VI OUTLINE OF A GENERAL THEORY OF STATISTICAL INFERENCE

The theories of Fisher, Neyman and Pearson are restricted
in two respects. First, they consider only the problem of
testing a hypothesis and that of estimation by point or in-
terval., The second restriction is that only the case in which
18 a k-parameter family of distribution functions is in-
vestigated. Both restrictions are serious from the point of
view of applications.

There are many important statistical problems which are
neilther problems of testing a hypothesis, nor problems of es-
timation. We havé already given such an example in Section 1.
As a further illustration, let us consider the following case:
Let X;) eeeyXp be p independently and nommelly distributed ran-
dom variables with unit variances and unknown means ©3,...0p.
PFurthermore, let Xi3,..9X;jn be n independent observations on
X;(1=1,2,...,p). Suppose we test the hypothesis that
€ = eve = 8p = 0, and decide to reject this hypothesis on the
basis of the pn observations x;,(a = 1,2,...,n; 1 = 1,2,.000,P)¢
In such cases we are usually interested in knowing which mean
values are not zero, i.e.,we wish to subdivide the set of p
mean values °1""'°p into two subsets, such that one of them
contains the mean values which are zero and the other the mean
velues which are not gero. This subdivision has to be done, of
course, on the basis of the pn observations x;,. More pre-
cisely, we have to deal with the following statistical problems
There exist 2F different subsets of the set (01,..,,01,). De-

note these subsets by @,,...,W,p, respectively. Let E
37
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(k = 1,...,2P) be the hypothesis that the mean values contained
in the set w, are equal to zero and all other mean values are
unequal to zero. On the basis of the pn observations we have
to decide which hypothesis H, from the set of the 2P possible
hypotheses should be accepted. This problem cannot be con-
sidered as a problem of testing a hypothesis nor a problem of
estimation.

A similar problem arises if we wish to classify a set of
regression coefficients into the class of non-zero and the
class of zero regression coefficients. In problems of regres-
sion we often take 1t for granted that the regression in ques-
tion is a polynomial and we have to determine on the basis of
the observations the degree of the polynomial to be fitted.
That 1s to say, we have to decide on the basis of the observa-
tions which hypothesis of the sequence of hypotheses
Hy, Hp, Hzyeee, Hp,... should be accepted. The symbol Hp
(n=1,2,...) denotes the hypothesis that the regression is a
polynomisl of n-th degree. These examples illustrate suffici-
ently the necessity of the extension of the theory of statis-
tical inference to the general case as formulated in Section 1.

The case in whichflcannot be represented as a k-parameter
family of distribution functions is quite important. As an
illustration, consider the following problem: Let (xl,yl),...
(x,,¥,) be n independent pairs of observations on a pair (X,Y)
of random varisbles. Suppose we wish to test the hypothesis
that X and Y are independently distributed and we do not have
any a priori knowledge about the joint distribution of X and Y.
In this case (L consists of all distribution functions
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F(X,¥1s 05X, T,) which can be written in the form
F(x1,¥150..) = I (x1,51) eoo I (xn,¥n)

where Imay be an arbitrary function. The subclass w consists
of all distribution functions F(xX;,¥y,.-¢,Xy,¥,) which can be
written in the form

F(X),¥15 000X, Tn) = $(x1)¥ (71) P(x2)¥ (F2)eee Plag) ¥ (Fn)-
Hence, L)l cannot be represented as & k-parameter femily of
functions.

The problem given above as an illustration has been treat-
ed by H. Hotelling and Margaret Pabst (see reference 8). An-
other problem, where £) is the class of all continuous distri-
butions, has been considered in paper (see reference 21). We
shall give here an outline of a theory of statistical inference
dealing with the following general problemll):

Let Xy,+¢.,X; be a set of n random variables. It is known
that the joint probability distribution function F(xl,...,xn)
of X3,+.0,Xy 18 an element of a certaln class Sl of distribu-
tion functions. Let S be a system of subclasses of L. For
each element w of S denote by Hy, the hypothesls that the true
distribution F(xy,...,X;) of X),¢..,Xn 18 an element of w.
Denote by Hg the system of all hypotheses corresponding to all
elements of S. Let x; be the observed value of X; (i=1,...,n).
We have to decide by means of the observed sample point
Ep = (X4,++0,X,) which hypothesis of the system Hg of hypo-
theses should be accepted. That is to ssy, for each hypothesis
Hy, we have to determine a region of acceptance My in the n-

dimensionel sample space. The hypothesis H, will be accepted

11) This theory has been developed in reference 16
for the case that., 1s a k-parameter family
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if and only if the sample point falls in the region My. The

regions M, and My are, of course, disjoint for & # w!'. Fur-

thermore, 2 My 1s equal to the whole sample space. The statis-
W ——

ticel problem is that of the proper choice of the system Mg of

the reglons of acceptance.

The cholce of the system Mg of regions of acceptance is
equivalent to the choice of a function w(E,) defined over all
points E, of the sample space. The velue of the function
(o(En) i1s an element of S determined as follows: Since the ele-
ments of Mg are disjoint and since 3““’ is equal to the whole
sample space, for each point En'there exists exact:!.y one ele-
ment @ of § such that E, is contalned in My. The value of the
function w(Ep) is that element w of S for which E, is an ele-
ment of M,. Hence, we can replace Mg by the function Q(En)
and for each sample point E, we decide to accept the hypothesis
Hy(Ep). We will call w(Ep) the statistical decision function.
Hence, the statistical problem 1is that of choosing the statis-

tical decision function w(En).

The choice of w(Ep) will essentially be affected by the
relative importance of the different possible errors we may
commit. We commit an error whenever we accept a hypothesis H,
and the true distribution 1s not an element of w. We introduce
a weight function for the possible errors. The welght function
w[F,w] 18 a resl valued non-negative function defined for all
elements F of . and all elements w of 8, expressing the re-
lative importance of the error committed by accepting H, when
F 1s true. If F i3 an element of ® then w[F,w] = 0, otherwise
w[F.ua)o. The question as to how the fomm of the weéight func-
tion w[F,w] should be chosen is notamathematical nor statistical
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one. The statistician who wants to test certaln hypotheses
must first determine the relative importance of all possible
errors and this will depend on the special purposes of his in-
vestigation. If this is done, we shall in general be able to
give a more satisfactory answer to the question as to how the
statistical decision function should be chosen. In many cases,
especlally in statistical questions concerning industrial pro-
duction, we are able to express the importance of an error in
monetary terms, that is, we can express the loss caused by the
error conslidered in terms of money. We shall also say that
w [F,w] i1s the loss caused by accepting H, when F 1s true.
Suppose that we make our decisions according to a statis-
ticel decision function w(En), and that the true distribution
is the element F(xj,...,Xp) of Q2. Then the expected value of
the loss 1s obviously given by the Stieltjes integral

(5) {w[r,w(nnﬂdr(xl,...,xn) =r[F],

where the integration is to be taken over the whole sample space
Mpe We shall call the expression (5) the risk of accepting a
false hypothesis when F is the true distribution function.
Since we do not know the true distribution F we shall have to
study the risk r[ F] as a function of F. We shall call this
function the risk function. Hence, the risk function is defined
over all elements F of N.. The form of the risk function de-
pends on the statistical decision function w(E,) and on the
weight function w[F,w . In order to express this fact, we
shall denote the risk function assoclated with the statistical
decision function w(E,) and the weight function w[F,0]elso by
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r {rlu (En), n[?.w]}

We introduce the following definitions:

Definition 1. Denote by w(E,) eand w!'(E,) two statistical
decision functions for the same system Hg of hypotheses. We
shall say that w(E,) and w!'(E,) are equivalent relative to the
weight w[F,w] 1f the risk function r {rlw(sn), w[p,u]}
1s identically equal to the risk function r {Flw'(En),n[:F,(El}
1.0., for any element F of () we have

r{rlw(!n), w[F,J_I} = r{?lu'(En). w[F,w:[} .

Definition 2. Denote by w(E,) and w'(E,) two statistical
decision functions for the ssme system Hg of hypotheses. We
shall say that w(En) is uniformly better than w!'(E,) relative
to the weight function w[F,w|if w(Ep) end w'(E,) are not equiva-
lent and for each element F of . We have

r{rlw(nn.), w[rﬁ,ag} & r {I"Iu'(xn), w[?,w]} .

Definition 3. A statistical decision function w(E,) is
sald to be admissible relative to the weight function w[!‘,ﬁﬂ
if no uniformly better statistical decision function exists re-
lative to the weight function considered.

First principle for the choice of the statistical decision
function. We choose a statistical decision function which 1ia

admissible relative to the weight function considered.

There can scarcely be given any argument against the ac-
ceptance of the above principls for the selection of w(Ey).
However, this principle does not lead in general to & unique
solution. There exist in general many admissible statistical
decision functions. We need a second principle for the choice
of a best admissible decision function.
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The choice between two admissible decision functions «(Ep)
and w!'(E,) may be affected by the degree of our a priori con-
fidence “in the truth of the different elements of (\. . 8uppose,
for instance, that for a certui‘.n element F; of L we have

r(Fllu(En),wE?,oa} {(r {Fgluc(nn),w[!?,w]}
for another element F, of L we have

r {lew(En.),wE?,uEl) >r {Fz ot (En),wE",(ﬂ}
and for any other element F # F;, # Fp we have

r {Flw(nn),w EF,o_T_l} = r {Flw'(sn),w[:?,a’ﬂ} .
If we have much greater a priori confidence in the truth of Fy
than in that of Fp, we will probably prefer w(Ep) to w!'(Ep).
On the other hand, if we think a priori that Fp is more likely
to be true than F;, we may prefer w!(Ep) to w(Ep).

Suppose we can express our & priori degree of confidence
by & non~negative additive set function p(m) defined over a cer-
tain system of subsets m of.n , where p(\) = 1. That is to say
the value of p( 1) expresses the degree of our & priori belief
that the true distribution is an element of the subset n. 1In
such a case 1t seems very reasonsble to consider a decision
function WWE,) as "best" if the value of the integral

J_: »{ Pl oEn), w Er,w]} dp
becomes a minimum for w(E,) = w*(En). That is, we consider a
decision function w™Ep) as "best" if it minimiges a certain
welghted average of the risk function.

However, it is doubtful that a set function expressing our
a priori degree of belief can mesaningfully be constructed.
Therefore, we prefer to furmulate the notion of a "best" dec-
ision function indepehdently of such considerations.



Denote by r {w(En). M:F,u]} the least upper bound of
r {FIw(En), w[F,uﬂ} with respect to F, where F may be any ele-
ment of Sl

Definition 4. A decision function WwH(En) 1s sald to be a
"best" decision function if r{m(En), w[?,uﬂ} becomes a mini-
mum for w(E,) = w¥(E,). (The weight function w[F,J_l is con-
sidered fixed.)

This definition of a "best" decision function seems to be
a very reasonable one, although 1t is not the only possible one.
One could reasonably define a decision function as "best" if it
minimizes a certain weighted average of the risk function.
However, there are certain properties of the "best" decision
function according to definition 4, which seem to Justify the
use of that definition. One of the most important properties
of a "best" decision function in the sense of definition 4 is
that the risk function 1s a constant, l.e.,1t has the same
value for all elements F of £ . This has been shown in the
case that.f\_1s a k-parameter family of distributions, and the
weight function nEF,q and the distribution functions F satisfy
eertain restrictive conditions. The constancy of the risk func-
tion seems to be very desirable from the point of view of appli-
cations since this property mekes it possible to evaluate the
exact magnitude of the risk associated with the statistical de-
cision. 1In the theory of confidence intervals the confidence
coefficient, a, i.e.4the probability that the confidence in-
terval will cover the unknown parameter, is independent of the
value of the unknown parameter. This fact, which is considered
to be of basic importance in the theory of interval-estimation,
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1s analogous to the constancy of the risk function in our gen-
eresl theory since l-a can be considered in a certain sense as
the risk associated with the interval estimation. (The queantity
l-a 1s exactly equal to the risk in the sense of our definitim,
1f the weight function takes only the values O and 1.)

Finally, I should like to meke some remarks about the re-
lationship of the general theory as outlined here, to the part-
cular theory of uniformly most powerful and asymptotically most
powerful tests which were discussed before. In the case of
testing the simple hypothesis that the unknown distribution
P(xy,¢.+,X,) 18 equal to a particular distribution F,(xy,...xp),
the system 8 of subasets of .. consists only of two elements wy
and wp where w; contains the single element F, and wy is the
complement of w3 in.N.. Hence, the decision function u(En) can
assume merely the values w) and wp. Let My, be the subset of
the ssmple space consisting of the points E, for which O(En)=0_|_
and let ""’2 be the set of points E, for which w(E,)=wz. The
set Hﬂz is ths complement of H“‘:I. in the sample space. Obvioualy
the set nuz is the critical region, in the sense of the Neymean-
Pearson theory. It is easy to see that if for any a(O<a<l) a
uniformly best critical region of sige g for testing F = F,
exists, then for any arbitrary weight function and for sny
Sdmissible (see definition 3) decision function w(E,), the set
ng will besuniformly best critical region. In particular, the
set n‘z corresponding to the "best®™ decision function (see def-
inition 4) will be a uniformly best critical region. Hence, the
form of the weight function affects merely the size of the re-
gion Map associated with the "best" decision function w(Ep),
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but it will always be a uniformly best critical region in the
sense of the Neyman-Pearson theory. 8imilar considerations
hold concerning asymptotically most powerful tests. Let the
sequence {wn} (n=1,2,...,8d inf.) of critical regions be an ss=
yuptotically most powerful test for testing the simple hypothe-
sis F = Fy. Then for sufficiently large n the region W, is
practically a uniformly best eritical region and, therefore, it
will be an excellent approximation to the region which is "best"
in the sense of definition 4 irrespective of the shape of the °
weight function of errors.

As we have seen, for bullding up a general theory of
statistical inference, the following three steps have to be
mades

1l. Formulation of the general problem of statistical
inference.

2. Definition of the "best" procedure for making sta-
tistical decisions, 1.e., definition of the "best"
statistical decision function.

3. Solution of the mathematical problem of calculating
the "best" statistical decision function.

The problem of statistical inference, as we have formulated
it here,seems to be sufficiently broad to cover the problems in
practical applications. The second step will always be, to a
certain extent, arbitrary. The definition of "best" decision
function given here seems to be a satisfactory one. Moreover,
under certain restrictive conditions it has the important prop-
erty that the risk function associated with the "best" decision
function is constant, 1.e., it has the same value for all ele-
ments of. ). However, there may be other definitions of a
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"best" decision function worth investigating. Decision funce

tions which minimize a certain average of the risk function may
be of special interest. Concerning step 3, there are many

mathematical problems as yet unsolved.



