \mathrm{F}_{1}$ and has image $c_{1}(L)$ under the isomorphism (2.1), and
(ii) every line bundle on X is V-equivariant if $Z \neq \varnothing$.

The calculation of $c_{1}\left(L_{\alpha}\right)$ is provided by the following lemma

Lemma. Given $\alpha \in X(H)$ there exists a lifting $\tilde{\mathrm{V}}_{\alpha}$ of V to $O\left(L_{\alpha}\right)$ so that in $H^{0}\left(G / B, O_{Z}\right), \tilde{V}_{\alpha}(w B)=$ $-d \alpha\left(w^{-1} \cdot v\right)$ where $v \in h$ is the regular vector corresponding to V.

In other words, $\psi_{v}(d \alpha) w=-(w \cdot d \alpha)(v)=-d \alpha\left(w^{-l} \cdot v\right)$ so, since the $d \alpha$ span $h^{*}, \psi_{v}\left(h^{*}\right) \subset F_{I}$. The remainder of the proof is outlined in [C]. Complete details will appear in $\left[\mathrm{A}_{2}\right]$.

To prove Borel's theorem (2.3), note that we have, for each regular $v \in h$, a commutative diagram

where i_{v} is an isomorphism, and ${ }_{\Psi_{V}}$ is surjective. Consequently β is surjective. Moreover, this results in a commutative diagram for each $p \geq 1$

where Ψ_{V} is surjective and i_{v} is an isomorphism. Thus $\beta: R \rightarrow H^{*}(G / B, C)$ is surjective. To complete the proof, one must show that ker $\beta=R I_{W}^{+}$. But because $\operatorname{dim} R / R I_{W}^{+}=$ $\operatorname{dim} H^{0}\left(G / B, O_{Z}\right)=|W|$, it suffices to show that $R I_{W}^{+}$c ker β, and this is surprisingly easy. In fact, if $f \varepsilon R_{p} \cap R I_{W}^{+}$, then $\Psi_{V}(f) \subset F_{p-1}$ due to the fact that $\Psi_{V}\left(I_{W}^{+}\right) \subset F_{0}$. Hence, by commutativity of (2.5), $\beta(f)=0$, and Borel's theorem is proved.
7. HOLOMORPHIC VECTOR FIELDS WITH ONE ZERO

So far we have considered only vector fields with simple isolated zeros, i.e. vector fields with the maximal number of zeros. At the other extreme are vector fields with exactly one zero. Suppose V has exactly one zero at $p \in X$ and let $V=\sum a_{i} \partial / \partial z_{i}$ in holomorphic local coordinates near p. Then $H^{0}\left(x, O_{Z}\right) \cong \mathbb{d}\left[z_{1}, \ldots, z_{n}\right] /\left(a_{1}, \ldots, a_{n}\right)$ so the cohomology ring $H^{*}(X, \mathbb{T})$ is the graded ring associated to a certain filtration of $\mathbb{\mathbb { L }}\left[z_{1}, \ldots, z_{n}\right] /\left(a_{1}, \ldots, a_{n}\right)$. Let's consider a basic example.

Example 11. Let V be the holomorphic vector field on $\mathbb{U P}^{n}$ generated by $\exp (t M)$ where M is the $(n+1) \times(n+1)$ matrix

$$
M=\left(\begin{array}{lll}
0 & & \\
\vdots & I_{n} \\
0 & \cdots & 0
\end{array}\right)
$$

The unique zero of V is $[1,0, \ldots, 0]$, and in the affine coordinates $\zeta_{1}, \ldots, \zeta_{n}$ at $[1,0, \ldots, 0]$,

$$
\begin{aligned}
& V=\left(\zeta_{2}-\zeta_{1}^{2}\right) \partial / \partial \zeta_{1}+\left(\zeta_{3}-\zeta_{1} \zeta_{2}\right) \partial / \partial \zeta_{2}+\ldots \\
&+\left(\zeta_{n}-\zeta_{1} \zeta_{n-1}\right) \partial / \partial \zeta_{n-1}-\zeta_{1} \zeta_{n} \partial / \partial \zeta_{n}
\end{aligned}
$$

hence $H^{0}\left(\mathbb{\mathbb { P }} \mathbb{P}^{n}, O_{Z}\right)=\mathbb{C}\left[\zeta_{I}\right] /\left(\zeta_{l}^{n+1}\right)$. This is already the cohomology ring of $\mathbb{\mathbb { X }} \mathbb{P}^{n}$. In, fact using the theory of equivariant Chern classes, it is shown in $\left[\mathrm{CL}_{3}\right]$ that ${ }_{5}{ }_{1}$ corresponds to $c_{1}(O(1))$ under the isomorphism of Theorem 6 . The existence of the grading on $H^{0}\left(\mathbb{L} \mathbb{P}^{n}, O_{Z}\right)$ follows from the fact that the \mathbb{T}^{*} action $\lambda \cdot\left[Z_{0}, Z_{1}, \ldots, Z_{n}\right]=$ $\left[Z_{0}, \lambda Z_{1}, \ldots, \lambda^{n_{Z}} Z_{n}\right.$ on $\mathbb{E} \mathbb{P}^{n}$ has the property $d \lambda \cdot V=\lambda^{-1} V$ which implies that the functions that define the ideal $i(V) \Omega^{l}$ are homogeneous (with respect to the action) and hence that $H^{0}\left(\mathbb{I}^{n}, O_{Z}\right)$ is graded. In general we know the following

THEOREM 7 [ACLS]. Let X be a projective manifold having a holomorphic vector field with only isolated zeros but having zeros. Suppose there exists a \mathbb{L}^{*} action $(\lambda, x) \rightarrow \lambda \cdot x$ on X so that $d \lambda \cdot V=\lambda^{k} V$ for some integer $k \neq 0$. Then $H^{0}\left(X, 0_{Z}\right)$ is a graded ring in which the filtration by degree coincides with the filtration F. of Theorem 6. Consequently, $H^{0}\left(X, O_{Z}\right)$ and $H^{\bullet}(X, \mathbb{I})$, the cohomology ring of X with complex coefficients, are
isomorphic graded rings.

Applications of this theorem to the algebraic homogeneous spaces G / P will appear in a later paper. In the G / P case a regular unipotent one-parameter subgroup of G will generate a holomorphic vector field with exactly one zero and this subgroup will imbed in an $\operatorname{SL}(2, \mathbb{d}) \subset G$ by the Jacobson-Morosov Lemma [Ja]. The maximal torus in this SL(2, $\mathbb{L})$ provides the $\mathbb{\mathbb { L }}^{*}$ action of Theorem 7 where $k=2$. Thus $H^{*}(G / P, \mathbb{d})$ can be viewed as an analytic ring. Its relations will be reflected in the structure of an infinitesimal neighborhood of the zero. It would be interesting to know if the generalized Schubert cycles on G/B, i.e. the closures of the Bruhat cells, admit an intrinsic characterization in the ring $H^{0}\left(G / B, O_{Z}\right)$. The Poincare duals of these classes in $H^{*}(G / B, \mathbb{I})$ are calculated explicitly in [BGG]. We will return to this question in § 9.

8. A REMARK ON RATIONALITY

The condition of Theorem 7 that X admit a holomorphic vector field V and a \mathbb{T}^{*} action so that $d \lambda \cdot V=\lambda^{k} V$ for some integer $k \neq 0$ is equivalent to requiring that $\lambda \cdot \phi(t) \cdot \lambda^{-1}=\phi\left(\lambda^{k_{t}}\right)$ for all $\lambda \in \mathbb{C}^{*}, t \in \mathbb{E}$, where $\phi: \mathbb{I} \rightarrow$ Aut (X) is the one parameter subgroup (of the group Aut(X) of automorphisms of X) generated by V. When
the identity component $\mathrm{Aut}_{0}(\mathrm{X})$ is semi-simple and ϕ is a unipotent one parameter subgroup, i.e. a G_{a} action [H], the Jacobson-Morosov Lemma [Ja] guarantees the existence of an $\operatorname{SL}(2, \mathbb{I}) \subset \operatorname{Aut}_{0}(X)$ in which $\phi(\mathbb{I})=$ $\left\{\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right): t \in \mathbb{I}\right\}$. If $(\lambda, x) \rightarrow \lambda \cdot x$ denotes the \mathbb{L}^{*} action on X induced by the maximal torus in $S L(2, \mathbb{I})$, then $\lambda \cdot \phi(t) \cdot \lambda^{-1}=\phi\left(\lambda^{2} t\right)$. Using this fact, it is possible to prove a result of Deligne [D].

THEOREM 8 Suppose X is a smooth projective variety such that $A u t(X)$ is semi-simple. Suppose that there exists a holomorphic vector field on X generated by $a G_{a}$ action whose fixed point set is rational (as a projective subvariety of X). Then X is rational.

Outline of proof. By a theorem of Sommese $\left[S_{1}\right]$, if $A u t_{0}(X)$ is semi-simple, then any $\mathbb{L}^{*} \subset A u t_{0}(X)$ has fixed points on X . It follows, by Blanchard's theorem [M, p. 25], that X can be imbedded in some $\mathbb{E} \mathbb{P}^{N}$ so that each $g \in S L(2, \mathbb{X}) \subset A u t(X)$ is induced by a projective transformation. By Theorem 7.1 of $\left[C S_{3}\right], V$ is tangent to the fibres of the plus cells in X, hence the sink X_{r} of X is contained in zero(V). Therefore, assuming that X is not contained in any hyperplane of $\mathbb{E} \mathbb{P}^{N}$, $X_{r}=X \cap L=z e r o(V) \cap L$ for some linear subspace L of $\mathbb{E} \mathbb{P}^{N}$. It follows that the sink X_{r} of X is rational,
so X is rational, by the corollary to Theorem 1.

The question of whether the existence of a holomorphic vector field on X having isolated zeros implies X is rational has been considered by Lieberman in $\left[L_{1}\right],\left[L_{2}\right]$, and by Deligne [D]. By the induction argument in $\left[L_{2}\right]$ one can reduce this problem to showing the

Conjecture: A smooth projective variety that admits a holomorphic vector field with exactly one zero is rational.
9. CLOSING REMARKS

Borel's Theorem $R / R I_{W}^{+} \cong H^{\bullet}(G / B, \mathbb{L})$ has another interpretation due to Kostant [Kos]. Namely, $R / R I_{W}^{+}$ can be seen to be the ring $\mathbb{L}[h n \eta]$ of functions on the (nonreduced) variety $h \cap \eta$, where η is the nilpotent cone in g. A problem of Kostant is to understand in an intrinsic manner how Schubert calculus works in $\mathbb{\mathbb { C }}[h n \eta]$. The isomorphism of Theorem 7 may shed some light on this problem since we now have available the fact that $H^{*}(G / B, \mathbb{d})$ is isomorphic to $H^{0}\left(G / B, O_{Z}\right)$ for the vector field associated to any regular element in η. In the same spirit as Kostant, one may ask

Question. Suppose V is a holomorphic vector field with one zero having an associated $\mathbb{\mathbb { W }}^{*}$ action so that
$\mathrm{d} \lambda \cdot \mathrm{V}=\lambda^{\mathrm{k}} \mathrm{V}(\mathrm{k} \neq 0)$. Find intrinsically the elements in $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{O}_{\mathrm{Z}}\right)$ associated to the $\overline{\mathrm{X}_{\mathrm{j}}^{+}}$by Poincare duality.

REFERENCES

[Al E. Akyildiz, Bruhat decomposition via G_{m} action, Bull. Acad. Pol. Sci., Ser. Sci., Math., 28(1980), 541-547.
$\left[A_{2}\right]$, Vector fields and cohomology of G / P, to appear.
[ACLS] E.Akyildiz, J.B. Carrell, D.I. Lieberman, and A.J. Sommese, On the graded rings associated to holomorphic vector fields with exactly one zero, to appear in Proc. Symp. in Pure Math.
[At] M. Atiyah, Convexity and commuting Hamiltonians, Bull London Math. Soc., 14 (1982), 1-15.
[BGG] I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand, Schubert cells and the cohomology of the spaces G/P , Russ. Math Survs., 28 (1975), 1-26.
[B-B] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973), 480-497.
[C] J.B. Carrell, Vector fields and the cohomology of G/B , Manifolds and Lie groups, Papers in honor of Y. Matsushima, Progress in Mathematics, Vol. 14 Birkhäuser, Boston, 1981.
[CG] J.B. Carrell and R.M. Goresky, Homology of invariant subvarieties of compact Kaehler manifolds with \mathbb{I}^{*} action, to appear.
[CL ${ }_{1}$] J.B. Carrell, and D.I. Lieberman, Holomorphic vector fields and compact Kaehler manifolds, Invent. Math. 21 (1973), 303-309.
$\left[\mathrm{CL}_{2}\right]$ and , Vector fields and Chern numbers, Math. Annalen, 225 (1977), 263-273.
[CL ${ }_{3}$] , Vector fields, Chern classes and cohomology, Proc. Symp. Pure Math., Vol. 30 (1977), 251-254.
[CS ${ }_{1}$] J.B. Carrell and A.J. Sommese. \mathbb{L}^{*} actions. Math. Scand. 43 (1978) , 49-59.

$\left[\mathrm{CS}_{2}\right]$	Some topological aspects of (1* actions on compact Kaehler manifolds. Comment. Math. Helvetici 54 (1979), 567-582.
$\left[\mathrm{CS}_{3}\right]$	\qquad SL(2,d) actions on compact manifolds, to appear in Trans. Amer. Math. Soc.
[D]	P. Deligne, Letter to D.I. Lieberman
[Fr]	T.T. Frankel, Fixed points and torsion on Kaehler manifolds, Ann. of Math. 70 (1959), 1-8.
[Fu]	A. Fujiki, Fixed points of the actions on compact Kaehler manifolds, Publ. R.I. 15 (1979), 797-826.
[H]	J.E. Humphreys, Linear algebraic groups, SpringerVerlag, Berlin - New York (1975).
[Ja]	N. Jacobson, L-ie algebras, John Wiley and Sons, New York - London (1962).
[Ju]	J. Jurkiewicz, An example of algebraic torus action which determines the nonfilterable decomposition, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 24 (1976) 667-674.
[KL]	S. Kleiman and D. Laksov, Schubert Calculus, Am. Math Monthly 79 (1972), 1061-1082.
[Kob]	S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York (1972).
[Kon]	J. Konarski, Properties of projective orbits of actions of affine algebraic groups, to appear.
[Kos]	B. Kostant, Lie group representations on polynomial rings, Amer. J. of Math. 85, 327-404.
$\left[L_{1}\right]$	D.I. Lieberman, Rationality and holomorphic vector fields, to, appear.
$\left[L_{2}\right]$	\qquad Holomorphic vector fields on projective varieties, Proc. Symp. in Pure Math 30 (1977), 273-276.

[M]	Y. Matsushima, Holomorphic vector fields on compact Kaehler manifolds, Regional Conference Series in Math. No. 7, A.M.S. (1971).
[MS]	J. Milnor and J. Stasheff, Characteristic Classes, Annals of Math study no. 76. Princeton University Press, Princeton N.J. (1974).
$\left[S_{1}\right]$	A.J. Sommese, Extension theorems for reductive group actions on compact Kaehler manifolds, Math. Ann. 218 (1975), 107-116.
$\left[S_{2}\right]$	\qquad , Some examples of \mathbb{C}^{*} actions, to appear.
[W]	H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549.
[Wr]	E. Wright, Killing vector fields and harmonic forms, Trans. Amer. Math. Soc. 199 (1974), 199-202.

