
Notre Dame Journal of Formal Logic
Volume 51, Number 3, 2010

Pure Second-Order Logic with
Second-Order Identity

Alexander Paseau

Abstract Pure second-order logic is second-order logic without functional or
first-order variables. In “Pure Second-Order Logic,” Denyer shows that pure
second-order logic is compact and that its notion of logical truth is decidable.
However, his argument does not extend to pure second-order logic with second-
order identity. We give a more general argument, based on elimination of quan-
tifiers, which shows that any formula of pure second-order logic with second-
order identity is equivalent to a member of a circumscribed class of formulas.
As a corollary, pure second-order logic with second-order identity is compact,
its notion of logical truth is decidable, and it satisfies a pure second-order ana-
logue of model completeness. We end by mentioning an extension to nth-order
pure logics.

1 Introduction

Pure second-order logic is second-order logic without the ability to express first-
order quantification. Perhaps its chief interest stems from the fact that, so far as the
ability to generalize goes, it is the mirror image of first-order logic. In its standard
application, first-order logic captures the logical features of objects and properties
when generalization over objects but not properties is allowed; pure second-order
logic captures the logical features of objects and properties when generalization over
properties but not objects is allowed; and second-order logic combines the two by
allowing generalization over both objects and properties. The study of pure second-
order logic is thus a natural complement to the study of first- and second-order logic.1

I owe the expression ‘pure second-order logic’ to Denyer [2], but there is a dif-
ference between my usage and his. Denyer takes pure second-order logic as second-
order logic without first-order variables. In my usage, in contrast, pure second-order

Received October 31, 2008; accepted December 19, 2009; printed June 16, 2010
2010 Mathematics Subject Classification: Primary, 03B15
Keywords: second-order logic, nth-order logic, elimination of quantifiers, compactness,

decidability of validity, model completeness
c© 2010 by University of Notre Dame 10.1215/00294527-2010-021

351

http://www.nd.edu/~ndjfl
http://www.nd.edu

352 Alexander Paseau

logic also lacks functional variables and functional quantification; its only variables
and quantifiers are for predicates. My terminological choice stems from the fact that
in the presence of a constant, first-order quantification may be simulated by func-
tional quantification: simply construe ‘∀xϕ(x)’ as ‘∀ f ϕ(f (c))’ and ‘∃xϕ(x)’ as
‘∃ f ϕ(f (c))’.

Denyer [2] shows that in pure second-order logic without second-order identity
the notion of logical truth is decidable. His argument is based on the notion of
the ϕ-condensate, Mϕ-cond, of a model M of a sentence ϕ in this language. This
structure takes as its domain the subset of M’s domain consisting of the interpretation
of the terms in ϕ, and it interprets other symbols as the restrictions of their M-
interpretations to this new domain. Thus,

dom(Mϕ-cond) = {τM
: τ is a term in ϕ},

cMϕ-cond
= cM , for constant c in ϕ,

f Mϕ-cond
= f M

∩ (dom(Mϕ-cond))k+1 for k-adic function symbol f,

RMϕ-cond
= RM

∩ (dom(Mϕ-cond))k for k-adic predicate R,

X Mϕ-cond
= X M

∩ (dom(Mϕ-cond))k for k-adic variable X.

Dom(Mϕ-cond) is nonempty since any sentence ϕ in this language contains at least
one term. Although Mϕ-cond might not be a realization of the given language because
its domain need not be closed under functional application, by extending the inter-
pretation of any function signs if necessary we can turn Mϕ-cond into a realization. In
any case, we can define the notion of quasi satisfaction between Mϕ-cond and a sen-
tence in the standard way, allowing function symbols to denote partial functions.2

In fact, Denyer shows by induction on the complexity of ϕ that M satisfies ϕ if and
only if Mϕ-cond quasi satisfies ϕ.3 Since Mϕ-cond’s domain is finite (because ϕ is of
finite length), Mϕ-cond’s quasi satisfaction of ϕ is a decidable property. Thus, if ϕ is
not a logical truth, it can be quasi-falsified in a model with domain of size no greater
than the number of terms in ϕ. It follows that the notion of pure second-order logical
truth is decidable. As Denyer also shows, the resulting logic is compact.

Our goal is to investigate whether these results still hold if we add second-order
identity to pure second-order logic. Given that the logical features of properties and
relations include facts about their identity and difference, this is a natural extension;
it is natural to suppose that the ability to quantify over predicates goes hand in hand
with the ability to state these predicates’ identity and distinctness. In the presence of
first-order variables and quantifiers, second-order identity may of course be defined.
For instance, we may define it as follows for the monadic case:4

∀X∀Y (X = Y ↔ ∀x(X x ↔ Y x)).

However, in the absence of first-order or functional quantification second-order iden-
tity cannot be defined and must be taken as primitive. Denyer’s argument cannot be
extended to this more general setting. In fact, the equivalence between M satisfying
ϕ and Mϕ-cond quasi-satisfying ϕ no longer holds. For example, the sentence

∀X∀Y ((Xc ∧ Y c) → X = Y)

of pure second-order logic with second-order identity is false in the model M with
domain {a, b} and cM

= a. But it is quasi-true (indeed true) in its condensate, which
has domain {a} and also interprets the constant c as a. Moreover, once second-order

Pure Second-Order Logic 353

identity is introduced some sentences in the new language do not contain any terms,
and condensates of their models consequently have empty domains.

We shall show that the analogous results are in fact true for pure second-order
logic with second-order identity by establishing a quantifier elimination result. This
technique is not usually applied to higher-order logics and it will be instructive to ap-
ply it here. The results turn out to be corollaries of this more general characterization
of the logic.

2 Pure Second-order Logic with Second-order Identity

Our aim is to show that any formula of pure second-order logic with second-order
identity is logically equivalent to a basic formula. We assume initially that the lan-
guage contains no function symbols and later sketch how to extend the result to
cover this case. The proof is an adaptation of the method of first-order quantifier
elimination for the case at hand; see Chang & Keisler [1, §1.5] for a simpler ar-
gument restricted to the first-order case along similar lines. The semantics is the
standard one for second-order logic, restricted to the language of pure second-order
logic with second-order identity. We begin with some definitions.

2.1 Definition of basic formula We are working in a pure second-order language
with second-order identity with signature 〈(ci)i∈C , (Ri)i∈R〉. We define basic formu-
las to be Boolean combinations of atomic formulas and size sentences. The atomic
formulas are

ci = c j for any constants ci and c j ,
Ri (ck) for any k-adic predicate constant Ri and k-tuple of constants ck ,
X i (ck) for any k-adic predicate variable X i and k-tuple of constants ck ,
Ri = R j for any k-adic predicate constants Ri and R j ,
X i = X j for any k-adic predicate variables X i and X j ,
Ri = X j for any k-adic predicate constant Ri and predicate variable X j ,
X j = Ri for any k-adic predicate constant Ri and predicate variable X j .

The size sentences are the sentences σn for n ≥ 1; that is,

∃X1 . . . ∃X2n (∧1≤i 6= j≤2n ¬X i = X j)

where the predicate variables are monadic. For n ≥ 1, σn is a formalization of the
claim that there are no fewer than 2n unary properties. Any model in which σn is
true therefore has a domain of n or more elements. For convenience, we let σ0 be
∀X (X = X), with X of some arbitrarily chosen adicity.

2.2 Definition of arrangement formula Any given sentence ϕ of pure second-
order logic with second-order identity contains l constants c1, . . . , cl , m predicate
constants R1, . . . , Rm (each of some adicity) and n predicate variables X1, . . . , Xn
(each of some adicity), where l,m, n are nonnegative integers, at least one of which
is positive. Let Lϕ be the language of pure second-order logic with second-order
identity whose nonlogical vocabulary is the nonlogical vocabulary of ϕ. Let an Lϕ-
arrangement consist of a set D of size l + m + n, an assignment of an element of
this set to each constant ci in ϕ, an assignment of an element of P(Dk) to each Ri
of adicity k in ϕ, and an assignment of an element of P(Dk) to each X i of adic-
ity k in ϕ. Given that D is of size l + m + n, we can choose distinct assignments
for all the constants if desired, and different assignments for all the predicates and

354 Alexander Paseau

predicate variables if desired. We then define an Lϕ-arrangement formula to be
the conjunction of all the atomic or negated atomic facts about the assignments of
c1, . . . , cl , R1, . . . , Rm , X1, . . . , Xn in an Lϕ-arrangement. Note that this conjunc-
tion is finite; that it is a formula of Lϕ ; and that, for each ϕ, there are finitely many
Lϕ-arrangements up to isomorphism (since l +m +n is finite) and consequently that
there are finitely many Lϕ-arrangement formulas.

Intuitively, an Lϕ-arrangement formula is a summary of all the facts about an Lϕ-
arrangement expressible by atomic formulas of the language Lϕ and their Boolean
combinations. An example will help clarify our definition. Let ϕ be the sentence

∃X ((R = X ↔ Xc) ∨ Xd).
In this instance, l = 2 and m = n = 1. An Lϕ-arrangement is then a set D of
four elements, with c and d each denoting one of these elements (possibly the same,
possibly different) and R and X each denoting subsets of D (possibly the same,
possibly different). There are several such arrangements but only a finite number of
them up to isomorphism. One such arrangement has the element assigned to c being
a member of the subset assigned to X but not R, and has the element assigned to d
being a member of neither (so that the elements assigned to c and d are distinct, as
are the subsets assigned to X and R). The arrangement formula for this particular
arrangement is

¬c = d ∧ ¬Rc ∧ Xc ∧ ¬Rd ∧ ¬Xd ∧ ¬X = R.
The arrangement formula captures all the facts about this particular arrangement in
this restricted language. The rough idea behind the proof of our main theorem is that
existentially quantifying over such a formula has at most the effect of adding a size
constraint on the domain.

In connection with this definition, we now prove a lemma.

Lemma 2.1 Let ξ1, . . . , ξn be literals of the language Lϕ for some formula ϕ.
(A literal is an atomic formula or its negation.) If their conjunction ∧i≤n(ξi) is
satisfiable, it is equivalent to a disjunction of Lϕ-arrangement formulas.

Proof If ∧i≤n(ξi) is satisfiable then there is some Lϕ-arrangement in which it is
true. Let (Ai)i≤N be the finitely many Lϕ-arrangement formulas corresponding to
the Lϕ-arrangements in which ∧i≤n(ξi) is true. We show that ∧i≤n(ξi) is equivalent
to ∨i≤N (Ai). Clearly, ∨i≤N (Ai) entails ∧i≤n(ξi). Conversely, consider a model
in which ∧i≤n(ξi) is true. Choose an arbitrary interpretation in this model for any
constants, predicates, and predicate variables that are in ϕ but not in ∧i≤n(ξi), and
consider the formula A which is a conjunction of all the Lϕ-literals that are true in
the resulting interpretation. A is an Lϕ-arrangement formula corresponding to an
Lϕ-arrangement in which ∧i≤n(ξi) is true; hence ∨i≤N (Ai) is true in this model
since A is a disjunct in ∨i≤N (Ai). Thus ∧i≤n(ξi) entails ∨i≤N (Ai). �

We require one more definition.

Definition 2.2 Let A be an Lϕ-arrangement formula. We define AX−i to be the
formula obtained from A by deleting all the conjuncts (if any) containing the variable
X i .

We are now in a position to prove our key lemma.

Lemma 2.3 Let A be an Lϕ-arrangement formula. Then ∃X i (A) is equivalent to
σk ∧ AX−i for some size sentence σk .

Pure Second-Order Logic 355

Proof If X i does not appear in A, let σk = σ0. If X i appears in A, let k be the
smallest size of the domain of any model of ∃X i (A). Since A is an Lϕ-arrangement
formula, it has finite models; hence ∃X i (A) does too, which shows that k is finite.
Clearly, ∃X i (A) entails σk ∧ AX−i . For the other direction, note first that we are done
if X i = R j or R j = X i or X i = X j or X j = X i appears as an unnegated conjunct
in A. For then since A is satisfiable, AX−i entails ∃X i (A). Thus we may assume that
all the identity literals involving X i in A are negations.

We give the proof for the case in which X i is of adicity 1. Suppose that ∃X i (A)
contains the constants c1, . . . , cl , and that for some nonnegative n, A states that there
are n distinct properties (denoted by predicate constants or predicate variables) that
agree with X i on the constants c1, . . . , cl but are all distinct from X i . Since there is a
model of ∃X i (A) of size k, it follows that 2k−l > n. Now any model of σk ∧ AX−i has
a domain with at least k elements. Since 2k−l > n, any such model’s domain has a
subset distinct from the n distinct properties that agree with the interpretation of X i
on the interpretation of the constants c1, . . . , cl . Hence this model satisfies ∃X i (A),
and so σk ∧ AX−i entails ∃X i (A). The case in which X i is of adicity m is proved
similarly, considering 2km

−lm
instead of its special case 2k−l when m = 1. �

With these definitions and lemmas in place, we now show by induction that any for-
mula of the language is logically equivalent to a basic formula. The atomic case
is given since atomic formulas are basic, as are the inductive steps involving the
Boolean operations, since the set of basic formulas is closed under these operations.
It remains to prove that any existentially quantified formula of the language is logi-
cally equivalent to a Boolean combination of basic formulas. Consider a formula of
the language of the form ∃Xq(ψ) in which we may assume that ψ is a basic formula.
Putting ψ in disjunctive normal form, we see that

ψ ≡ ∨i≤m(∧ j≤nξi j ∧6i),

where each ξi j is a literal and each 6i is a Boolean combination of size sentences.
Thus, by the first lemma,

ψ ≡ ∨i≤m(∨ j≤k Ai j ∧6i),

for some arrangement formulas Ai j . (If (∧ j≤n(ξi j) is unsatisfiable let 6i be
σ1 ∧ ¬σ1.) Hence, since 6i is a closed formula,

∃Xq(ψ) ≡ ∃Xq [∨i≤m(∨ j≤k Ai j ∧6i)]

≡ [∨i≤m∃Xq(∨ j≤k Ai j ∧6i)]

≡ [∨i≤m(∃Xq ∨ j≤k Ai j ∧6i)]

≡ [∨i≤m(∨ j≤k∃Xq Ai j ∧6i)].

But, by the second lemma, ∃Xq Ai j is equivalent to σl ∧ A
X−q
i j for some σl , which

is a Boolean combination of basic formulas. Thus we have proved the following
theorem.

Theorem 2.4 Any formula ϕ of pure second-order logic with second-order identity
with constant terms is equivalent to a Boolean combination of atomic formulas of
Lϕ and size sentences.

We sketch an extension of the theorem. Let ϕ be a sentence of pure second-order
logic with second-order identity with functional terms (but no functional variables, of

356 Alexander Paseau

course). We may ‘defunctionalize’ ϕ by uniformly replacing each distinct functional
term in ϕ with a distinct constant term. For example, the formula

∀X [X (f (c1)) ↔ (R1c1 ∨ R2(g(c2)) ∨ R3(h(c3, f (c1))) ∨ R4(f (c1)))]

may be defunctionalized as

∀X [Xe1 ↔ (R1c1 ∨ R2e2 ∨ R3e3 ∨ R4e1)],

where e1, e2, and e3 are new constants. Let ϕ(τ1, . . . , τm, d1, . . . , dn) be the
original formula containing m distinct functional terms τ1, . . . , τm and n dis-
tinct constants d1, . . . , dn , and suppose that ϕ(e1, . . . , em, d1, . . . , dn) is a de-
functionalization of ϕ(τ1, . . . , τm, d1, . . . , dn), where e1, . . . , em, d1, . . . , dn are
m + n distinct constants. (In the usual terminology: ϕ(e1, . . . , em, d1, . . . , dn)
is ϕ(τ1\e1, . . . , τm\em, d1, . . . , dn).) If ϕ(e1, . . . , em, d1, . . . , dn) is logically
equivalent to ψ(e1, . . . , em, d1, . . . , dn) then ϕ(τ1, . . . , τm, d1, . . . , dn) is logi-
cally equivalent to ψ(τ1, . . . , τm, d1, . . . , dn). We leave the easy inductive proof of
this fact to the reader (note the crucial absence of first-order or functional quantifiers
and variables in the language). Since any defunctionalized formula ϕ is logically
equivalent to a basic formula ψ , the theorem therefore generalizes to all formulas in
the language of pure second-order logic with second-order identity, with the proviso
that the class of basic formulas must be expanded to admit functional terms. (This
expansion is easily achieved: in the definition of basic formula replace constants
ci , c j , and ck with terms τi , τ j , and τ k in the first three clauses.)

3 Corollaries

The theorem has several corollaries. We draw three here. To begin with, in the first-
order setting, we say that a model A is an elementary submodel of B if and only if A
is a submodel of B and for any sentence ϕ(x1, . . . , xk) with free variables x1, . . . , xk
and k-tuple ak

∈ (Dom(A))k ,

(A, ak) |H ϕ(x1, . . . , xk) iff (B, ak) |H ϕ(x1, . . . , xk).

Consider an analogous property for the general second-order case. Suppose that A is
a submodel of B, and that for any formula ϕ(x1, . . . , xk, X1, . . . , Xl) with free first-
order variables x1, . . . , xk and free second-order predicate variables X1, . . . , Xl , for
any k-tuple ak of elements of Dom(A) and any l-tuple αl of respective members
of P((Dom A)n1), . . . ,P((Dom A)nl), where ni is the adicity of X i , the following
holds:

(A, ak, αl) |H ϕ(x1, . . . , xk, X1, . . . , Xl) iff

(B, ak, αl) |H ϕ(x1, . . . , xk, X1, . . . , Xl).

Now fix the logic to be pure second-order logic with second-order identity, so that ϕ
has no first-order variables. In that case we say that A is a qualitative submodel of B
if and only if the above property holds. Just as the label ‘elementary’ is intended to
indicate that A and B agree on the claims they make about their domains’ common
elements, the label ‘qualitative’ indicates that A and B agree on the claims they make
about their domains’ common qualities (properties and relations).

Suppose then that A is a submodel of B and that they are both models of some
complete theory in pure second-order logic with second-order identity. Since A is
a submodel of B, the atomic cases in the proof that A is a qualitative submodel of

Pure Second-Order Logic 357

B are given. The propositional cases are easily proved inductively. Finally, by the
theorem, any quantified formula is equivalent to a Boolean combination of atomic
formulas and size sentences, and since size sentences are closed formulas they are
by assumption satisfied by A if and only if they are satisfied by B, as A and B are
both models of the same complete theory. It thus follows that

(A, αl) |H ϕ(X1, . . . , Xl) iff (B, αl) |H ϕ(X1, . . . , Xl).

Hence any embedding between the models of a complete theory in this logic is qual-
itative, or to put it another way, any submodel A of a model B that agrees with B on
the sentences of the language is a qualitative submodel of B. This is the pure second-
order analogue of model completeness. In this sense, then, all complete theories in
pure second-order logic with second-order identity are model-complete.

Second, the theorem implies that logical truth for pure second-order logic with
second-order identity is decidable. Let ϕ be a sentence of the language (for simplicity
we assume ϕ has no functional terms). By the theorem, ϕ is equivalent to ϕeq,
a Boolean combination of atomic formulas (without predicate variables) and size
sentences, and the proof of the theorem shows that finding this ϕeq for any given ϕ
is a mechanical procedure. Suppose ϕeq contains l constants c1, . . . , cl , m predicate
constants R1, . . . , Rm and k size sentences, σn1 , . . . , σnk . Let S (for size) be the
largest subscript of any size sentence in ϕeq; that is, S = max(n1, . . . , nk). Then ϕeq

has a model if and only if it has a model with domain of size ≤ l + 2m
+ S.

The proof is based on three simple facts. First, a Boolean combination of ba-
sic formulas of the language and that same formula conjoined or disjoined with a
Boolean combination of the size sentences σn1 , . . . , σnk have the same models of
domain size ≥ S = max(n1, . . . , nk) if and only if they have the same models of
domain size S. The reason is that the sentence σni only distinguishes between two
categories of models: those of domain size ≥ ni and those of domain size < ni .
Second, the distinctness of the interpretations of any two constants may be ensured
if necessary in any domain of size ≥ l. Third, the distinctness and identity of the
interpretations of the predicate constants R1, . . . , Rm in a model M may be ensured
by the presence of 2m elements in the domain, since there are at most 2m different
regions of the form ±RM

1 ∩ · · · ∩±RM
m (where +RM

i is RM
i and −RM

i is (¬Ri)
M).5

Now for any domain of given finite size there are finitely many ways to interpret
the nonlogical vocabulary of ϕeq. Hence there are only finitely many potential mod-
els (up to isomorphism) of ϕeq of domain size ≤ l + 2m

+ S. If ϕ is a logical truth,
it will be true in all these models; if ϕ is not a logical truth, one of these models will
be a model of ¬ϕeq and thus of ¬ϕ. This provides a decision procedure for logical
truth in this language.

Third, the theorem and its proof imply that pure second order-logic with second-
order identity is compact. We give two proofs of this fact, first an elegant proof
then a proof that generalizes. Suppose some set of sentences 0 in pure second-order
logic with second-order identity is unsatisfiable. Each member γ of 0 is a sentence
and thus by the theorem is equivalent to a Boolean combination of sentences of the
form ci = c j , Ri (ck), Ri = R j , σn . Let us call a formula that is both a basic for-
mula and a sentence a basic sentence. The trick is to notice that basic sentences
may be “first-orderized.” Sentences of the form ci = c j are already first-order;
any sentence of the form Ri = R j where Ri = R j are k-adic predicate constants

358 Alexander Paseau

can be replaced by ∀xk(Ri (xk) ↔ R j (xk)), where xk is a k-tuple of distinct first-
order variables; and any sentence σn can be replaced by its first-order equivalent:
∃x1 . . . ∃xn(∧1≤i 6= j≤n¬xi = x j). (σ0 may be replaced with ∀x(x = x).) Let γ ∗

be the first-orderization of a basic sentence γ , and for any model M in pure second-
order logic with second-order identity of a basic sentence, let M∗ be the associated
first-order model, that is, the model with the same domain as M and which interprets
the constants and predicate constants in the same way as M . It is easy to verify by in-
duction on formula complexity that if γ is a basic sentence then M is a model for γ if
and only if M∗ is a model for γ ∗. For example, if γ is the sentence ‘R1 = R2 ∧ R1c’
and M is the model in pure second-order logic with second-order identity that satis-
fies γ with domain {1, 2}, RM

1 = RM
2 = {1} and cM

= 1, then M∗ is the first-order
model with domain {1, 2}, RM∗

1 = RM∗

2 = {1} and cM∗

= 1, and M∗ satisfies γ ∗,
which is ‘∀x(R1(x) ↔ R2(x))∧ R1c’. Returning to 0, since by assumption 0 has no
(pure second-order logic with second-order identity) model, 0∗ has no (first-order)
model. Since first-order logic is compact, it follows that some finite subset of 0∗,
(0∗)fin, is unsatisfiable in first-order logic. The finite subset of 0 that corresponds to
(0∗)fin is correspondingly unsatisfiable in pure second-order logic with second-order
identity. Hence the logic is compact.

For the second proof of compactness, recall the Henkin-style compactness proof
of first-order logic. Any set of first-order sentences 1 all of whose finite subsets
are satisfiable can be extended to a maximal set 1max with this property. Given its
maximality, 1max is witness-complete (in a possibly augmented language). We may
now use 1max to define a familiar term model M(1max). The salient facts about
M(1max) are that its domain’s elements are equivalence classes of constants, with
constants ci and c j in the same equivalence class if and only if ci = c j ∈ 1max, that
Ri (ck) is true in M(1max) if and only if Ri (ck) ∈ 1max, and that ∃xϕ(x) is true in
M(1max) if and only if ϕ(c) ∈ 1max for some constant c.

We can replicate this proof for pure second-order logic with second-order iden-
tity. Let1 be a finitely satisfiable set of sentences of this logic, and let1eq be the set
of basic sentence equivalents of the members of 1; that is, 1eq

= {ϕeq
: ϕ ∈ 1}.6

Clearly, 1eq is finitely satisfiable. As above, we extend 1eq to a maximal finitely
satisfiable set, (1eq)max, which is witness-complete. Witness-completeness here
consists of two conditions: if ∃Xϕ(X) ∈ (1eq)max then ϕ(Ri) ∈ (1eq)max for
some predicate constant Ri (of the same adicity as the predicate variable X); and
if Ri 6= R j then for some k-tuple of constants ck (where k is the adicity of Ri
and R j) either Ri ck

∈ (1eq)max and ¬R j ck
∈ (1eq)max, or R j ck

∈ (1eq)max and
¬Ri ck

∈ (1eq)max. We then define a pure second-order model M(1eq)max based on
(1eq)max in the same way as in the first-order case: the domain’s elements are equiv-
alence classes of constants, constants ci and c j are in the same equivalence class
if and only if ci = c j ∈ (1eq)max and Ri (ck) is true in M(1eq)max if and only if
Ri (ck) ∈ (1eq)max. Unlike the first-order case, however, the resulting pure second-
order model need not be a model of (1eq)max. For example, ¬∃Xϕ(X) and thus all
sentences of the form ¬ϕ(Ri)may be in (1eq)max, but ∃Xϕ(X)may nevertheless be
true in M(1eq)max if some indefinable—in the augmented language—k-ary property
of the domain satisfies ϕ(X). This is why the Henkin compactness proof does not
work for standard second-order logic, which is not compact. But it does work for the
case for pure second-order logic with second-order identity, since as we shall now

Pure Second-Order Logic 359

prove the following biconditional obtains for any basic sentence ϕ:

ϕ ∈ (1eq)max iff M(1eq)max
|H ϕ.

First note that (1eq)max, being a maximal finitely satisfiable set, has the familiar
maximality properties: for any ϕ, either ϕ or ¬ϕ but not both are in (1eq)max,
ϕ1 ∧ ϕ2 ∈ (1eq)max if and only if ϕ1 ∈ (1eq)max and ϕ2 ∈ (1eq)max, and so
on. We therefore need only consider four cases: (i) ϕ is ci = c j ; (ii) ϕ is Ri (ck);
(iii) ϕ is Ri = R j ; and (iv) ϕ is σn . All other basic sentences are Boolean com-
pounds of these and their satisfaction of the biconditional follows inductively from
the atomic cases by the maximality properties of (1eq)max. Cases (i) and (ii)
are given by the definition of M(1eq)max. To prove case (iii), suppose that ϕ is
Ri = R j and that Ri = R j ∈ (1eq)max. If M(1eq)max

|H ¬Ri = R j then
without loss of generality some element of (dom(M(1eq)max))k is in the extension
of the interpretation of Ri but not of R j (where k is the adicity of Ri and R j),
so that Ri (ck) ∈ (1eq)max and R j (ck) 6∈ (1eq)max, hence ¬R j (ck) ∈ (1eq)max.
But this is a contradiction, since all the finite subsets of (1eq)max are satisfi-
able. Conversely, if M(1eq)max

|H Ri = R j then ¬Ri = R j 6∈ (1eq)max by
the witness-completeness of (1eq)max, and so by the maximality of M(1eq)max,
Ri = R j ∈ (1eq)max. For the final case (iv), suppose ϕ is σn . If σn ∈ (1eq)max

then the first witness-completeness property of (1eq)max ensures that there are 2n

monadic predicates R1, . . . , R2n such that (∧1≤i 6= j≤2n ¬Ri = R j) ∈ (1eq)max, and
by the second witness-completeness property there are at least n constants c1, . . . , cn
such that (1≤i 6= j≤n¬ci = c j) ∈ (1eq)max. By the definition of M(1eq)max, this
model’s domain therefore has size ≥ n and so M(1eq)max

|H σn . Conversely, if
M(1eq)max

|H σn then there are (at least) n constants in the language such that
¬ci = c j ∈ (1eq)max for any i 6= j and so ¬σn 6∈ (1eq)max; otherwise, (1eq)max

would not be finitely satisfiable. By the maximality of M(1eq)max it follows that
σn ∈ (1eq)max.

This proves that M(1eq)max is a model of 1eq, whether or not M(1eq)max is a
model of (1eq)max. It follows that 1eq is satisfiable, which implies that the origi-
nal set of sentences 1 is satisfiable too. Pure second-order logic with second-order
identity is therefore compact.

4 An Extension

We conclude with a brief remark about pure nth-order logics with pure nth-order
identity. By this we mean an nth-order logic whose only variables and quantifiers are
nth-order predicate ones. In other words, a pure nth-order logic is an nth-order logic
for some n ≥ 2 without quantifiers or variables of order m for any m < n and without
functional variables or quantifiers.7 We foresee no difficulty in extending our results
to pure nth-order logic with nth-order identity. One result whose proof obviously
does not extend to the pure nth-order case is our first proof of compactness. The first
proof of compactness for pure second-order logic with second-order identity relies
on the fact that the first-order fragment of second-order logic is compact. This proof
only generalizes to the nth-order case on the assumption that the fragment of nth-
order logic with only (n − 1)th-order quantifiers is compact. In contrast, the second
proof of compactness lends itself to direct generalization to this case, assuming our
main theorem’s generalization.

360 Alexander Paseau

Notes

1. By “properties” we mean properties and relations of any arity.

2. In the absence of first-order quantification any functionally incomplete Mϕ-cond

can no longer be discriminated from M by the latter’s satisfaction of the sentence
‘∀xk

∃y(f (xk) = y)’, where xk is a k-tuple.

3. Denyer does not distinguish between satisfaction and quasi satisfaction but it is clearest
to do so.

4. Principles of this kind are often called “Extensionality.”

5. Under most circumstances, for instance, if some of the predicate constants R1, . . . , Rm
are of adicity greater than 1, and in particular if some of the different predicate constants
are of different adicity, this is overkill.

6. We may pick a single ϕeq for each ϕ if we like.

7. Let mth-order generality mean the presence of mth-order predicate variables and quanti-
fiers. Any nth-order logic that admits mth-order generality for m < n can express the fact
that a dyadic predicate Rm+1 has an infinite chain:

∀xm
∃ym(Rm+1xm ym) ∧ ¬∃xm(Rm+1xm xm)

∧ ∀xm
∀ym

∀zm((Rm+1xm ym
∧ Rm+1 ym zm) → Rxm zm)).

(Making the appropriate modifications, any predicate Rm+1 of adicity ≥ 2 will do instead
of a dyadic predicate.) Note also that if an nth-order logic admits both mth-order and
(m + 1)th-order generality for some m < n then it has the ability to express the version
of the above sentence with Rm+1 existentially quantified over. The generalization of our
main theorem’s proof will therefore not hold for such nth-order logics, since they have
sentences with no finite domains. Also, any nth-order logic with mth-order generality
for m < n has a fragment which may be thought of as first-order logic moved up m − 1
levels. The natural generalization of pure second-order logic is thus nth-order logic with
only nth-order predicate variables and quantifiers.

References

[1] Chang, C. C., and H. J. Keisler, Model Theory, 3d edition, vol. 73 of Studies in Logic
and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1990.
Zbl 0697.03022. MR 1059055. 353

[2] Denyer, N., “Pure second-order logic,” Notre Dame Journal of Formal Logic, vol. 33
(1992), pp. 220–24. Zbl 0760.03001. MR 1167978. 351, 352

Acknowledgments

Thanks to Nick Denyer and an NDJFL referee for comments.

Wadham College
Oxford OX1 3PN
UNITED KINGDOM
alexander.paseau@philosophy.ox.ac.uk

http://www.emis.de/cgi-bin/MATH-item?0697.03022
http://www.ams.org/mathscinet-getitem?mr=1059055
http://www.emis.de/cgi-bin/MATH-item?0760.03001
http://www.ams.org/mathscinet-getitem?mr=1167978
mailto:alexander.paseau@philosophy.ox.ac.uk

	1. Introduction
	2. Pure Second-order Logic with Second-order Identity
	2.1. Definition of basic formula
	2.2. Definition of arrangement formula

	3. Corollaries
	4. An Extension
	Notes
	References
	Acknowledgments

