III APPLICATIONS

by
A. N. Milgram
A. Solvable Groups.

Before proceeding with the applications we must discuss certain questions in the theory of groups. We shall assume several simple propositions: (a) If N is a normal subgroup of the group G, then the mapping $f(x)=x N$ is a homomorphism of G on the factor group G / N. f is called the natural homomorphism. (b) The image and the inverse image of a normal subgroup under a homomorphism is a normal subgroup. (c) If f is a homomorphism of the group G on G^{\prime}, then setting $N^{\prime}=f(N)$, and defining the mapping g as $g(x N)=f(x) N^{\prime}$, we readily see that g is a homomorphism of the factor group G / N on the factor group G^{\prime} / N^{\prime}. Indeed, if N is the inverse image of N^{\prime} then g is an isomorphism.

We now prove
THEOREM 1. (Zassenhaus). If U and V are subgroups of G, u and v normal subgroups of U and V , respectively, then the following three
factor groups are isomorphic: $u(U \cap V) / u(U \cap v)$,
$\mathrm{v}(\mathrm{U} \cap \mathrm{V}) / \mathrm{v}(\mathrm{u} \cap \mathrm{V}),(\mathrm{U} \cap \mathrm{V}) /(\mathrm{u} \cap \mathrm{V})(\mathrm{v} \cap \mathrm{U})$.
It is obvious that $U \cap \mathrm{v}$ is a normal subgroup of $\mathrm{U} \cap \mathrm{V}$. Let f be the natural mapping of U on U / u. Call $f(U \cap V)=H$ and $f(U \cap v)=K$. Then $f^{-1}(H)=u(U \cap V)$ and $f^{-1}(K)=u(U \cap v)$ from which it follows that $u(U \cap V) / u(U \cap v)$ is isomorphic to H / K. If, however, we view f as defined only over $U \cap V$, then $f^{-1}(K)=[u \cap(U \cap V)](U \cap v)=$ $(u \cap V)(U \cap v)$ so that $(U \cap V) /(u \cap V)(U \cap v)$ is also isomorphic to H / K.

Thus the first and third of the above factor groups are isomorphic to each other. Similarly, the second and third factor groups are isomorphic.

Corollary 1. If H is a subgroup and N a normal subgroup of the group G, then $H / H \cap N$ is isomorphic to $H N / N$, a subgroup of G / N.

Proof: Set $\mathrm{G}=\mathrm{U}, \mathrm{N}=\mathrm{u}, \mathrm{H}=\mathrm{V}$ and the identity $1=\mathrm{v}$ in Theorem 1.

Corollary 2. Under the conditions of Corollary 1, if G/N is abelian, so also is $\mathrm{H} / \mathrm{H} \cap \mathrm{N}$.

Let us call a group G solvable if it contains a sequence of subgroups $G=G_{o} \supset G_{1} \supset \ldots \supset G_{s}=1$, each a normal subgroup of the preceding, and with G_{i-1} / G_{i} abelian.

THEOREM 2. Any subgroup of a solvable group is solvable. For let H be a subgroup of G, and call $H_{i}=H \cap G_{i}$. Then that H_{i-1} / H_{i} is abelian follows from Corollary 2 above, where G_{i-1}, G_{i} and H_{i-1} play the role of G, N and H .

THEOREM 3. The homomorph of a solvable group is solvable.
Let $f(G)=G^{\prime}$, and define $G_{i}^{\prime}=f\left(G_{i}\right)$ where G_{i} belongs to a a sequence exhibiting the solvability of G. Then by (c) there exists a homomorphism mapping $\mathrm{G}_{\mathrm{i}-1} / \mathrm{G}_{\mathrm{i}}$ on $\mathrm{G}_{\mathrm{i}-1}^{\prime} / \mathrm{G}_{\mathrm{i}}^{\prime}$. But the homomorphic image of an abelian group is abelian so that the groups G_{i}^{\prime} exhibit the solvability of G^{\prime}.

B. Permutation Groups.

Any one to one mapping of a set of n objects on itself is called a permutation. The iteration of two such mapping is called their product.

It may be readily verified that the set of all such mappings forms a group in which the unit is the identity map. The group is called the symmetric group on n letters.

Let us for simplicity denote the set of n objects by the numbers $1,2, \ldots, n$. The mapping S such that $S(i)=i+1 \bmod n$ will be denoted by (123...n) and more generally (ij . . .m) will denote the mapping T such that $T(i)=j, \ldots, T(m)=i$. If $(i j \ldots m)$ has k numbers, then it will be called a k cycle. It is clear that if $\mathrm{T}=(\mathrm{ij} \ldots \mathrm{s})$ then $\mathrm{T}^{-1}=(\mathrm{s} . . \mathrm{j} \mathrm{i})$:

We now establish the
Lemma. If a subgroup U of the symmetric group on n letters
($n>4$) contains every 3-cycle, and if u is a normal subgroup of U such that U / u is abelian, then u contains every 3-cycle.

Proof: Let f be the natural homomorphism $f(U)=U / u$ and let $\mathrm{x}=(\mathrm{ijk}), \mathrm{y}=(\mathrm{krs})$ be two elements of U , where $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{r}, \mathrm{s}$ are 5 numbers. Then since U / u is abelian, setting $f(x)=x^{\prime}, f(y)=y^{\prime}$ we have $f\left(x^{-1} y^{-1} x y\right)=x^{\prime-1} y^{\prime-1} x^{\prime} y^{\prime}=1$, so that $x^{-1} y^{-1} x y \in u$. But $x^{-1} y^{-1} x y=(k j i) \cdot(s r k) \cdot(i j k) \cdot(k r s)=(k j s)$ and for each k, j, s we have $(k j s) \epsilon u$.

THEOREM 4. The symmetric group G on n letters is not solvable for $n>4$.

If there were a sequence exhibiting the solvability, since G contains every 3 -cycle, so would each succeeding group, and the sequence could not end with the unit.

C. Solution of Equations by Radicals.

The extension field E over F is called an extension by radicals if there exist intermediate fields $B_{1}, B_{2}, \ldots, B_{r}=E$ and $B_{i}=B_{i-1}\left(a_{i}\right)$ where each α_{i} is a root of an equation of the form $x^{n_{i}}-a_{i}=0$, $a_{i} \in B_{i-1}$. A polynomial $f(x)$ in a field F is said to be solvable by radicals if its splitting field lies in an extension by radicals. We assume unless otherwise specified that the base field has characteristic 0 and that F contains as many roots of unity as are needed to make our subsequent statements valid.

Let us remark first that any extension of F by radicals can always be extended to an extension of F by radicals which is normal over F. Indeed B_{1} is a normal extension of B_{0} since it contains not only α_{1}, but ϵa_{1}, where ϵ is any n_{1}-root of unity, so that B_{1} is the splitting field of $x^{n_{1}}-a_{1}$. If $f_{1}(x)=\prod_{\sigma}\left(x^{n_{2}}-\sigma\left(\mathrm{a}_{2}\right)\right)$, where σ takes all values in the group of automorphisms of B_{1} over B_{0}, then f_{1} is in B_{o}, and adjoining successively the roots of $\mathrm{x}^{\mathrm{n}_{2}}-\sigma\left(\mathrm{a}_{2}\right)$ brings us to an extension of B_{2} which is normal over F. Continuing in this way we arrive at an extension of E by radicals which will be normal over F. We now prove

THEOREM 5. The polynomial $f(x)$ is solvable by radicals if and only if its group is solvable.

Suppose $f(x)$ is solvable by radicals. Let E be a normal extension of F by radicals containing the splitting field B of $f(x)$, and call G the group of E over F. Since for each i, B_{i} is a Kummer extension of B_{i-1}, the group of B_{i} over B_{i-1} is abelian. In the sequence of groups
$G=G_{B_{o}} \supset G_{B_{1}} \supset \ldots \supset G_{B_{r}}=1$ each is a normal subgroup of the preceding since $G_{B_{i-1}}$ is the group of E over B_{i-1} and B_{i} is a normal extension of B_{i-1}. But $G_{B_{i-1}} / G_{B_{i}}$ is the group of B_{1} over B_{i-1} and hence is abelian. Thus G is solvable. However, G_{B} is a normal subgroup of G, and G / G_{B} is the group of B over F, and is therefore the group of the polynomial $f(x)$. But G / G_{B} is a homomorph of the solvable group G and hence is itself solvable.

On the other hand, suppose the group G of $f(x)$ to be solvable and let E be the splitting field. Let $\mathrm{G}=\mathrm{G}_{\circ} \supset \mathrm{G}_{1} \supset \ldots \supset \mathrm{G}_{\mathrm{r}}=1$ be a sequence with abelian factor groups. Call B_{i} the fixed field for G_{i}. Since G_{i-1} is the group of E over B_{i-1} and G_{i} is a normal subgroup of G_{i-1}, then B_{i} is normal over B_{i-1} and the group G_{i-1} / G_{i} is abelian. Thus B_{i} is a Kummer extension of B_{i-1}, hence is splitting field of a polynomial of the form $\left(x^{n}-a_{1}\right)\left(x^{n}-a_{2}\right) \ldots\left(x^{n}-a_{s}\right)$ so that by forming the successive splitting fields of the $x^{n}-a_{k}$ we see that B_{i} is an extension of B_{i-1} by radicals, from which it follows that E is an extension by radicals.

Remark. The assumption that F contains roots of unity is not necessary in the above theorem. For if $f(x)$ has a solvable group G, then we may adjoin to F a primitive $\mathbf{n}^{\text {th }}$ root of unity, where n is, say, equal to the order of G. The group of $f(x)$ when considered as lying in F^{\prime} is, by the theorem on Natural Irrationalities, a subgroup G^{\prime} of G, and hence is solvable. Thus the splitting field over F^{\prime} of $f(x)$ can be obtained by radicals. Conversely, if the splitting field E over F of $f(x)$ can be obtained by radicals, then by adjoining a suitable root of unity E is extended to E^{\prime} which is still normal over F^{\prime}. But E^{\prime} could be
obtained by adjoining first the root of unity, and then the radicals, to F; F would first be extended to F^{\prime} and then F^{\prime} would be extended to E^{\prime}. Calling G the group of E^{\prime} over F and G^{\prime} the group of E^{\prime} over F^{\prime}, we see that G^{\prime} is solvable and G / G^{\prime} is the group of F^{\prime} over F and hence abelian. Thus G is solvable. The factor group G / G_{E} is the group of $f(x)$ and being a homomorph of a solvable group is also solvable.
D. The General Equation of Degree n.

If F is a field, the collection of rational expressions in the variables $u_{1}, u_{2}, \ldots, u_{n}$ with coefficients in F is a field $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. By the general equation of degree n we mean the equation

$$
\begin{equation*}
f(x)=x^{n}-u_{1} x^{n-1}+u_{2} x^{n-2}-+\ldots+(-1)^{n} u_{n} . \tag{1}
\end{equation*}
$$

Let E be the splitting field of $f(x)$ over $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. If $v_{1}, v_{2}, \ldots, v_{n}$ are the roots of $f(x)$ in E, then $u_{1}=v_{1}+v_{2}+\ldots+v_{n}, u_{2}=v_{1} v_{2}+v_{1} v_{3}+\ldots+v_{n-1} v_{n}, \ldots$ $\ldots, u_{n}=v_{1} \cdot v_{2} \ldots \cdot v_{n}$.

We shall prove that the group of E over $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the symmetric group.

Let $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the field generated from F by the variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$. Let $\alpha_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}$, $a_{2}=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{x}_{3}+\ldots+\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}}, \ldots, a_{\mathrm{n}}=\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ be the elementary symmetric functions, i.e., $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)=$ $\mathrm{x}^{\mathrm{n}}-\alpha_{1} \mathrm{x}^{\mathrm{n}-1}+-\ldots(-1)^{\mathrm{n}} \alpha_{\mathrm{n}}=\mathrm{f} *(\mathrm{x})$. If $\mathrm{g}\left(\alpha_{1}, \alpha_{2}, \ldots, a_{\mathrm{n}}\right)$ is a polynomial in $a_{1}, \ldots, a_{\mathrm{n}}$, then $\mathrm{g}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right)=0$ only if g is the
zero polynomial. For if $g\left(\Sigma \mathrm{x}_{\mathrm{i}}, \Sigma \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{k}}, \ldots\right)=0$, then this relation would hold also if the x_{i} were replaced by the v_{i}. Thus,
$g\left(\Sigma v_{i}, \Sigma v_{i} v_{k}, \ldots\right)=0$ or $g\left(u_{1}, u_{2}, \ldots, u_{n}\right)=0$ from which it follows that g is identically zero.

Between the subfield $F\left(a_{1}, \ldots, a_{n}\right)$ of $F\left(x_{1}, \ldots, x_{n}\right)$ and $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ we set up the following correspondence: Let $f\left(u_{1}, \ldots, u_{n}\right) / g\left(u_{1}, \ldots, u_{n}\right)$ be an element of $F\left(u_{1}, \ldots, u_{n}\right)$. We make this correspond to $\mathrm{f}\left(a_{1}, \ldots, a_{\mathrm{n}}\right) / \mathrm{g}\left(a_{1}, \ldots, a_{\mathrm{n}}\right)$. This is clearly a mapping of $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ on all of $F\left(a_{1}, \ldots, a_{n}\right)$. Moreover, if $\mathrm{f}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right) / \mathrm{g}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right)$ $=\mathrm{f}_{1}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right) / \mathrm{g}_{1}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right)$, then $\mathrm{fg}_{1}-\mathrm{gf}_{1}=0$. But this implies by the above that
$f\left(u_{1}, \ldots, u_{n}\right) \cdot g_{1}\left(u_{1}, \ldots, u_{n}\right)-g\left(u_{1}, \ldots, u_{n}\right) \cdot f_{1}\left(u_{1}, \ldots, u_{n}\right)=0$ so that $f\left(u_{1}, \ldots, u_{n}\right) / g\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
$=f_{1}\left(u_{1}, \ldots, u_{n}\right) / g_{1}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. It follows readily from this that the mapping of $\mathrm{F}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)$ on $\mathrm{F}\left(\alpha_{1}, a_{2}, \ldots, \alpha_{\mathrm{n}}\right)$ is an isomorphism. But under this correspondence $f(x)$ corresponds to $f *(x)$. Since E and $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are respectively splitting fields of $f(x)$ and $f^{*}(x)$, by Theorem 10 the isomorphism can be extended to an isomorphism between E and $\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$. Therefore, the group of E over $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is isomorphic to the group of $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over $\mathrm{F}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right)$.

Each permutation of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ leaves $a_{1}, a_{2}, \ldots, a_{\mathrm{n}}$ fixed and, therefore, induces an automorphism of $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which leaves $\mathrm{F}\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right)$ fixed. Conversely, each automorphism of $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which leaves $F\left(\alpha_{1}, \ldots, a_{n}\right)$ fixed must permute the roots $x_{1}, x_{2}, \ldots, x_{n}$ of $f *(x)$ and is completely determined by the
permutation it effects on $x_{1}, x_{2}, \ldots, x_{n}$. Thus, the group of $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over $\mathrm{F}\left(\alpha_{1}, a_{2}, \ldots, \alpha_{\mathrm{n}}\right)$ is the symmetric group on n letters. Because of the isomorphism between $F\left(x_{1}, \ldots, x_{n}\right)$ and E, the group for E over $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is also the symmetric group. If we remark that the symmetric group for $n>4$ is not solvable, we obtain from the theorem on solvability of equations the famous theorem of Abel:

THEOREM 6. The group of the general equation of degree n is the symmetric group on n letters. The general equation of degree n is not solvable by radicals if $n>4$.

E. Solvable Equations of Prime Degree.

The group of an equation can always be considered as a permutation group. If $\mathrm{f}(\mathrm{x})$ is a polynomial in a field F , let $a_{1}, a_{2}, \ldots, a_{\mathrm{n}}$ be the roots of $f(x)$ in the splitting field $E=F\left(a_{1}, \ldots, a_{n}\right)$. Then each automorphism of E over F maps each root of $f(x)$ into a root of $f(x)$, that is, permutes the roots. Since E is generated by the roots of $f(x)$, different automorphisms must effect distinct permutations. Thus, the group of E over F is a permutation group acting on the roots $a_{1}, \alpha_{2}, \ldots, a_{\mathrm{n}}$ of $\mathrm{f}(\mathrm{x})$.

For an irreducible equation this group is always transitive. For let α and α^{\prime} be any two roots of $f(x)$, where $f(x)$ is assumed irreducible. $\mathrm{F}(\alpha)$ and $\mathrm{F}\left(\alpha^{\prime}\right)$ are isomorphic where the isomorphism is the identity on F , and this isomorphism can be extended to an automorphism of E (Theorem 10). Thus, there is an automorphism sending any given root into any other root, which establishes the "transitivity" of the group.

A permutation σ of the numbers $1,2, \ldots, q$ is called a linear substitution modulo q if there exists a number $b \not \equiv 0$ modulo q such that $\sigma(\mathrm{i}) \equiv \mathrm{bi}+\mathrm{c}(\bmod \mathrm{q}), \mathrm{i}=1,2, \ldots, \mathrm{q}$.

THEOREM 7. Let $f(x)$ be an irreducible equation of prime degree q in a field F. The group G of $f(x)$ (which is a permutation group of the roots, or the numbers $1,2, \ldots, q$) is solvable if and only if, after a suitable change in the numbering of the roots, G is a group of linear substitutions modulo q , and in the group G all the substitutions with $\mathrm{b}=1, \sigma(\mathrm{i}) \equiv \mathrm{c}+1(\mathrm{c}=1,2, \ldots, \mathrm{q})$ occur.

Let G be a transitive substitution group on the numbers $1,2, \ldots, q$ and let G_{1} be a normal subgroup of G. Let $1,2, \ldots, k$ be the images of 1 under the permutations of G_{1}; we say: $1,2, \ldots, k$ is a domain of transitivity of G_{1}. If $\mathrm{i} \leq \mathrm{q}$ is a number not belonging to this domain of transitivity, there is a $\sigma \epsilon \mathrm{G}$ which maps 1 on i . Then $\sigma(1,2, \ldots, \mathrm{k})$ is a domain of transitivity of $\sigma \mathrm{G}_{1} \sigma^{-1}$. Since G_{1} is a normal subgroup of G , we have $\mathrm{G}_{1}=\sigma \mathrm{G}_{1} \sigma^{-1}$. Thus, $\sigma(1,2, \ldots, \mathrm{k})$ is again a domain of transitivity of G_{1} which contains the integer i and has k elements. Since i was arbitrary, the domains of transitivity of G_{1} all contain k elements. Thus, the numbers $1,2, \ldots, q$ are divided into a collection of mutually exclusive sets, each containing k elements, so that k is a divisor of q . Thus, in case q is a prime, either $k=1$ (and then G_{1} consists of the unit alone) or $k=q$ and G_{1} is also transitive.

To prove the theorem, we consider the case in which G is solvable. Let $G=G_{o} \supset G_{1} \supset \ldots \supset G_{s+1}=1$ be a sequence exhibiting the solvability. Since G_{s} is abelian, choosing a cyclic subgroup of it
would permit us to assume the term before the last to be cyclic, i.e., G_{s} is cyclic. If σ is a generator of $\mathrm{G}_{\mathrm{s}}, \sigma$ must consist of a cycle containing all q of the numbers $1,2, \ldots, q$ since in any other case G_{s} would not be transitive [if $\sigma=(\mathrm{lij} \ldots \mathrm{m})(\mathrm{n} \ldots \mathrm{p}) \ldots$ then the powers of σ would map 1 only into $1, \mathrm{i}, \mathrm{j} \ldots \mathrm{m}$, contradicting the transitivity of G_{s}]. By a change in the number of the permutation letters, we may assume

$$
\begin{aligned}
\sigma(\mathrm{i}) & \equiv \mathrm{i}+1(\bmod \mathrm{q}) \\
\sigma^{\mathrm{c}}(\mathrm{i}) & \equiv \mathrm{i}+\mathrm{c}(\bmod \mathrm{q})
\end{aligned}
$$

Now let τ be any element of $\mathrm{G}_{\mathrm{s}-1}$. Since G_{s} is a normal subgroup of $\mathrm{G}_{\mathrm{s}-1}, \tau \sigma \tau^{-1}$ is an element of G_{s}, say $\tau \sigma \tau^{-1}=\sigma^{\mathrm{b}}$. Let $\tau(\mathrm{i})=\mathrm{j}$ or $\tau^{-1}(\mathrm{j})=\mathrm{i}$, then $\tau \sigma \tau^{-1}(\mathrm{j})=\sigma^{\mathrm{b}}(\mathrm{j}) \equiv \mathrm{j}+\mathrm{b}(\bmod \mathrm{q})$. Therefore, $\tau \sigma(\mathrm{i}) \equiv \tau(\mathrm{i})+\mathrm{b}(\bmod \mathrm{q})$ or $\tau(\mathrm{i}+1) \equiv \tau(\mathrm{i})+\mathrm{b}$ for each i . Thus, setting $\tau(0)=\mathrm{c}$, we have $\tau(1) \equiv \mathrm{c}+\mathrm{b}, \tau(2) \equiv \tau(1)+\mathrm{b}=\mathrm{c}+2 \mathrm{~b}$ and in general $\tau(\mathrm{i}) \equiv \mathrm{c}+\mathrm{ib}(\bmod \mathrm{q})$. Thus, each substitution in $\mathrm{G}_{\mathrm{s}-1}$ is a linear substitution. Moreover, the only elements of $\mathrm{G}_{\mathrm{s}-1}$ which leave no element fixed belong to G_{s}, since for each a $\not \equiv 1$, there is an i such that $\mathrm{ai}+\mathrm{b} \equiv \mathrm{i}(\bmod \mathrm{q})[$ take i such that $(\mathrm{a}-1) \mathrm{i} \equiv-\mathrm{b}]$.

We prove by an induction that the elements of G are all linear substitutions, and that the only cycles of q letters belong to G_{s}. Suppose the assertion true of $\mathrm{G}_{\mathrm{s}-\mathrm{n}}$. Let $\tau \in \mathrm{G}_{\mathrm{s}-\mathrm{n}-1}$ and let σ be a cycle which belongs to G_{s} (hence also to G_{s-n}). Since the transform of a cycle is a cycle, $\tau^{-1} \sigma \tau$ is a cycle in $\mathrm{G}_{\mathrm{s}-\mathrm{n}}$ and hence belongs to G_{n}. Thus $\tau^{-1} \sigma \tau=\sigma^{\mathrm{b}}$ for some b . By the argument in the preceding paragraph, τ is a linear substitution $\mathrm{bi}+\mathrm{c}$ and if τ itself does not belong to G_{s}, then τ leaves one integer fixed and hence is not a cycle of q elements.

We now prove the second half of the theorem. Suppose G is a group of linear substitutions which contains a subgroup N of the form $\sigma(\mathrm{i}) \equiv \mathrm{i}+\mathrm{c}$. Since the only linear substitutions which do not leave an integer fixed belong to N, and since the transform of a cycle of q elements is again a cycle of q elements, N is a normal subgroup of G . In each coset $\mathrm{N} \cdot \tau$ where $\tau(\mathrm{i}) \equiv \mathrm{bi}+\mathrm{c}$ the substitution $\sigma^{-1} \tau$ occurs, where $\sigma \equiv \mathrm{i}+\mathrm{c}$. But $\sigma^{-1} \tau(\mathrm{i}) \equiv(\mathrm{bi}+\mathrm{c})-\mathrm{c} \equiv \mathrm{bi}$. Moreover, if $\tau(\mathrm{i}) \equiv \mathrm{bi}$ and $\tau^{\prime}(\mathrm{i}) \equiv \mathrm{b}^{\prime} \mathrm{i}$ then $\tau \tau^{\prime}(\mathrm{i}) \equiv \mathrm{bb} \mathrm{h}^{\mathrm{i}}$. Thus, the factor group (G / N) is isomorphic to a multiplicative subgroup of the numbers $1,2, \ldots, q-1 \bmod q$ and is therefore abelian. Since (G / N) and N are both abelian, G is solvable.

Corollary 1. If G is a solvable transitive substitution group on q letters (q prime), then the only substitution of G which leaves two or more letters fixed is the identity.

This follows from the fact that each substitution is linear modulo q and $\mathrm{bi}+\mathrm{c} \equiv \mathrm{i}(\bmod \mathrm{q})$ has either no solution $(\mathrm{b} \equiv 1, \mathrm{c} \not \equiv 0)$ or exactly one solution $(b \not \equiv 1)$ unless $b \equiv 1, c \equiv 0$ in which case the substitution is the identity.

Corollary 2. A solvable, irreducible equation of prime degree in a field which is a subset of the real numbers has either one real root or all its roots are real.

The group of the equation is a solvable transitive substitution group on q (prime) letters. In the splitting field (contained in the field of complex numbers) the automorphism which maps a number into its complex conjugate would leave fixed all the reai numbers. By Corollary

1, if two roots are left fixed, then all the roots are left fixed, so that if the equation has two real roots all its roots are real.

F. Ruler and Compass Constructions.

Suppose there is given in the plane a finite number of elementary geometric figures, that is, points, straight lines and circles. We seek to construct others which satisfy certain conditions in terms of the given figures.

Permissible steps in the construction will entail the choice of an arbitrary point interior to a given region, drawing a line through two points and a circle with given center and radius, and finally intersecting pairs of lines, or circles, or a line and circle.

Since a straight line, or a line segment, or a circle is determined by two points, we can consider ruler and compass constructions as constructions of points from given points, subject to certain conditions.

If we are given two points we may join them by a line, erect a perpendicular to this line at, say, one of the points and, taking the distance between the two points to be the unit, we can with the compass lay off any integer n on each of the lines. Moreover, by the usual method, we can draw parallels and can construct m / n. Using the two lines as axes of a cartesian coordinate system, we can with ruler and compass construct all points with rational coordinates.

If a, b, c, \ldots are numbers involved as coordinates of points which determine the figures given, then the sum, product, difference and quotient of any two of these numbers can be constructed. Thus, each
element of the field $R(a, b, c, \ldots)$ which they generate out of the rational numbers can be constructed.

It is required that an arbitrary point is any point of a given region. If a construction by ruler and compass is possible, we can always choose our arbitrary points as points having rational coordinates, If we join two points with coefficients in $R(a, b, c, \ldots)$ by a line, its equation will have coefficients in $R(a, b, c, \ldots)$ and the intersection of two such lines will be a point with coordinates in $R(a, b, c, \ldots)$. The equation of a circle will have coefficients in the field if the circle passes through three points whose coordinates are in the field or if its center and one point have coordinates in the field. However, the coordinates of the intersection of two such circles, or a straight line and circle, will involve square roots.

It follows that if a point can be constructed with a ruler and compass, its coordinates must be obtainable from $R(a, b, c, \ldots)$ by a formula only invalving square roots, that is, its coordinates will lie in a field $R_{s} \supset R_{s-1} \supset \ldots \supset R_{1}=R(a, b, c, \ldots)$ where each field R_{i} is splitting field over R_{i-1} of a quadratic equation $x^{2}-a=0$. It follows (Theorem 6, p. 21) since either $R_{i}=R_{i-1}$ or $\left(R_{i} / R_{i-1}\right)=2$, that $\left(R_{s} / R_{1}\right)$ is a pawer of two. If x is the coordinate of a constructed point, then $\left(R_{1}(x) / R_{1}\right) \cdot\left(R_{s} / R_{1}(x)\right)=\left(R_{s} / R_{1}\right)=2 \nu$ so that $R_{1}(x) / R_{1}$ must also be a power of two.

Conversely, if the coordinates of a point can be obtained from $R(a, b, c, \ldots)$ by a formula involving square roots only, then the point can be constructed by ruler and compass. For, the field operations of
addition, subtraction, multiplication and division may be performed by ruler and compass constructions and, also, square roots using 1:r = $r: r_{1}$ to obtain $r=\sqrt{ } r_{1}$ may be performed by means of ruler and compass instructions.

As an illustration of these considerations, let us show that it is impossible to trisect an angle of 60°. Suppose we have drawn the unit circle with center at the vertex of the angle, and set up our coordinate system with X -axis as a side of the angle and origin at the vertex.

Trisection of the angle would be equivalent to the construction of the point $\left(\cos 20^{\circ}, \sin 20^{\circ}\right)$ on the unit circle. From the equation $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$, the abscissa would satisfy $4 x^{3}-3 x=1 / 2$. The reader may readily verify that this equation has no rational roots, and is therefore irreducible in the field of rational numbers. But since we may assume only a straight line and unit length given, and since the 60° angle can be constructed, we may take $R(a, b, c, \ldots)$ to be the field R of rational numbers. A root α of the irreducible equation $8 x^{3}-6 x-1=0$ is such that $(R(\alpha) / R)=3$, and not a power of two.

