$$
\mathfrak{m} \mathfrak{n} \leqq \mathfrak{m}+\mathfrak{n}
$$

However we have proved earlier that if $\mathfrak{m}$ and $\mathfrak{n}$ are $\geqq 2$, then $\mathfrak{m}+\mathfrak{n} \leqq \mathfrak{m} \cdot \mathfrak{n}$. Thus we obtain $\mathfrak{m} \mathfrak{n}=\mathfrak{m}+\mathfrak{n}$.

## 6. Some remarks on functions of ordinal numbers

A function $f(x)$ is called monotonic, if $(x<y) \rightarrow(f(x) \leqq f(y))$. It is called strictly increasing, if

$$
(x<y) \rightarrow(f(x)<f(y))
$$

The function is called seminormal, if it is monotonic and continuous, that is if $f\left(\lim \alpha_{\lambda}\right)=\lim f\left(\alpha_{\lambda}\right), \lambda$ here indicating a sequence with ordinal number of the second kind, i.e., without immediate predecessor, while $\left(\lambda_{1}<\lambda_{2}\right) \rightarrow\left(\alpha_{\lambda_{1}}<\right.$ $\alpha_{\lambda_{2}}$ ).

The function is called normal, if it is strictly increasing and continuous; $\xi$ is called a critical number for $f$, if $f(\xi)=\xi$.

Theorem 17. Every normal function possesses critical numbers and indeed such numbers $>$ any $\alpha$.
Proof: Let $\alpha$ be chosen arbitrarily and let us consider the sequence $\alpha$, $\mathrm{f}(\alpha), \mathrm{f}^{2}(\alpha), \ldots$ Then if $\alpha_{\omega}=\lim _{\mathrm{n}<\omega} \mathrm{f}^{\mathrm{n}}(\alpha)$, we have $\mathrm{f}\left(\alpha_{\omega}\right)=\mathrm{f}\left(\lim \left(\mathrm{f}^{\mathrm{n}}(\alpha)\right)=\lim \right.$ $f^{\mathrm{n}+1}(\alpha)=\alpha_{\omega}$, that is, $\alpha_{\omega}{ }^{\mathrm{IS}}$ a critical number for f .
Examples.

1) The function $1+x$ is normal. Critical numbers are all $x=\omega+\alpha, \alpha$ arbitrary.
2) The function $2 x$ is normal. Critical numbers are all of the form $\omega \alpha$, $\alpha$ arbitrary.
3) The function $\omega^{\mathbf{x}}$ is normal. Critical numbers of this function are called $\varepsilon$-numbers. The least of them is the limit of the sequence $\left.\omega, \omega^{\omega}, \omega^{(\omega}{ }^{\omega}\right), \ldots$.
I will mention the quite trivial fact that every increasing function $f$ is such that $\mathrm{f}(\mathrm{x}) \geqq \mathrm{x}$ for every x .

Theorem 18. Let $g(x) \geqq x$ for all $x$ and $\alpha$ be an arbitrary ordinal; then there is a unique semi-normal function $f$ such that

$$
\mathrm{f}(0)=\alpha, \mathrm{f}(\mathrm{x}+1)=\mathrm{g}(\mathrm{f}(\mathrm{x}))
$$

Proof clear by transfinite induction.
Theorem 19. Iff is a semi-normal function and $\beta$ is an ordinal which is not a value of $f$, while $f$ possesses values $<\beta$ and values $>\beta$, then there is among the $x$ such that $f(x)<\beta$ a maximal one $x_{0}$ such that $f\left(x_{0}\right)<\beta<f\left(x_{0}+1\right)$.

Proof trivial, because if $f\left(x_{\lambda}\right)<\beta$ for all $\lambda$ in a sequence without last element, then

$$
\mathbf{f}\left(\lim \mathbf{x}_{\lambda}\right)=\lim \mathrm{f}\left(\mathbf{x}_{\lambda}\right) \leqq \beta,
$$

but the equality sign is excluded.
Let A be a set of ordinal numbers without maximal element. A subset $B$ is said to be closed in $A$, if every limit of a sequence in $B$ is $\epsilon B$, if it is $\epsilon \mathrm{A}$. If B is closed in A and cofinal with A it is called a band of A .

Remark. Every band consists of the values of a normal function, and the inverse is true, if the set of the arguments is cofinal with A.

Theorem 20. If $M$ and $N$ are bands of $A$, so is $M \cup N$.
Proof. Of course MUN is cofinal with A. An arbitrary sequence $S$ in M U N without last element is either such that from a certain point on all elements belong to $M$ say, then the limit is in M ; or there are always greater elements both in M and in N , and then there is a common limit in M and N .

Theorem 21. If $M$ and $N$ are bands of $A$ and $A$ is as already indicated without last element, but not cofinal with $\omega$, then $M \cap N$ is a band of $A$.

Proof. We assume that after a certain $\alpha_{0} \in M$ there are no common elements in $M$ and $N$. Then we have an increasing sequence thus:
$\alpha_{2} n_{1+}$ is the first element of $N$ which is $>\alpha_{2 n}$
$\alpha_{2 \mathrm{n}+2} \ldots . . . . . . . . . . \mathrm{M}^{2}$ which is $>\alpha_{2 \mathrm{n}+1}$.
Then $\lim _{n<\omega} \alpha_{\mathrm{n}}$ is $\epsilon \mathrm{A}$ and therefore $\epsilon \mathrm{M}$ and $\epsilon \mathrm{N}$ which is contrary to the $\mathrm{n}<\omega$
assumption.
Theorem 22. Let $f\left(\alpha, \beta^{\prime}\right)$ be normal with respect to $\beta$. Then it is not an always increasing function with respect to $\alpha$.
Proof. If $\alpha_{1}<\alpha_{2}$, then the normal functions $f\left(\alpha_{1}, \beta\right)$ and $f\left(\alpha_{2}, \beta\right)$ of $\beta$ have a common critical value $\xi$ according to the last theorem so that $f\left(\alpha_{1}, \xi\right)=$ $f\left(\alpha_{2}, \xi\right)=\xi$.

Let us however, following E. Jacobsthal, consider the functions having the following two properties:

1) $f(\alpha, \beta)$ is for constant $\alpha$ a normal function of $\beta$
2) $\mathrm{f}(\alpha, \beta)$ is for constant $\beta$ a monotonic function of $\alpha$ with $\mathrm{f}(\alpha, \beta)>\alpha$. Further let us call $f_{1}$ a generating function for $f$ when

$$
f(\alpha, \beta+1)=f_{1}(f(\alpha, \beta), \alpha) .
$$

This equation together with $f(\alpha, 0)$ defines $f$ when $f$ is continuous.
Theorem 23. If $f_{1}$ has for $\alpha>1, \beta>1$ the property 2) and is monotonic in $\beta$, while $f$ is continuous and $f(\alpha, 1)$ increasing in $\alpha$, then $f$ satisfies 1 ) and 2).
Proof. When $\alpha>1$, one has $f(\alpha, 1)>1$, namely $f(\alpha, 1) \geqq \alpha>1$. If, for $\alpha>1$ and $\beta \geqq 1, \mathrm{f}(\alpha, \beta)$ is monotonic in $\alpha$ and $\mathrm{f}(\alpha, \beta)>1$, then because of the
definition of $\mathbf{f}$ above $\mathbf{f}(\alpha, \beta+1)$ is monotonic in $\alpha$ and $\mathbf{f}(\alpha, \beta+1)=\mathbf{f}_{1}(\mathbf{f}(\alpha, \beta)$, $\alpha)>\mathrm{f}(\alpha, \beta)$ (see 2)). If $\lambda$ is a limit number, and if, for $\alpha>1$ and $1<\beta<\lambda$, $\mathrm{f}(\alpha, \beta)$ monotonic in $\alpha$, then $\mathrm{f}(\alpha, \lambda)$ is monotonic in $\alpha$. Thus for $\alpha>1$ and $\beta>1$ we have that $\mathrm{f}(\alpha, \beta)$ is monotonic in $\alpha$ and a normal function in $\beta$. Further, for $\alpha>1$ we have, because of $f(\alpha, 1)>\alpha$, also $f(\alpha, \beta)>\alpha$ for $\beta>1$.

Now, if one starts with $\phi_{0}(\alpha, \beta)=\alpha+1$ and defines $\phi_{r+1}(\alpha, \beta)$ by using $\phi_{r}$ as generating function for $r=0,1,2$ putting $\phi_{1}(\alpha, 0)=\alpha, \phi_{2}(\alpha, 0)=0$, $\phi_{3}(\alpha, 0)=1$, then we obtain

$$
\phi_{1}(\alpha, \beta)=\alpha+\beta, \quad \phi_{2}(\alpha, \beta)=\alpha \cdot \beta, \quad \phi_{3}(\alpha, \beta)=\alpha \beta .
$$

An immediate result is that these functions have the properties 1) and 2).
Definitions: 1) Let us say that $f$ with generating function $f_{1}$ satisfies a generalized distributive law when a function $f_{2}$ exists such that
(1) $\quad f_{1}(f(\alpha, \beta), f(\alpha, \gamma))=f\left(\alpha, f_{2}(\beta, \gamma)\right)$.

If $f_{2}=f_{1}$, we say that $f$ satisfies the special distributive law.
2) We may say that f fulfills a generalized associative law, if a function $f_{3}$ exists such that

$$
\text { (2) } \quad \mathbf{f}(\mathbf{f}(\alpha, \beta), \gamma)=\mathbf{f}\left(\alpha, \mathbf{f}_{3}(\beta, \gamma)\right)
$$

If $f_{3}=f$, $f$ satisfies the special associative law.
Theorem 24. If $f$ satisfies the general associative law, then $f_{3}$ satisfies the special associative law.
Proof. If in the formula (2) we put $\alpha=f\left(\xi, \alpha^{\prime}\right), \beta=\beta^{\prime}, \gamma=\gamma^{\prime}$, the formula (2) yields

$$
\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\xi, \alpha^{\prime}\right), \beta^{\prime}\right), \gamma^{\prime}\right)=\mathrm{f}\left(\mathrm{f}\left(\xi, \alpha^{\prime}\right), \mathrm{f}_{3}\left(\beta^{\prime}, \gamma^{\prime}\right)\right)
$$

and by application of (2) twice on the left and once on the right side we get
$f\left(f\left(\xi, f_{3}\left(\alpha^{\prime}, \beta^{\prime}\right)\right), \gamma^{\prime}\right)=f\left(\xi, f_{3}\left(f_{3}\left(\alpha^{\prime}, \beta^{\prime}\right), \gamma^{\prime}\right)\right)=f\left(\xi, f_{3}\left(\alpha^{\prime}, f_{3}\left(\alpha^{\prime}, \gamma^{\prime}\right)\right)\right)$.
whence because $\mathbf{f}(\xi, \beta)$ is increasing in $\beta$.

$$
f_{3}\left(f_{3}\left(\alpha^{\prime}, \beta^{\prime}\right), \gamma^{\prime}\right)=f_{3}\left(\alpha^{\prime}, f_{3}\left(\beta^{\prime}, \gamma^{\prime}\right)\right)
$$

and that is the special associative law for $f_{3}$.
Theorem 25. If $f$, being generated by $f_{1}$, satisfies both laws (1) and (2), then $f$, is generating function of $f_{3}$ and $f_{3}$ satisfies the special distributive law.
Proof. We have
$\mathbf{f}(\mathbf{f}(\alpha, \beta), \gamma+1)=\mathbf{f}_{1}(\mathbf{f}(\mathbf{f}(\alpha, \beta), \gamma), \mathbf{f}(\alpha, \beta))=\mathrm{f}_{1}\left(\mathrm{f}\left(\alpha, \mathrm{f}_{3}(\beta, \gamma)\right)\right.$, if $\left.(\alpha, \beta)\right)=\mathrm{f}\left(\alpha, \mathrm{f}_{2}\left(\mathrm{f}_{3}(\beta, \gamma), \beta\right)\right)$
and

$$
\mathbf{f}(\mathbf{f}(\alpha, \beta), \gamma+1)=\mathbf{f}\left(\alpha, \mathbf{f}_{3}(\beta, \gamma+1)\right),
$$

whence

$$
f_{3}(\beta, \gamma+1)=f_{2}\left(f_{3}(\beta, \gamma), \beta\right),
$$

that is $f_{2}$ is generating function for $f_{3}$. Further, by (1)

$$
\mathbf{f}\left(\xi, \mathbf{f}_{2}\left(\mathbf{f}_{3}(\alpha, \beta), \quad \mathbf{f}_{3}(\alpha, \gamma)\right)\right)=\mathbf{f}_{1}\left(\mathbf{f}\left(\xi, \mathbf{f}_{\mathbf{3}}(\alpha, \beta)\right), \quad \mathbf{f}\left(\xi, \mathbf{f}_{3}(\alpha, \gamma)\right)\right)
$$

which by (2),(1),(2) successively yields

$$
f_{1}(f(f(\xi, \alpha), \beta), f(f(\xi, \alpha), \gamma)), f\left(f(\xi, \alpha), f_{2}(\beta, \gamma)\right), f\left(\xi, f_{3}\left(\alpha, f_{2}(\beta, \gamma)\right)\right) .
$$

By comparison of the first and last expressions containing $\xi$ one obtains

$$
f_{2}\left(f_{3}(\alpha, \beta), f_{3}(\alpha, \gamma)\right)=f_{3}\left(\alpha, f_{2}(\beta, \gamma)\right),
$$

that is, $f_{3}$ satisfies the special distributive law.
Theorem 26. If $f$ is defined by $f_{1}, f(\alpha, 0)=0$ or $1, f$ satisfying the generalized distributive law, and if $f_{3}$ is defined as a continuous function with $f_{2}$ as generating function, by

$$
\begin{aligned}
& f_{3}(\alpha, o)=0 \\
& f_{3}(\alpha, \beta+1)=f_{2}\left(f_{3}(\alpha, \beta), \alpha\right),
\end{aligned}
$$

then $f$ satisfies the associative law (2).
Proof. This law (2) is valid for $\gamma=0$, because $\mathrm{f}(\mathrm{f}(\alpha, \beta), \mathrm{o})=0$ or 1 and $\mathbf{f}\left(\alpha, \mathbf{f}_{3}(\beta, 0)\right)=\mathbf{f}(\alpha, 0)=0$ or 1 . If the law is valid for $\gamma$, then it is valid for $\gamma+1$, because

$$
\mathbf{f}(\mathbf{f}(\alpha, \beta), \gamma+1)=\mathbf{f}_{1}(\mathbf{f}(\mathbf{f}(\alpha, \beta), \gamma), \mathbf{f}(\alpha, \beta))
$$

because of the supposition of induction $=f_{1}\left(f\left(\alpha, f_{3}(\alpha, \gamma)\right), f(\alpha, \beta)\right)=f\left(\alpha, f_{2}\left(f_{3}(\beta, \gamma)\right.\right.$, $\beta))=\mathbf{f}\left(\alpha, f_{3}(\beta, \gamma+1)\right)$. If the law is valid for all $\gamma<\gamma_{0}, \gamma_{0}$ a limit number, then it is true for $\gamma_{0}$, because

$$
\mathbf{f}\left(\mathrm{f}(\alpha, \beta), \gamma_{0}\right)=\lim _{\gamma<\gamma_{0}} \mathbf{f}(\mathrm{f}(\alpha, \beta), \gamma)=\lim _{\gamma<\gamma_{0}} \mathbf{f}\left(\alpha, \mathrm{f}_{3}(\beta, \gamma)\right)=\mathbf{f}\left(\alpha, \mathrm{f}_{3}\left(\beta, \gamma_{0}\right)\right) .
$$

Theorem 27. Let $f$ be defined by $f_{1}, f(\alpha, o)=0, f_{1}(\alpha, o)=\alpha$ or $f(\alpha, o)=1$, $f_{1}(\alpha, 1)=\alpha$, while the special associative law is valid for $f_{1}$, and $f_{1}$ is continuous in $\beta$; then $f$ satisfies the distributive law (1) with $f_{2}(\alpha, \beta)=$ $\alpha+\beta$.
Proof. The formula (1) is valid for $\gamma=0$, because $\mathrm{f}_{1}(\mathrm{f}(\alpha, \beta), \mathrm{f}(\alpha, \mathrm{o}))=$ $\mathrm{f}(\alpha, \beta)$. Let us assume its truth for $\gamma$. Then we have

$$
\mathrm{f}_{1}(\mathrm{f}(\alpha, \beta), \quad \mathrm{f}(\alpha, \gamma+1))=\mathrm{f}_{1}\left(\mathrm{f}(\alpha, \beta), \quad \mathrm{f}_{1}(\mathrm{f}(\alpha, \gamma), \alpha)\right),
$$

and since the special associative law is valid for $f$ this becomes

$$
\mathbf{f}_{1}\left(\mathbf{f}_{1}(\mathrm{f}(\alpha, \beta), \mathrm{f}(\alpha, \gamma)), \alpha\right)=\mathbf{f}_{1}(\mathbf{f}(\alpha, \beta+\gamma, \alpha)=\mathbf{f}(\alpha, \beta+\gamma+1) .
$$

If formula (1) with $\mathrm{f}_{2}(\alpha, \beta)=\alpha+\beta$ is valid for all $\gamma<\gamma_{0}, \gamma_{0}$ a limit number, then it is valid for $\gamma_{0}$, because

$$
\mathbf{f}_{1}\left(\mathrm{f}(\alpha, \beta), \mathrm{f}\left(\alpha, \gamma_{0}\right)\right)=\lim _{\gamma<\gamma_{0}} \mathrm{f}_{1}(\mathrm{f}(\alpha, \beta), \mathrm{f}(\alpha, \gamma))=\lim _{\gamma<\gamma_{0}} \mathrm{f}(\alpha, \beta+\gamma)=\mathrm{f}\left(\alpha, \beta+\gamma_{0}\right) .
$$

Applying the last two theorems to the three elementary arithmetical operations, $\phi_{1}(\alpha, \beta)=\alpha+\beta, \phi_{2}(\alpha, \beta)=\alpha \beta, \phi_{3}(\alpha, \beta)=\alpha^{\beta}$, it is seen that the associative and distributive laws of these are all derivable from the special associative law of addition

$$
(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
$$

Indeed, if we put $f_{1}=\phi_{1}, f=\phi_{2}$ in Theorem 27 we get

$$
\alpha \beta+\alpha \gamma=\alpha(\beta+\gamma)
$$

and putting $\mathrm{f}_{1}=\phi_{1}, \mathrm{f}_{2}=\phi_{1}, \mathrm{f}=\boldsymbol{\phi}_{2}, \mathrm{f}_{3}=\boldsymbol{\phi}_{2}$, Theorem 26 yields

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

Further, if we put $f_{1}=\phi_{2}, f=\phi_{3}$, Theorem 27 yields

$$
\alpha^{\beta \cdot} \cdot \alpha^{\gamma}=\alpha^{\beta+\gamma}
$$

while putting $f_{1}=\phi_{2}, f_{2}=\phi_{1}, f=\phi_{3}, f_{3}=\phi_{2}$ one obtains, according to Theorem 26,

$$
\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \gamma} .
$$

## 7. On the exponentiation of alephs

We have seen that an aleph is unchanged by elevation to a power with finite exponent. I shall add some remarks concerning the case of a transfinite exponent.

Since $2^{\aleph_{0}}>\aleph_{0}$, we have $\left(2^{\aleph_{0}}\right)^{\aleph_{0}} \geqq \aleph_{0} N_{0}$, but $\left(2^{N_{0}}\right)^{N_{0}}=2^{N_{0} N_{0}}=2^{\aleph_{0}}$. On the other hand $2^{\aleph_{0}} \leqq N_{0}{ }^{N_{0}}$. Hence

$$
2^{N_{0}}=\kappa_{0}{ }^{N_{0}} .
$$

Of course we then have for arbitrary finite $n$

$$
2^{\aleph_{0}}=n^{\aleph_{0}}=\aleph_{0}{ }^{\aleph_{0}},
$$

and not only that. Let namely $\aleph_{0}<\mathfrak{m} \leqq 2^{\aleph_{0}}$. Then

$$
2^{\aleph_{0}}={\aleph_{0}{ }^{\aleph_{0}} \leqq \mathfrak{m}^{\aleph_{0}} \leqq 2^{\aleph_{0}}, ~}_{\text {, }}
$$

whence

$$
\mathfrak{m}^{N_{0}}=2^{\aleph_{0}},
$$

In a similar way we obtain for an arbitrary $\aleph_{\alpha}$

$$
2^{\aleph} \alpha=\mathfrak{m}^{\aleph \alpha} \alpha
$$

for all $m>1$ and $\leqq 2^{*} \alpha$.
From our axioms, in particular the axiom of choice, we have derived that every cardinal is an aleph. Therefore $2^{N} \alpha$ is an aleph. We can also prove by the axiom of choice that $2^{\aleph}{ }^{\alpha}>\aleph_{\alpha+1}$ or perhaps $=\aleph_{\alpha_{+1}}$. One has never succeeded in proving one of these two alternatives and according to a result of Gödel such a decision is impossible. However, in many applications of set theory it has been convenient to introduce the so-called generalized continuum hypothesis or aleph hypothesis, namely

