
II TEE NEWMAN-PEARSON THEORY OF TESTING
A STATISTICAL HYPOTHESIS *'

The principles of statistical Inference as developed In the

last two decades by R. A. Fisher, Neyman and Pearson deal with the

problem of testing a hypothesis and with the problem of estima-

tion but not with the general problem of statistical Inference

as It has been formulated In the foregoing pages. A further re-

striction In these theories Is that they deal only with the case

that.lL.ls a k -parameter family of distribution functions, I.e.,

that the true but unknown distribution function F Is known to be

an element of a k-parameter family of functions

where elf...,ek are parameters. In this case the specification

of the values of the parameters specifies completely the distri-

bution function F.

A set of parameter values can be represented by a point In

a k-dlmenslonal Euclidean space called a parameter space. Be-

cause of the one-to-one correspondence between elements of JTL.

and points of the parameter space we can 1 den tl f y •£!• wl th the

parameter space. If for example, X̂ ,...,Xn are normally and In-

dependently distributed, each having the same distribution

(equatlon(2) ), then the parameter space Is a half plane where

g^ m |4 SB mean value, and 0 * 0g = a = standard deviation.

A hypothesis concerning F Is expressed by the statement

that the true parameter point lies In a certain subset u of the

parameter space-TV-. AS we have done before, we shall call the

hypothesis a simple one If w consists of a single point*

4) See, In this connection, references 12,15 and 14
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Otherwise, It la called a composite hypothesis, in the above

example the statement that p » 0, o = 1 Is a simple hypothesis,

while merely stating that p * 0 without specifying o is a com-

posite hypothesis.

For the sake of simplicity we shall confine ourselves to

the case of a single unknown parameter since this suffices to

Illustrate the basic Ideas of the theories of Fisher, Neyman

and Pearson. First, we shall deal with the Newman-Pearson

theory of testing a statistical hypothesis.

we assume that the unknown distribution function Is known

to be an element of a one-parameter family F(x1§ xg, . ..,xn, G)

and we wish to test the hypothesis 9 * 9O.

A simple example for this case Is the following : Let It

be known that X̂ ,...,̂  are Independently and normally distri-

buted with the same mean and unit variances, I.e., -A. Is the

one-parameter family of distributions

J •=Li2L'<" •••) "̂
-oo

and assume that we wish to test the hypothesis that 0 = 0.

According to the classical theory we reject this hypothesis If

and only If

—
(x

where e denotes a certain constant* The value of c la chosen

In such a way that the probability of |x|>c under the assumption

that the hypothesis 9 « 0 Is true. Is so small that we are

willing to reject the hypothesis. If we want this probability
1 06to be 5 percent, then c • r£— »
/IT



If, In the same example, we have made only two observa-

tions zl9 x2, so that the sample space is the Euclidian plane,

the critical region consists of all points for which

and all points for which gUi4gfc)< ̂g96 * If tne P°int

representing the observations falls within the critical region

(i.e., if the arithmetic mean of the two observations is larger

than i==£ or smaller than "1ŷ .
6) we shall reject the hypothesis

iHT /IT
that the mean value is zero.

But the classical theory does not suggest why this critical

region should be used. It merely proves that the probability

for the observation point to fall within the critical region

is five percent when the initial hypothesis is fulfilled* But

there are infinitely many regions which enjoy the same property,

and the classical theory does not give any reasons why Just the

one region mentioned should be chosen.

In order to arrive at a distinction between various criti-

cal regions, Neyman and Pearson advance the following considera-

tions. In making a statement of acceptance or rejection of a
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hypothesis, we may commit two types of errors: rejecting the

hypothesis although It Is true (error of type £), or falling

to reject It although It Is false (error of type II). If the

hypothesis consists In saying that the unknown parameter 0 has

a given value 0O, the situation may be summarized as follows:

Truth or Falsehood of Statement
Concerning the Hypothesis 9 = 60

True
Situation

II Statement Advanced
II © « ®o

e * 00 Correct

e^e0
|| Type II error

e/e0

Type I error

Correct

By alie of the critical region we mean the probability that the

point representing the observations will fall within the criti-

cal region, where the probability In question Is calculated

under the assumption that the hypothesis Is true. (Thus, In

the example used before, the size of the critical region was

five percent.) This may be expressed by saying that the sice

of the critical region is equal to the probability of commit-

ting a type I error*

foe general idea underlying the theory of Heyman and Pear-

son is to minimize the probability of type II, errors while keep-

ing the probability of type I errors constant*

If R is any region in the sample space, and 8 is the point

of the sample space which represents the observations, we shall

denote by rdU^) the probability of E lying in R calculated



under the assumption that ̂  Is the true value of the unknown

parameter 0, that is to say, P(R|ei) Is equal to the Stieltjea

integral /R dF(xlf ...,%, %) over the region R. fhus, if we

make the hypothesis 9 * 9O and choose R as a critical region

for this hypothesis, the size of the critical region will be

given by the expression P(R|eo). If the hypothesis is wrong

and the true value of 9 is 9lf then the probability of avoiding

an error of type II is P(R|ê )«

The expression P(R|9i), i.e., one minus the probability of

an error of type II, is called the power of the critical region

I ***** Aspect to the alternative hypothesis 9 • 9i.

the expression P(R|9) is a function of e. It may be plot-

ted as a carve, the ordlnate of which is equal to the size of R

if the abscissa is 90, and equal to the power of R with respect

to the alternative 9 * 9X if the abscissa is any value ̂  7* 9O.

fhis curve is called the power curve of the region R.

In the former example, in which the distribution was nor-

mal with unknown mean and unit variance, and the critical re-

gion chosen was |x| >!&S§ (where 1 is the arithmetic mean of
irn

the observations x̂ ĵ ,,..,*̂ ), t*» power curve can easily be

calculated and has the form shown belowt



16

In order to compare the test |x|>ii2§ with other possible

tests, we have to compare the above power curve with the power

curves of other critical regions which have the same size, five

percent.

In general, if we have two critical regions R and R1, both

of 'which have the desired size, and If the power curve of R1 Is

above that of R for the value 9 = 9^ then the critical region

Rf Is better than R for testing the hypothesis If the true value

of 9 happens to be 9^. For the probability of committing a type

I error Is the same whether R or R* Is used, while the probabi-

lity of committing a type II error when using R* Is smaller thai

when using R. If the power curve of Rf Is above that of R for

each 9 (except 9O for which the two curves coincide by assump-

tion), then R1 will be called uniformly more powerful than R.

The test using the critical region R Is called non-admissible

because Its use Is, under all circumstances, less favorable than

the use of R1 •

In order to make this clear, let us assume that a large

number of samples Is drawn, each of which consists of N Indivi-

dual observations. Let M be the number of such samples and let

two statisticians, whom we will call 8 and Sf, test the same

hypothesis, using each of the H samples. Assume that S uses the

critical region R for testing while Sf bases his tests on the

region R1. S and S9 will each obtain M answers to the question

as to whether the null hypothesis (the hypothesis to be tested)

should be rejected* Some of these answers will be right, others

will be wrong. Let us compare the records of 8 and S1. We hane

to distinguish between the case that the null hypothesis Is true

and the case that It Is false. a)ln the first case, the answers
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obtained by each statistician may either be that the hypothesis

la to be accepted - these answers are right; or that it should

be rejected - these answers are errors of type I. The probabi-

lity of committing a type I error by testing the null hypothesis

from a sample drawn at random Is equal to the size of the criti-

cal region used in testing. If H Is large, it la practically

certain that the relative frequency of type I errors will be ap-

proximately equal to their probability, i.e., to the size of the

critical region. Since R and R1 have, by assumption, equal siaa,

each of the two statisticians will commit approximately the

same number of errors. b)lf the null hypothesis is false, some

of the M answers obtained by each statistician will correctly

reject it, while others will accept It, thus committing errors

of type II. If It is large, the relative frequency of correct

answers will be approximately equal to the power of the test

used which we have pointed out is the probability of avoiding a

type II error. By assumption, the power of R1 Is greater than

that of R, regardless of what the true value of 9 is, provided

only that 9 Is different from 9O. Therefore, the relative fre-

quency of wrong answers obtained by S will tend to be greater

than the relative frequency of wrong answers obtained by S1.

Thus, if the null hypothesis Is false (no matter what the true

value of 9 is), it la practically certain that 8 will make more

false statements; while if the null hypothesis is true, 8 and

8V will commit an approximately equal number of false statements.

The method used by 8f, i.e., the application of the critical re-

gion R1, Is therefore superior Jbc the method used by 8, 1*., the

application of the critical region R.
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These considerations decide the choice between two criti-

cal regions of equal size if one of them is uniformly more

powerful than the other, i.e., if the power curve of the fonner

is above that of the latter for all values of 9 except Go (for

which the power curves coincide). On the other hand, if the

power curve of R1 is above that of R for some values of 9, but

below it for other values of 9, then we cannot choose one of

the two regions without introducing further principles on which

to base the choice.

If, for all values of 9, the power curve of a region R is

never below that of any other region R* of equal size, then R

is called a uniformly most powerful region, and the test cor-

responding to R a uniformly most powerful test.

The first principle for selecting & test is this; whenever

we can find ja uniformly most powerful test, we shall prefer It

i£ *H other tests using regions of the same size. Unfortun-

ately, uniformly most powerful tests do not exist in most cases.

In the example which we have used on page 11 let us consid-

er the region R* determined by the inequality x > ii§i . itnr
can easily be shown that Rv (like the region R considered be-

fore) has the size .05. The power curves of R and Rf are shown

below s
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We can see that for all 9 > 0, R1 is more powerful than R,

and vice versa for 9 <0. In such eases further principles have

to be formulated on which the choice should be based. It is

clear that the choice we make will depend on our a priori de-

gree of belief in the truth of the different possible values of

9. For instance, if we know a priori that 0 cannot be negative,

then we shall prefer R!

Moreover, it can be shown that R1 is uniformly most power-

ful if the parameter space is restricted to non-negative values

of 9. If negative and positive values of 9 are considered a

priori as equally possible we will most likely prefer R to Rf.

This example shows also that the choice of the critical

region depends essentially on.fl.* If .ft. consists of all non-

negative values of 9 then the region R* is a uniformly most

powerful test. If ja-conslsts of all non-positive values 9, then

the region Rf' given by x{ • •* • • is a uniformly best region.
V n

Finally, if jQ.conslst8 of all real values 9, then the use of the

region R seems to be more reasonable than that of Rf or R9 f.

Since uniformly most powerful regions rarely exist, Neynan

and Pearson introduced a further principle on which the choice

of the critical region should be based, namely, the principle

of unblasedness. A test is called unbiased if the power func-

tion of the test has a relative minimum at the value 9 « 9O

where 9O Is the hypothesis to be tested.

Some rationalisation of this principle can be given a Sup-

pose a test Is biased, then for some value 9lf In the neighbor-

hood of 9O, the power of the test is less than the size of the

region. But this means that the probability of rejecting the

hypothesis 9 * 9O Is larger If 90 Is true than if 9̂  is true,
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which is not a desirable situation.

In general, an Infinity of unbiased tests exist, hence we

need a further principle In order to select a proper test from

among them. We define as a uniformly most powerful unbiased

test one which Is at least as powerful or more powerful, with

respect to all alternate hypotheses, than any other unbiased

region of equal size* If a uniformly most powerful unbiased

test exists, and If we accept the principle of unblasedness,

then It Is obvious that It Is the most advantageous test to

use. Neyman and Pearson called a critical region corresponding

to a uniformly most powerful unbiased test a critical region of

type AI.

Referring to the example previously considered, the criti-

cal region given by |x| > c Is a region of type A^ for testing

the hypothesis In question. Another example of a region of

type A. la the following! Let Xj.,•***Xn be Independently and

normally distributed with zero means and a common variance.

Then, for testing the hypothesis that the common variance o2 Is

equal to a0
2, the critical region consisting of all points of

the sample spaoe which satisfy at least one of the Inequalities

»X2 + ... «•• 3n2>ci or x̂ 8 * ... * xn*<*2 9

Is a critical region of type Â  If the constants ox and 03 are

properly chosen.

The region of type Â  exists In an Important, but very re-

stricted, class of oases; there are many Instances In which It

does not exist. Therefore, Neyman and Pearson have Introduced

a third type of region, known as a region of type A. fhe re-

gion R Is said to be of type A if Its power function P(W/0) Is
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such that

and
„. d2P(Rle)

3»2

!«•**

for all regions Rv which satisfy 1) and have the same size as R.

The first condition restricts the region to be unbiased. The

second requires the power function of a region of type A to have

a greater curvature than that of any other unbiased region of

the same size. To put it crudely, it means that the region is

most powerful in the neighborhood of e0.

A critical region of type A exists under very weak condi-

tions which are fulfilled in most of the practical eases. How-

ever, the objection can be raised against a region of type A

that we are much more concerned with the behavior of the power

function for alternatives 0 which are far from 90 than for those

in the neighborhood of 9O. In spite of this, as we will see, a

good Justification of the use of a type A region can be given

in the light of some recent results.


