
INTRODUCTION

The central concept in these lectures Is that of a formal
system. This Is quite a different notion from that of a postu-
late system, as naively conceived a half century ago. In the
older conception a mathematical theory consisted of a set of
postulates and their logical consequences. The trouble with
that Idea is that no one knows exactly what a logical consequence
is, and the paradoxes have shown that our intuitive feelings on
the subject are not reliable. In the modern conception this
vague and subjective notion is replaced by the objective one of
derivabillty according to explicitly stated rules.

A formal system is a body of propositions, which we shall
call elementary propositions, concerning which we have a very
precise and objective criterion of truth. This criterion has a
recursive character. We start with a set of these propositions
the axioms - which are stated to be true outright as part of the
definition of the system; and to these we add explicit rules for
deriving further true propositions from those already established
It is then understood that an elementary proposition 4s a theo-
rem - I.e., is true - if and only if it is an axiom or is derived
from the axioms by the rules. It is further required that the
specifications as to rules, axioms, etc., be definite, in the
sense that there be a finite constructive process for deciding
in any given case whether the concept applies or not. Thus the
truth of an elementary proposition, although not necessarily It-
self a definite concept (the system has a relatively trivial
character when it is), is nevertheless precise and objective in
that the checking of evidence for it - i.e., of a proof - is a
definite process.

This notion of formal system Is fundamental, in one form or
another, to many types of modern logical investigations. Fre-
quently the systems studied have to do with symbols as subject
matter. Thus In Hllbertfs metamathematlcs the elementary prop-
ositions are of the form

"a Is provable"

where a is a certain type of combination of the symbols of an
exactly specified "language." But that Is not essential. One
can, if one likes, set up high-school algebra as a formal sys-
tem, in which the elementary propositions are the equations

a = b.
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the axioms are the instances of the "laws of algebra," and the
rules are the customary ones for manipulating equations.1

Now we do not study a formal system simply by deriving ele-
mentary theorems one after the other. Once the system has been
precisely defined, we can talk about It significantly by the de-
vices of ordinary language. For such a study of a formal sys-
tem, going beyond the step-by-step derivations of the elementary
theorems, I shall use the prefix "epi-"2 and I shall speak of
epi-proposltlons, epi-theorems, and the epi-theoretic method in
an obvious sense. Thus the consistency of Hubert's mathematics,
if established, would be an epitheorem of his metamathematlcs;
and Indeed practically all of the work on his system is epl-
theoretic in character. These epl-proposltions, since they are
formed from elementary propositions by means of ordinary lan-
guage, are subject to the dangers of such an origin; and it may
be important to find systematic ways of clarifying them.

The simplest epl-propositlons are those formed from elemen-
tary ones by one or more applications of the logical connectives
"or," "and," "if..., then...," "not," and the quantifiers "all"
and "some." Such epi-propositlons will be called compound prop-
ositions, with the understanding that when compound propositions
are combined by these connectives the result is again compound.
The principal concern of these lectures is with the clarifica-
tion of compound propositions. For the moment we confine atten-
tion to the first three of the connectives, which will be denot-
ed by "*", "v", and "3" respectively. In ordinary language It
is customary to define them by truth tables, viz.:

Table 1

A

1
1
0
0

B

1
0
1
0

A AB

1
0
0
0

A VB

1
1
1
0

A D B

1
0
1
1

Here "1" represents truth and "0" falsity* Truth tables for
compound propositions of higher order are to be defined by com-
pounding these tables in obvious fashion. But in the present
connection there are two objections to such a procedure. In the
first place, although It is clear when an elementary proposition
is true, yet 1t is by no means clear when it is false or even
what its falsity means. We shall see later that the negation of

1. This is done in Example 9 of [23].
2. Previously, e.g., In [16], I used the prefix "meta-" in this sense. This

usage was criticized fey Kleene [5^]. It Is true that the prefix "meta-" is
preoccupied for a semlotlcal concept. (See Chapter I §4.) Although the two
concepts are related I am convinced it is worth while to distinguish them no-
tationally.
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a proposition can be defined in different ways. In the second
place, even In those cases where formal truth Is definite, Table
1 does not represent the senses which we wish to give to these
connectives (particularly Implication). What then are these
senses? Is It possible to define them objectively for a large
class of formal systems so as to do Justice to our Intentions?
We shall see that, under certain limitations, we can; and that
we are led to a form of predicate calculus akin to that proposed
by Heytlng.3

This study of compound propositions Is of interest in an-
other connection. It has been noticed by several persons, that,
even In ordinary language, the two-valued propositlonal algebra
does not adequately represent the intuitive logical relation-
ships of actual propositions, particularly as regards implica-
tion. As a result there have been proposed a variety of improved
systems; e.g., the strict implication of C. I. Lewis.4 Yet these
systems have a subjective character. There has always been doubt
as to which of them was most adequate. Lewis, In fact, consid-
ered five different syste'mfi, and declared himself unable to de-
cide which of them "expresses the acceptable principles of de-
duction." But from the present point of view, where we replace
the notion of logical consequence by that of derlvability accord-
Ing to stated rules, we can give objective definitions of the
logical connectives, and determine what sort of logical calculus
follows from these definitions. That calculup will then evident-
ly express the acceptable principles of deduction so far as math-
ematics is concerned.

This situation suggests that our objective may well give a
mode of approach to the algebra of propositions and calculus of
predicates which will be significant apart from its bearing on
questions related to formal systems. Indeed the variables of an
ordinary propositlonal algebra may be regarded as the elementary
propositions of a degenerate, vacuous formal system. Whether or
not this point of view is fruitful, It at least allows the logi-
cal calculus to be seen from a new angle.

This second point of view invites a slight broadening of the
Investigation. It is a curious fact that all the earlier at-
tempts at "strict implication" were based, not on implication as
basic idea, but on some notion of possibility or necessity. This
suggests there is some Interest In adding necessity and possibil-
ity to the operations for forming compound propositions. A meth-
od for dealing with these notions Is to postulate, not a single
formal system, but a whole family of them with some common

3. This system was originally presented In [44]; cf. Gllvenko [37]. A sum-
mary of the system is given In Feys -[JO] and Heytlng [90]. For later devel-
opment of this system see [62] and papers referred to therein.

k. See Lewis and Longford [5?]> especially Appendix 2, pp. 492-502. For
recent developments concerning the Lewis system see McKinsey and Tarskl [6*2]
and papers referred to therein. Feys [30] gives a general survey of modal
systems.
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structure; then a proposition is necessary if it holds in all
systems of the family, possible If it holds in at least one.
This idea is not unrelated to recent analyses of modal logic by
Carnap and McKlnsey,5 but it is totally Independent of them, and
Indeed - at least so far as necessity is concerned - it ante-
dates them.6 The fact that such different approaches lead to
similar results may well be Interesting to those who are con-
cerned about modal systems. Accordingly, the last chapter of
these lectures is devoted to these notions.

The method of this investigation is that of Gentzenfs thesis.7

To him Is due the idea of deriving the properties of the logical
connectives from rules which, so to speak, flow directly from the
associated meanings. This makes his approach to the logical cal-
culus the most rapid and natural that has yet been made. More-
over, Gentzen anticipated some portions of a recent book by Car-
nap.8 Indeed, Gentzenfs introduction of "Sequenzen" with multiple
antecedents and consequents is in effect equivalent to Carnap!s
involution;9 thus Gentzen has a formulation of the classical
predicate calculus which is a full formalization in the sense of
Carnap.10 Finally, Oentzen proved, for his L systems, a theorem
of far-reaching importance to the effect that one of his rules -
called "Schnltt"11 - Is superfluous. This theorem is here called
the elimination theorem, because, from the present point of view,
the rule In question does not flow as naturally from the meanings
of the connectives as do the others; It represents not so much a
rule as a property which it is desirable to establish. Indeed
the proof of the elimination theorem in the epltheory of a for-
mal system Q is tantamount to showing the consistency of the

5. For Carnap1 s theory see [10]. Catnap's "book [9] was not available to me
during the writing of these lectures. Jfor McKinsey's theory see [60].

6. See the preface.
7. See Gentzen [35]. For expositions of Gentzen's methods see Bernays [3]

and Fey a [31] and [32], Bernays considers only the "natural" systems for the
classical calculus, here called the system TK. The papers "by Feys give a
summary not only of Gentzen (s work "but of other works of the same character
"by Hertz (see especially [89]; other references In [31] or [12]), Jaskowskl
[48], and Ketonen [53]. The paper [33] shows that Gentzen was influenced by
Hertz| in this paper he showed that Hertz's complex rule "Syllogismus" can "be
replaced "by his own "Schnitt." The work of Jaskowskl, which he credited In
part to Lukasiewicz, appears to have teen independent of Gentzen. A recent
paper [68] of Popper is of a character similar to the others mentioned, but
shows no evidence of any contact with either Gentzen or Jaskowskl. This pa-
per contains serious errors; see review to [67] in Mathematical Reviews
(forthcoming). [It has since appeared, I.e. 95321 (19^8).]

8. [51.
9. L.c.§32.
10. Carnap nowhere mentions Gentzen, so I conclude Carnap arrived at his an-
alysis independently.
11. This rule appears to have been Introduced in Gentzen [33].
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system formed by adjoining a predicate calculus to 6. Gentzen'9
proof of the consistency of arithmetic ([3̂ ], [36]) can be
looked at in that light, and the same principle is back of some
recent attempts at consistency proofs about which I have report-
ed elsewhere [15]-

No acquaintance, however, with Gentzenfs technique will be
assumed here. It is a part of the purpose of these lectures to
give an exposition of that technique from the beginning. This
will be done so that the clarification of the compound proposi-
tions of a formal system, an idea which does not occur in Gentzen,
is still the main point of departure. Not only is that problem
of some Interest in its own right - it was the principal motiva-
tion for such research as these pages contain; but It sheds new
light on the Gentzen methods and the logical calculus generally.
Prom that standpoint, for example, the naturalness of the- Heyting
calculus (for the appropriate type of negation) is manifest;
looked at from another angle we have a genuine Interpretation of
that calculus. The classical calculus emerges as a special case.
Considerations relating to the classical calculus will be treat-
ed in parallel so as to have a complete exposition of Gentzen!s
main results.12 Naturally there will be some difference from
Gentzen's own treatment, both in the mode of approach and the de-
tails of the proofs.

On account of the emphasis on an underlying formal system, it
will be necessary to precede the development of the theme proper
by a discussion of the nature of formal systems which is more
full than that in the opening paragraph. The connectives will
then be Introduced In the following order: 1) the finite positive
connectives, D, A* and v; 2) quantifiers; 3) negation; and 4)
modalities. The treatment of the last will be less detailed and
has a somewhat unfinished character.

It may be necessary to warn the reader about one detail. The
relation between propositions A and B symbolized by the validity
of A D B Is appropriately called formal deducibility, but it is
not the most general situation under which the validity of B may
be inferred from that of A. It is the case where there is a val-
id deduction according to certain rules leading from A to B. But
it may happen that there is a valid process of transforming a
proof of A Into a proof of B without there being any deduction
from A to B. An example of this, if we carry the formalization
to a higher level, as indicated below, is the elimination theo-
rem.

12. However, the more advanced aspects of Gentzenfs theory as applied to the
classical calculus - e.g., his strengthened Hauptsatz - are not considered
here. For these cf. Ketonen [53].


