
Chapter IV

NEGATION

The negation connective was postponed in the above discus-
sion because of difficulties in its definition. There is no
single definition for the negation of even an elementary propo-
sition; we shall find that we have to introduce different con-
cepts having partially the nature of negation. On the other
hand the formal complexities are rather less than those in Chap-
ter III. In fact we shall revert to the simpler formulations of
Chapter II, since variables can be adjoined to any of our epl-
systems by the methods of Chapter III.1

The plan of this chapter is similar to that of the previous
ones. We start by giving an intuitive discussion, then formal-
ize it, and then derive theorems about the resulting episystems.
The situation is complicated by the various different ways of
defining negation.

1. P r e l i m i n a r y A n a l y s i s . We consider first various defini-
tions for the negation of an elementary proposition.

Since the criterion for the truth of an elementary proposi-
tion Is the existence of a proof, the most direct meaning for
falsity would be the non-existence of a proof. This notion of
negation will be called invalidity. To establish it construc-
tively for a single elementary proposition A, it is necessary to
find some definite property which can be proved by recursion to
hold for every elementary theorem, and then to show that A does
not have the property.2 In a decidable system every elementary
proposition is either true or invalid. A system is consistent,
in the ordinary sense, if a single elementary proposition can be
shown to be invalid. Thus in many systems, like abstract set
theory, we are unable to establish Invalidity in a single case.

One fatal objection to taking invalidity as a connective,
parallel to the others considered so far, is that the notion is
not extensible. I.e., if A is invalid in a system 6, it may be-
come valid when 6 is extended. In this respect it is totally
unlike the connectives P,A.,V,n, and 2. It is therefore necessa-
ry to consider other notions of a negative nature.

One such notion is that of implying every proposition. This
notion will be called absurdity.3 An absurd proposition, then,

1. This has not "been carried through in detail for the systems considered
"below. But it is not anticipated that there vill be any difficulty about it.

2. Cf. the proofs of invalidity in II §6.
3. This word is used "by the intuitionlsts for negation. Since this form
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is one such that A D B is true for every proposition B - it
would be sufficient to say for every elementary proposition in
G*. Since a system in which every elementary proposition is
true is trivial, an absurd proposition is intuitively unaccepta-
ble. Thus absurdity has the nature of a negation. A system ,6
in which every elementary proposition is either true or absurd
ls complete in the standard sense. If an elementary proposition
is both true and absurd, then every proposition is absurd; in
that case the system is ordinarily called inconsistent, but is
perhaps better called inconsistent in the sense of absurdity,
or simply absurd.

Carnap4 has made an interesting suggestion which leads to
another form of negation. We shall adopt his name for this con-
cept: refutability. Suppose the primitive frame for ,6 specifies
not only rules for true elementary propositions, but also false,
i.e., refutable ones. This definition will take the following
form: a certain definite class g of propositions will be de-
clared directly refutable, just as the axioms are directly true;
then every proposition which implies a directly refutable prop-
osition will be said to be refutable. If every elementary prop-
osition is either true or refutable the system is complete in
the sense of refutability; if some proposition is both true and
refutable it is inconsistent in the sense of refutability, or
simply refutable. (In that case it will turn out that every
proposition is refutable.)

The notion of invalidity can be resurrected as a criterion
for negation if it be regarded, not as a definition of negation,
but as a sufficient condition for it. Thus if we have a con-
structive decision process which sometimes gives an answer, we
can say a proposition is false if the process gives a negative
answer for validity in the basic system (or some other fixed
system). The proposition can then be regarded as false in any
extension. Such a definition leads to a form of refutability
in which the propositions false by the criterion are directly
refutable. We shall not adopt a special name for this kind of
negation, since "refutability" covers it. The name "invalidity"
we shall reserve for the non-extensibl6 kind of negation con-
sidered at the beginning.

These definitions can easily be extended so as to apply to
compound propositions. In such a case absurdity can be included
in refutability, provided we can formulate a single absurd prop-
osition which we take as directly refutable. (In some cases we
may even be able to find an elementary proposition for this pur-
pose; see the example below.)

form of negation leads to an Intuitlonistic calculus, it Is appropriate to
use their word for It. Carnap [6] prefers "comprehensiveness," "but this does
not Indicate that the notion is a kind of negation, and entails inconsistency
in the usual sense.

k. [6] p. 163.
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None of these kinds of negation will have all the properties
of classical negation. The latter we shall call classical falsi-
ty. It has two peculiarities: first, that every proposition is
either true or false, and second, that every false proposition is
absurd.5 Evidently a formal refutability will have these prop-
erties only under rather special circumstances. But of course
classical falsity is important from the point of view of ordi-
nary discourse. (Cf. §8.)

2. An Example from Number Theory. Before going further we
shall consider a rudimentary arithmetic system which, although
trivial in itself, yet illustrates some of these notions. The
primitive frame for this system is as follows:

Primitive terms - a single one : 0.

Primitive operations - a unary one: ( ) .

Primitive predicates - a binary one: ( i) = ( 2).

Axiom; 0=0.

Rule 1. If r = s, then r1 = s1.
In dealing with this system we shall use the ordinary nota-

tion of arithmetic, including the symbol for addition, although
it is not defined in the system.

The system is decldable. Its elementary theorems consist of
the equations r = s where r and s are the same number. Any
equation In which r and s are different terms Is invalid. No
elementary proposition is absurd, but the following compound
propositions are:

(x)(y) . x = y.

(x) : x = 0 . A . 0 = x.

If now we add the specification that 3 = 5 and 1=7 are di-
rectly refutable, then the following are refutable:

0 = 2, 1 = 3, 2 = 4, 3 = 5, 0 = 6, 1 = 7.

All other equations r = s with unequal r and s are invalid, but
neither refutable nor absurd.

Suppose now we adjoin the following rules one after the
other:

Rule 2. If r = s, then s = r.

Rule 3. If r = s and s = t, then r = t.

5. For this reason classical falsehood will sometimes be referred to as
complete absurdity.
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Rule 4. If r1 = s!, then r = s.

Rule 5. If 0 as r!, then 0 = r.

Then after each rule is adjoined the following become refutable
or absurd:

After Rule 2: 2 = 0, 3 = 1, 4 = 2, 5 = 3, 6 = 0, 7 = 1 are
refutable.

After Rule 3: 0 = 1, 1 = 2, 2 = 3* 3 = 4* and converses, also
0 = 3, 1=4, and converses, are refutable; 0=1, 1=0 are
absurd.

After Rule 4 : r = r » , r f = r are absurd (all r); r = r", rl! = r,
r = r111, rll! = r, r = r + 6, r + 6 = r are refutable (all r).

After Rule 5 all invalid propositions become absurd. The system
is complete in the sense of absurdity, and decldable. Refuta-
bility has now the properties of classical falsity (at least so
far as elementary propositions are concerned).

3. F o r m u l a t i o n of the Rules. According to the preliminary
discussion there are three main kinds of negation for which we
formulate systems as follows:6

LM Minimal system - for refutablllty in general.

LJ Intuitionist system - for absurdity in general.

LK Classical system - for classical falsity or complete ab-
surdity .

In addition there is a fourth system, which we shall call the
system LD, which bears somewhat the same relation to LK that LM
does to LJ; that is the specialization of refutability for com-
plete systems. This system - although its algebra was mentioned
by Johansson - has been very little studied. When quantifiers
are adjoined, by the method of Chapter III, the resulting sys-
tems will be called LM*, LJ*, LK*, and LD* respectively.

We shall begin by formulating the notation and morphology,
which Is common to all the systems, then proceed to the theo-
retical rules. It will be necessary to precede the latter with
some further discussion, because the argument in §1 did not go
far enough to determine the rules completely. The formal the-
oretical rules will be stated at the end.

NOTATION. The negation of A will be denoted7

-rA.

6. The minimal calculus "was first considered by Johansson In [52]; for the
Heytlng system see the references In the Introduction. The atTarevlations
"LJ" and "IK" were used T)y Gentzen [35]; "IM" fcy Johansson.

7. The symbol "—r " was introduced "by Heyting [kk]. It was also used "by
Gentzen.
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The letter "g" will denote the class of directly refutable prop-
ositions. This is a definite class supposed to have been speci-
fied in advance . The symbols "Pi, ""Pa," "Pi,"1 ,̂". . .will henceforth
designate elements of 8- The letter "F", however, will have a
special meaning in§5-

MORPHOLOGICAL RULES. If quantifiers are not involved we
need simply the rule

(a) If Ae$, then-7As$,

while if quantifiers are present we add to the rules of Chapter
III §3 the following:

(a*) If Aeip(u), then -7 A e#(u).

(b) The variables which occur in —7 A are the same as those
which occur in A.

(c) The variables bound in —7 A are the same as those bound
in A.

(d) (Sb •)-* As -7 (Sb U)A.

We turn now to the theoretical rules. We shall consider the
rules for LM first.

The following rules agree with the preliminary discussion
of §1.

(1) X t A x,A |h PI
X,-7A I)- Pi X II- -7 A

The right-hand rule clearly agrees with our intentions when F^
is any element of g. The left-hand rule, taken intuitively,
state's that a system which contains both A and—7 A entails PI;
this will agree with our intentions if F^ is some element of g,
but not necessarily any element.

Now suppose we express the fact that X entails some proposi-
tion of g by an elementary statement of the form

(2) X t

where the right prosequence is void.8 Then the rules (1) take
the form

(3) S II- A s,A ||-
X,-7 A II- X I- -7 A

We need also, in order to express the full force of the right
half-of (1),

(4) X II- PI

X Ih

8. Note that none of the previous rules Introduces an elementary state-
'ment of this form.
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Let us call a prosequence satisfying (2) a refutable prose-
quence. Then, if refutability is specialized to absurdity, a
refutable prosequence should entail every proposition. This
leads to the rule

(5)

This rule is a special case of Kr; it will be called hencefort.
Kj. It is adopted as a primitive rule for LJ.

In accordance with the formal analogy we have been follow-
ing in the previous chapters we form rules for LK by adjoining
an arbitrary prosequence g to premise and conclusion. The
meaning of the system LK is to be found later.

Our fourth system, LD, is that obtained by adjoining to LM
a law of excluded middle. This can be expressed by the rule NX
below. That is a rule of quite different character from the
others, in that it allows the elimination of a constituent —r A
which is of higher order than the A which is left.9 However, I
have not been able to find a better formulation for LD. It will
be found that many of our theorems still hold for LD.

After these preliminaries, the statement of the rules is as
follows:

RULES FOR NEGATION

The prosequence 3 is void in LM, LJ, LD; arbitrary in LK. In
case variables are present, the same appropriate range is added
to all premises and conclusions.

N Negation

M. *lh A,3 MY1 *,A |h 3

Ss V for ̂  only-X |r A

K Weakening

for LJ only.
X||- A

P Direct refutability ' Pr

I-S
In the rule NX the indicated A on the right of the conclusion
is the principal constituent, while the indicated A and— 7 A in
the premise are component constituents.

9. In other words one of the components is of higher order than the prin-
cipal constituent.
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4. Fundamental Theorems. We now inquire what changes are
necessary in order to extend the theorems of II §§ 5-7 to the
case where negation is present.

Theorems II 2, II 3, II 4* and II 5 carry over without es-
sential change. Likewise the first two stages of the proof of
the elimination theorem go through without change. Except for
LD, where the rule NX requires special treatment, the proof of
the elimination theorem reduces to the consideration of the fol-
lowing additional case under Stage 3:

Case N. A s — 7 B. Then the hypotheses of the theorem are

X, -7 B |r Si X I- -7B,32.

These hypotheses arise by Ni and Nr respectively from the prem-
ises

3E I- B,3i X,B II- 82.

Prom these, by the hypothesis of the induction, we have

X I- 81,82,

which is the conclusion of the theorem.10

To take care of NX in LD it seems best to modify the proof
of Stage 2. Let the hypothesis of the stage be that the elimina
tion theorem Is valid In the case where the second hypothesis of
the theorem comes directly from a rule Or, but not from NX. Let
rk be

II- »ic,»k,

where ttk, 8^, and 8k are defined as follows:

a) ttn and 8n are void, Sn Is the single Instance of A.

b) Let Tfc be used in A as premise for deriving Tm by a rule
Rjn, and let Em,3Bm,8m be already defined. Then ttfc,»k,»k shall
contain those and only those constituents assigned to them by
the following specifications:

bl) Every parametric constituent of ttm or Cm is in tt^ or
Bk respectively;

b2) If Rm is W4 and the principal constituent is In ttm,
then the two like components are In nk;

b3) If Rmls W and the principal constituent is in ttm,
then the component is in S^. (Note am and 8m are void.)

b4) If RJH is NX for which 8m Is principal constituent,
then Sm s ak and the component on the left (which is— r A) is in
ttk.

This* defines Ufc, 8k for all k. Then x^ and 8t are the rest
necessary to make up r £. It will be seen that %% is either void

10. Of. Remark after statement of Theorem II 11.
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or consists of a single A, the constituents of tt.^ are all like
—7 A, and 8k Is void unless SB^ is void. As before we can sup-
pose without loss of generality that

Define rk as the statement obtained from 1^ by replacing
every constituent of SB k by Y and every constituent of ttk by — 7 Y
Then the inductive proof that every rk' is derivable proceeds as
follows :

(a) Suppose rk Is prime, then there are the following sub-
cases:

(cti) Some Ufc is an axiom. This is impossible since A is com-
pound.

(a 2) Some 8k is an axiom. Then T£ is also prime.

(a 3) Some 8k is in Xk. Then T£ is also prime.

(a 4) Some 8k is in 3Ck. Then by weakening of the first hy-
pothesis

xk, A it- y.
(w-e) sk Ih Y.

whence r^1 follows by weakening.

(as) Some SB k is intt^. This is Impossible since the constit-
uents of ttjj. and SB £ are not alike.

(ae) Some 8k Is InH^. In this case r£ is obtained by weak-
ening from

3̂ -7 y | -7 A.

The last is obtained thus:

Xk,A [I- Y
N4

Nr
Xk,-7 Y||- -7 A.

where the first statement is obtained as in (ct*).

(p) Let rk be derived from r£, (and Tj) by Rk. Then there
are the following subcases:

(pi) If the constituents of ttjc, SBk are all parametric, then
rk can be obtained from ri(rj) by Rk.

(Pa) If Tjc Is obtained from TI by W4, N4, or NX, then T£ can
be obtained from r [ by the same rule .

(p3) If SBk is principal constituent of Rfc and R^ Is Or,
then we can apply the hypothesis of the stage in connection
with a weakened first hypothesis as before.
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This completes the proof of the elimination theorem.
We note in passing that we can, without loss of generality,

restrict NX to the case where A is not of the form—* B. This
does not disturb the elimination theorem, and from that theorem
we can reestablish the general NX by the following argument.11

X, — » — 7 B Ih —i B / S,B, -7 B

Nr
3E |—7 B

We now consider the theorems of II §6.
Theorem II 7 runs into the difficulty that NX and Fr allow

constituents to be eliminated. But we have seen that we can,
without loss of generality, restrict NX so that the number of
possibilities is still finite. As for Fr we shall take it as
part of the definition of 0 that %($)) is void. Then Theorem
II 7 is valid in all the systems without quantifiers.

In Theorem II 8 we have to note that II (10) may now come
from NX, Kj, or Fr. The rule NX can arise only in LD, in which
case the proof of Theorem II 8 fails.12 The case Fr cannot give
rise to a conclusion of form 11(10) in LM, LJ, or LD (because the
3 is void there), while Kj can occur only in LJ. Thus in LM
the proof in II is valid. As for KJ in LJ the premise would
have to have both prosequences void; such a statement can come
only from Fr in case some FI is derivable; in that case the sys-
tem is absurd and Theorem II 8 fails (unless the system was al-
ready absurd without using negation). If the system is not ab-
surd, Theorem II 8 is true. In LK the system is again absurd if
some PI is derivable. If not I shall consider only the case
where all Fj are elementary. Then the premise of Fr is of the
same form as II (10) and the same induction as before shows that
Theorem II 8 is valid.

Theorem II 9 is valid in LM. In LJ II 9 is obvious if the
System is absurd; otherwise the proof in II is valid. In LD and
LK, of course, II 9 is not true (Theorem 2 (p) below).

Theorem II 10 is disturbed by the fact that Fr and NX can
eliminate constituents. On account of NX, we cannot assert The-
orem II 10 for LD.13 In the other cases Theorem II 10 is valid
if the FI are all elementary, or, at most, contain implication
only.

Summing up this discussion, we have:

11. This shows that the case of NX where A is —7 B is valid In IM.
12. But for LD analogues of Theorems Ik and 15 (below) can "be proved

for arbitrary S; from these Theorem II 8 follows.
13. See, howeYer, Theorems 14 and 15 "below.
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THEOREM 1. When negation is introduced the theorems II 2,
II 3j II 4, II 5j II 7s and the elimination theorem are valid in
all four systems; Theorem II 8 is valid in LM, in LJ if not ab-
surd, and in LK if not absurd and all Fj are elementary**; The-
orem II 9 is valid in LM and LJj Theorem II 10 is valid in LM,
LJ,LK if all FI are elementary, or contain implication only.

Finally, in analogy with Theorem II 6 we have:

THEOREM 2. The following are valid in LM;

(a) If X ||- , then X I -7 B,

(b) A,-7 A II-,

(c) AD -7 A II- -7 A,

(d) A II- —, —i A,

(e) A ||- -7AD -7 B,

(f) A D B if- -76 0 -vA,

(g) AD -7 B ||- BD -7 A,

(h) AD B ||- AD -7 B .D -7 A,

(i) AD -7 A II- BD -7 A.

The following are valid in LJ;

(k) If X b then X I)- B,

(1) A,-r A \ B,

(m) —7 A I- A D B.

The following are valid in LD;

(n) A D B, —7 A D B \ B,

(o) —7 A D A I)- A,

(p) l - A v - r A .

The following is valid in LK;

(q) -7-7 A \ A.

5. The Natural Systems T. Let F be a primitive proposition,
which we think of as being a minimum refutable proposition - the
logical sum of g, if we like. Then we adopt as rules for TM:

[A]
A -7 A M. F

. As for LD cf. footnote 12.
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These rules were stated by Gentzen. Note that they amount to
defining negation by

(8) -7 A • A D P.

(Ne gives the inference from left to right, Nl that from right
to left.) As rules for TJ we take in addition Gentzen «s third
rule, viz.,

while for TD we take in addition to Ne, Nl

[-* A]
A

—: A

We also shall consider

Nk:

In all systems we have the rules

a. f
The proposition P introduced by these rules, cannot be used

Just like any proposition. We have to adopt the following:

RESTRICTION AS TO P. F shall not be used as supposition,
nor as component of a compound proposition. This implies in
particular that it shall not be used as premise of a rule 01.

THEOREM 3. If, for some fixed 3,15 we interpret

(9) A

respectively as

(10) X IF A, 3 X ||-35
then the rules of TM, TJ, TD, and TK are verified in the cor-
responding system L.

Proof. If P is treated like any other proposition then the
rules not Involving negation are valid by Theorems II 13, II 15,
and III 10. We have only to consider the complications due to
the possible presence of the second form of (9). But this sec-
ond form cannot be introduced by t2; and it cannot be introduced
by tl or Pk, by the restrictions on P. If it occurs in premise
or conclusion of an inferential rule of T, then that rule must
be t3> Ve or le; and by direct inspection of the proofs of these
cases it will be seen that the corresponding L-deductlon is
valid.

15. Note that this 3 is necessarily void In all the cases except K.
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The rules involving negation may be verified as follows:

Ne By hypothesis of Ne

AeS(x), —7Ae£(x).

X II- A, 3, X |[- -7 A, 3.

(N-C) X,"7A | 3, X|h-7 A, 3.

Hence by the elimination theorem

X ||- 3- q.e.d.

Ni By hypothesis of Nl

Fe£(x,A)

X, A | 3

(Nr) X |[--7 A,3 q.e.d.

N^ This follows at once by Kj.

Nd Follows at once by NX.

Nk We show

-7 -7 A II- A,

whence the conclusion follows by the elimination theorem.
The proof is simply

A II" A Nr

Fi Follows at once by Fr.

Remark. The theorem would not be true without the restric-
tions on F. For the inference

AeS(jC) F eS(x)
A A F e S(x)

is valid; but the corresponding L-inference

X l h A 3LI
XB-A A F

is not.

THEOREM 4. If we interpret

(11) X |h A x II-
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respectively as

then the rules of LM , LJ, LD are valid respectively in TM, TJ,
TD.

Proof. The positive rules were taken care of in II, III ex-
cept for the complications due to the void right side. The lat-
ter cannot occur in connection with any of the rules on the
right, since each of these rules requires the presence of a
right constituent In all premises and In the conclusion. As for
the rules on the left, all except P/t have the same right side in
all premises and conclusion, while in P<t the first premise can-
not have a void right side and the second has the same right side
as the conclusion. Further a prime statement cannot have a void
right side. Hence all inferences are valid if the void right
side is replaced by F. Then the void right side is no longer
exceptional.

This takes care of the positive rules. The negative rules
are then verified as follows:

M by Ne, thus

(Hp.) 1
A Ne

NT by Ni.

NX follows directly from Nd.

Kji follows by NJ.

Fr follows by PI.

THEOREM 5. The rule Nk is equivalent to the rules NJ and Nd
together, and implies the rule Pk of Chapter II.

Proof. Derivation of Nk:

£ 1
-7 A -7 ̂ LA Ne

r NJ
A- Nd-2

Derivation of Nj:

Derivation of Nd. ^y Theorem II 12 the rule is equivalent to

-7 A D A
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which is derived thus:

1 2
rA D A -7 A pe

Ne
Ni- 2

Derivation of Pk:
V V
3 2
1 IZA- Ne

-i-HJ
-JL Pi - 3 1
A D B A D B . DA

— Nd- 2

We may note incidentally that Nd follows from Pk on substitution
of F for B.

DEFINITION 1. The prosequence— 7 g shall be the pro-sequence
consisting of the negatives of all the members of g.

THEOREM 6. If we interpret

(12) X H)

as meaning

then all the rules of the LK system are verified in TK.

Proof. We show first that if & is non-void, say

S = A,Zi,Zaj . . . >Zn>

then (13) is equivalent to

(14) Ae tt(3E,Zi D A,Z2 D A,...,Zn D A).

In fact, by Theorem II 12, (13) and (14) are equivalent respec
tively to the rules

7Zg,..., --yZn

M2

F

X,Zi D A,Z2 D A,...,ZnD A

A

We deduce M2 from Ml by the scheme
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v

1 3
Zi 3 A Zi pe %

^ —7̂  (Similar proof for

Nl- 3
, • ..,-7Zn

The derivation of Ml from M2 is

i r
zi Zi. Ne

(Similar proof for
i = 2,3,...,n).

-^ A Ne

This established, it follows by Theorem II 17 that the posi-
tive rules are verified except for the complication that a g) may
be void. But if a void g is involved in any way, the situation
is the same as in Theorem 4.

It remains simply to verify the rules for negation. The
translations into form (13) of these rules are:

Fe S(3C."7 A,~7 Zi,...,-7 Zn)

F £ 5( X,—7 A,—7 Zi,...,—7 Zn)

Jr PeS(S,A,—7 Zi,...,-~7 Zn)

F E 5(X,-7 —7 A,-7 Zi, ...,-7 Zn)

F 6 S( X,—7 PI,—7 Zi, ...,-7 Zn)

F E S(X,-7 Zi,...,—7 Zn)

P E £(*,—7 Zi,...,-7 Zn)
Kj

FeS(3C,-7 A, -7 Zi,...,— 7 Zn)

Here N4 is obvious while Kj follows by t]5. The schemes for de-
riving the others follow:

14 2
Nr. * $ A, "7 Zi,..., 7 Zn jjpa

-^T Ni- 4 3
fl

-7 A —7 —7 A
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v
2
PI Fi

Fr -- Nl- 2 1
~""~* "~7 Pi ' —7 Zip • • • j— rZm %

F

THEOREM 7. A necessary and sufficient condition that

X Ih A X fr-

hold in any one of the systems LM, LJ, LD, LK, is that in the
corresondin T system we have resectively

Proof . The sufficiency follows by Theorem 3- The necessity
for the cases LM, LJ, LD follows by Theorem 4 ; and for LK by
Theorem 6 completed by the following argument in the left-hand
case:

Fe S(X,— 7 A).

-7 -7AES(X) by Ni.

Ae£(x) by Nk.

The following theorem shows that we can dispense with P as
primitive notion.

THEOREM 8. If we define F by

F •-? G,

where G is any theorem, then Ne, Ni and NJ follow by the rules
of TM from the schemes

(a) As -7 A (b)
-7 B

and (c) A -7 A
B

respectively,

Proof. Ne follows from (a) by taking B to be G. Then we
can derive Nl thus:

1 2
?G _ A_ pe

£- (a)



106 A THEORY OP FORMAL DEDUCIBILITY

Hence AD P . D . -7 A which gives Nl by Pe.
Next taking A to be G in (c) we have Nj.

6. The Prepositional Algebras. As in Chapter II, § 9 we de-
fine the algebras HM, HJ, HD, and HK as the algebras in which
the propositions generated are the Afs for which |- A holds in
LM(0), LJ(0), LD(Q), and LK(0) respectively.

In the first four theorems I shall state a set of prime
propositions for these algebras. In each of these cases it is
clear from what has preceded that the propositions belonging to
the schemes stated are valid in the algebra, so that the set §
of propositions generated from the prime propositions stated is
included in the algebra. It is only necessary to show that the
$(x) generated by adding X to the prime propositions obeys the
rules for S(x). In most cases this is immediate.

THEOREM 9. A set of prime propositions for the algebra HM
consists of those of HA togetherwith

(a) A D .—7 AD—7 B,

(b) AD -7 A . D .-7 A.

Proof. These rules validate the rules (a) and (b) in Theo-
rem 8.

Remark, Various simpler systems for this algebra are known.
So far as I know the first to consider the algebra as a separate
entity was Johansson [52], who used the Heyting axiom ((h) of
Theorem 2) as single prime formula-scheme. The scheme (g) of
Theorem 2 is also sufficient as single axiom scheme.18 Hilbert-
Bernays used Theorem 2(f), (d), and (p) for HK, the first two
of these generate HM. The schemes given here come directly
from Gentzen!s rules.

On the other hand the scheme (b) alone is not sufficient.
Thus consider the Boolean algebra formed on 0, 1, a, p. Let
A D B have its normal interpretation in such an algebra, and let
—7 A be non-normal, viz.,

\3
A\ 0

0

a

P
1

1

P

a

0

A D

a

1

1

a

a

B

P

1

P

1

P

1

1

1

1

1

-7 A

1

1

1

0

16. Lukasiewicz [58]; cf. Bernays [3], p. kk. Of course one applies Pr to
the schemes cited from Theorem 2.
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The interpretation for A v B and A A B are also the normal ones,
viz.,

A v B

0

a

P
1

0

0

a

P
1

a

a

a

1

1

P

P

1

P
1

1

1

1

1

1

A A B

0

a

P
1

0

0

0

0

0

a

0

a

0

a

P
0

0

P

P

1

0

a

P
1

Then A D —7 A . D —7 A always has value 1, but A D —7 —7 A has the
value 3 for A = a, while all the positive postulates always have
the value I.17 Also if A and A D B have value 1, so does B.

THEOREM 10. A set of prime propositions for the algebra HJ
consists of those for HA together with the following schemes;18

(a) AD-7 A . D -7 A.

(b) A D .-7 A D B.

Proof. These rules validate the rules (b) and (c) of Theo-
rem 8. Note that (a) of Theorem 8 is a consequence of (c) (the
present (b)).

THEOREM 11. A set of prime propositions for the algebra HP
consists of those of HM together with the scheme;18

(a) -7 A D A . D . A.

Proof, This validates the scheme Nd.

THEOREM 12. The algebra HK consists of all propositions
having the value 1 in the classical evaluation. This is the
same as all those in TK (sD). A set of prime propositions for
HK consists of those of HJ and HP together, or of those of HM
together with the scheme

-1-7 A D A .
Proof. Let $1 be the propositions of HK, £2 those having the

value 1 on the classical evaluation, £3 those in the algebra
above generated,20 and $4 those in TK(su) . Then by the same

17. This contradicts a statement "by Wajsberg [84] which he says is "based
on a letter from Scholz.

18. These schemes are given In Wajsberg [84] and credited to the Minister
school.

19. This scheme appears In [59], Satz 6.
20. On the equivalence of the two bases for£3, of. Theorem 5- For short-

er bases cf. [47] pp. 64-71, [ 59] PP. 35-37, [ 76], [ 8l] pp. iVf ff-
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argument as in the three previous theorems £3 £ $4. By Theorem
3* $4 £ (i» By the argument of II, §3, %i £ $2. The relation
$2 £ §3 Is established by reduction to conjunctive normal form.
Since this is a standard technique, it will not be given here.21

We note that the systems LM, LJ, LK have the character noted
in II Theorem 10 - viz., that a rUle relating to a connective is
not used unless the connective actually appears. Since we de-
rived all the positive rules in Chapters II and III we have:

THEOREM 13. The propositions, not involving negation which
are valid In HM and HJ are those valid in HA; those not involv-
ing negation valid in HK are the. same as those valid in HC.

This extends Theorem II 22 to include negation. The only
reservation is that we have to add Pel to the prime schemes in
order to get HC.

To get a similar result for LD we need some further theorems.
The following generalizes a well'-known result of Glivenko [37].

THEOREM 14. A necessary and, sufficient .condition that A be
derivable in HDD (HK) .is that-^ --7 A be derivable in HM(HJ).

Proof . The necessity of the condition rests upon the rule

-7 ~7 A . . -7. -7 (A3 B)
—i -7 B

derivable in TM by the following scheme:
v v
5 4
A A D B pe 5

B B

JL N 1 _ 5 2
JL- -*-> A Ne

(A DB)

Then it follows that a derivation by the rule Ph is carried over
by the correspondence A-*-?—/ A Into a deduction by the rule
(15)> which can then be converted into a deduction by Ph. To
show the deduction can be made into a derivation It is then only
necessary to show that the prime propositions in the original
system so over into derivable propositions.

21. See for example Hllbert-Ackerman [46], Bernays [3] §4. The theorem Is
due to Post [69]. The roots of the theorem go clear "back to Boole. It is a
standard theorem of Boolean algebra that if the coefficients In the "devel-
opment" of a function are all 1, then the function is Identically 1. Since
these coefficients are the values in a truth table, the theorem amounts to
showing that HK dan "be interpreted as a Boolean algehra. For other methods
of proof see Church Ilk] and Quine [70]. The latter glres further references.
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This Is evidently true for the propositions originally pres-
ent in HM(HJ) by the rule

A
-7 -7A

which follows immediately from Ne and Ni. Hence the necessity
of the condition depends on

-7 -7 (-* A D A . D A) in HM.

—7 —7 (-7 -7 A 3 A) in HJ.

These are established thus:22

v
!> v

. PI 1.
A D A . D A _ -T (-7 A DA . 3 A) Ne

-JL Ni - 3 2

"^7 A —7 A D A pe
A - - PI- 2

(-7 A 3 A) , D A Ne

- L, - , Nl- 1
-7 --7 (-7 A D A . D A )

V

A - PjL 1
— ?A DA -7 (-7~y A D A)

NJ
— Pi- 2

Ne

-7-7 (-7 -7 A D A)

We turn now to the sufficiency of the condition. If we have
||- —7 —7 B in LM, then this must come by Nr from -7 B |(-, and this
in turn by N4 either from (• B, or —7 B \ B, In the former case
B is already in HM, in the latter case —7 B D B is in HM and so
B is in HD. If—7 —7 B is in HJ, of course we pass directly to
B in HK.

THEOREM 15. If B is a proposition not involving ne^a.tion
and B is valid in HP, then B is valid in HA.

22. I found these and several other schemes easier to discover In the IM
system, but the presentation In the 3M system is more compact.
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Proof. By Theorem 14-7—? B is valid in HM. As in the
proof of Theorem 14 either ||- B or —7 B ||- B is valid in LM. In
the former case, since B does not Involve negation, it is valid
in LA by Theorem II 10 and Theorem 1. In -the latter case if we
go through the proof of —7 B ||- B backwards we can never have a
void right side, and hence the —7 B on the left cannot have been
introduced by N4. Hence the -7 B must be parametric clear back
to the beginning of the proof. The proof is then valid if it is
omitted. This reduces the second case to the first.

7. C o n c l u d i n g Remarks. 1. In the foregoing we have, in ef-
fect, started out by making semantical definitions of concepts
we use In the epithepretlc study of formal systems. The rigor-
ous following out of these initial definitions has led us to the
systems LA, LM, and LJ, and their associated T and H forms, ac-
cording to the type of negation involved. These then are the
acceptable systems from the constructive standpoint.

2. Although the main focus of our attention is on the
constructive systems, at the same time we have carried along the
systems LC, LD, and LK, assigning to them properties suggested
by an analogy with the others. It is to be determined a pos-
teriori what uses, if any, these systems may have. It has
turned out that LK represents the standpoint of classical falsi-
ty, wherein implication is no longer a relation of deducibility
but a truth function. The system LC, although not containing
negation, nevertheless contains those and only those positive
properties of implication which follow from its definition as a
truth function. The system LD, although designed to include a
law of excluded middle, nevertheless partakes of the deducibil-
ity character of the constructive systems, in that the positive
properties of implication are the same as for LA. But it is
noteworthy how little effect the idealistic assumptions inherent
in these systems have upon the major theorems.

5. In regard to the multiple prosequences which charac-
terize LK, that was undoubtedly suggested by a lack of symmetry
of the situation in LA. We could of course get along without
it; i.e., we could characterize LK by LM with NX and KJ togeth-
er * and LC by LA with the rule

3UA D B II- A
3E II-A

This would make LK seem undecldable. Although LK is decidable
by truth tables, yet Gentzen showed important consequences could
be derived from his formulation. Thus the representation by
multiple prosequences is a real contribution. It would be de-
sirable to have something similar for LD.

4. By generalizing the ideas of formal system we can
consider ordinary discourse as constituting such a system. Of
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course, it is not a definite system, and our systems L will not
be definite either. But our definitions make sense if 6 is sim-
ply a body of intuitively acceptable propositions. In ordinary
discourse, however, at least from certain points of view, we
think of having such complete knowledge that the law of exclud-
ed middle is acceptable. Therefore ID or LK is acceptable; LK
if we accept

-7A VB . D . ADB

(i.e., if we have "material implication"), LD if we do not.
Thus LD is the natural system of strict implication. It is not
sufficient, however, for applicability of LD that every elemen-
tary proposition be decldable. Thus In the example of §2, with
Rules 1-4 only, take

P s :(3x). o = x1

Then A, although demonstrably Invalid, is not refutable. This
is because refutability in the sense of the above P, is not the
same as invalidity in the original system. If we should formu-
late refutability so as to be equivalent to such invalidity, the
system LD would be applicable.


