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Set-theoretical Invariance Criteria for Logicality

Solomon Feferman

Abstract This is a survey of work on set-theoretical invariance criteria for log-
icality. It begins with a review of the Tarski-Sher thesis in terms, first, of permu-
tation invariance over a given domain and then of isomorphism invariance across
domains, both characterized by McGee in terms of definability in the language
L∞,∞. It continues with a review of critiques of the Tarski-Sher thesis and a pro-
posal in response to one of those critiques via homomorphism invariance. That
has quite divergent characterization results depending on its formulation, one in
terms of FOL, the other by Bonnay in terms of L∞,∞, both without equality.
From that we move on to a survey of Bonnay’s work on similarity relations be-
tween structures and his results that single out invariance with respect to potential
isomorphism among all such. Turning to the critique that calls for sameness of
meaning of a logical operation across domains, the paper continues with a result
showing that the isomorphism invariant operations that are absolutely definable
with respect to KPU−Inf are exactly those definable in full FOL; this makes use
of an old theorem of Manders. The concluding section is devoted to a critical
discussion of the arguments for set-theoretical criteria for logicality.

1 Introduction

This is a survey of work in terms of set-theoretical invariance criteria on the question,
Which truth-valued operations on one or more relations are to be regarded as logical?
It is a sequel to my article [10] that took for its point of departure Tarski’s thesis
[25], as modified by Sher [23]. Tarski had proposed to identify the logical operations
on relations over a given domain D with those that are invariant with respect to
arbitrary permutations of D. Sher generalized this to operations across domains that
are invariant with respect to bijection between domains (equivalently, isomorphism
of structures with these domains). McGee [19] characterized the logical operations
in Tarski’s sense as precisely those that are definable in the language L∞,∞ with
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equality over a given domain, and from that he obtained a related characterization of
the operations that are logical in Sher’s sense.

I critiqued the Tarski-Sher thesis in [10] on three grounds, the first of which is that
it assimilates logic to mathematics, the second that the notions involved are not set-
theoretically robust, that is, not absolute, and the third that no natural explanation is
given by the thesis of what constitutes the same logical operation over arbitrary basic
domains. In this last respect, as an example of a notion that could compare domains
of different cardinality, I had proposed consideration in [10] of the homomorphism
invariant operations (in a strong sense); it was shown op. cit. that the operations
that are definable from monadic homomorphic invariant operations are exactly those
expressible in the first-order predicate calculus Lω,ω without equality. However,
Bonnay [5; 6] later characterized the operations that are outright homomorphism
invariant as just those definable in the language L∞,∞ without equality. Bonnay went
on to consider operations that are invariant under other kinds of similarity relations.
His main results distinguish potential isomorphism (Isop) among all such relations,
and that has led him to propose Isop-invariance as the criterion for logicality; it turns
out that the operations invariant under potential isomorphism go somewhere beyond
those definable in the language L∞,ω.

The Tarski-Sher thesis and McGee’s results concerning it are reviewed in Sec-
tion 2; then my critiques of it and result for homomorphism invariant operations
are reviewed in Section 3, and Bonnay’s work is described in Section 4. Following
that, I propose in Section 5 an explanation of what constitutes the same operation
across arbitrary domains in terms of those that are uniformly definable within the
language of set theory. Moreover, in order to meet the second critique above, one
should restrict to definitions that are absolute with respect to a system of set theory
that makes no assumptions about the size of the universe. Specifically, I look at
operations on relational structures that are definable in an absolute way relative to
KPU−Inf, that is, Kripke-Platek set theory with urelements and without the Axiom
of Infinity. It is shown to follow from an old result of Manders [17] (reproved in
Väänänen [26]) that the operations in question on structures whose domains consist
of urelements are exactly those expressible in the ordinary first-order predicate cal-
culus with equality. The aguments in favor of set-theoretical invariance criteria for
logicality are discussed critically in the concluding Section 6; despite the attraction
of various of the results that have been obtained, my overall conclusion is that none
of the set-theoretical invariance proposals on offer provide a sufficiently convincing
criterion for logicality in their own right.1

2 The Tarski-Sher Thesis. A Review

Tarski’s article, “What are logical notions?” [25] was based on the text of a lecture
that he had given for a general audience at Bedford College, London, in 1966. With
Tarski’s agreement, it was edited by John Corcoran, but it did not appear until three
years after his death in 1983. Tarski’s answer to the question in his title is informal,
but essentially it takes logical notions to be relations between individuals, classes,
and relations over an arbitrary nonempty domain D of individuals, and singles out
the logical relations as exactly those that are invariant under arbitrary permutations
of D. In his lecture, Tarski gave several simple examples of logical notions in this
sense, as follows.
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(i) The only classes of individuals which are logical are the empty class and the
universal class.

(ii) The only binary relations between individuals which are logical are the empty
relation, the universal relation, the identity relation, and its complement.

(iii) At the next level, that is, classes of classes of individuals, Tarski mentions
as logical notions those given by cardinality properties of classes such as
“that a class consists of three elements, or four elements. . . that it is finite, or
infinite—these are logical notions, and are essentially the only logical notions
on this level.”

(iv) Finally, among relations between classes (of individuals) Tarski points to sev-
eral which are “well known to those of you who have studied the elements of
logic” such as “inclusion between classes, disjointness of two classes, over-
lapping of two classes,” and so on.

Tarski did not attempt to give examples of logical notions in higher types than those
in (iii) and (iv), though, as explained in [10], his proposal makes sense for objects in
the finite relational type structure over D, where the objects at each level are relations
of one or more arguments between objects of lower levels. Nor did Tarski raise the
question of characterizing the logical notions, and more generally of the operations
on members of the type structure that are invariant under arbitrary permutations.
This is understandable in view of the general audience to which his lecture was
addressed. The first such characterization was provided by McGee [19], who showed
that an operation is logical according to Tarski’s permutation-invariance criterion if
and only if it is definable in the language L∞,∞; this is the language defined in set
theory which allows—in addition to the operation of negation—conjunctions and
disjunctions of any cardinality, together with universal and existential quantification
over a sequence of variables of any cardinality.

For simplicity in the following, and as is common in discussions of logicality, we
shall restrict attention to the question of what are logical notions Q of type level 2,
that is, relations between relations R between individuals.2 The letter ‘Q’ is used
here for such because logical notions in Tarski’s sense at this level over a given
domain D are the restriction to D of a generalization of quantifiers due to Lind-
ström [15]. Given R = (R1, . . . , Rn) with Ri a ki -ary relation between elements
of D (ki a nonzero natural number) we write Q D(R1, . . . , Rn) orQ D(R) to express
that the relation Q D holds of R over D. For each permutation π of D, each Ri , and
each ki -ary sequence a of elements of D, let π(Ri ) be the relation that holds of π(a)
if and only if Ri holds of a; then π(Q D) is defined to be the relation that holds of
(π(R1), . . . , π(Rn)) if and only if Q D holds of (R1, . . . , Rn). In these terms we can
now define

Q D is a logical notion in Tarski’s sense over D if and only if Q is
invariant under all permutations of D; that is, π(Q D) = Q D for all per-
mutations π of D.

In the following we also think of relations as operations to truth values; that is,
we take Q D(R) = T if Q D holds of R and = F otherwise. In those terms we
call Q D a logical operation (in Tarski’s sense) over D if it meets the permutation
invariance criterion. In general, we shall treat the Q D as relations and as operations
interchangeably.
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Tarski’s examples (iv) of logical notions over an arbitrary domain are the inclu-
sion relation, the disjointness relation, and the overlapping relation; they are relations
(or operations) of monadic type, that is, have unary relations as arguments. The first
holds between two classes A and B of individuals just in case A ⊆ B, the second
holds just in case A ∩ B = ∅ and the third just in case A ∩ B 6= ∅; formal-logically
speaking these are expressed in the first case by use of the universal quantifier to-
gether with implication, in the second case by the same with negation, and in the
third case by use of the existential quantifier together with conjunction. The pure
universal quantifier ∀ relative to D is the unary relation of monadic type that holds
of A just in case A = D, while the pure existential quantifier ∃ relative to D holds
of A just in case A 6= ∅. For each cardinal number κ , the cardinality quantifier
∃!κ is also of monadic type and consists of all subclasses A of D whose cardinality
card(A) = κ , while the quantifier ∃≥κ consists of all A for which card(A) ≥ κ .
In particular, the “infinitely many. . . exist” quantifier is given by ∃≥ω. All these are
logical notions in Tarski’s sense. Not mentioned by Tarski are examples of per-
mutation invariant notions of nonmonadic type, such as being a linear ordering or
well-ordering.

We are here taking Tarski’s extensional, set-theoretical framework at face value
for dealing with the question, What are logical notions?—and save any reconsid-
eration of that until the end. Granted that framework, the permutation invariance
criterion is a natural necessary condition for logicality if one agrees that what counts
as a logical notion should be independent of the nature of the particular entities in
a given domain of discourse and of the properties of those entities. Tarski himself
motivated it in relation to the Klein Erlanger Programm, which identified the notions
to be studied in various geometries such as Euclidean, affine, and projective geome-
try according to the groups of (one-one and onto) transformations under which they
are invariant; similarly the notions appropriate to topology are those invariant under
all homeomorphisms of a topological space with itself. With logic thought of as
the mathematics of structures of the most general sort, that is, with no distinguished
mathematical content, the transformations to be considered are simply all the permu-
tations. Actually, the criterion was not original with Tarski; it was apparently first
proposed by F. I. Mautner [18], though he pursued the idea in a somewhat different
direction from the one taken by Tarski. But it had already been noted in an article
by Lindenbaum and Tarski [14] that every relation definable in the simple theory of
types is provably invariant under every permutation of the domain of individuals.
It is thus surprising that he did not expressly have this in mind when he raised the
issue of the division between logical and extra-logical notions in his article [24] on
logical consequence, instead of saying that “. . . no objective grounds are known to
me which permit us to draw a sharp boundary between the two groups of terms.”
And within the Tarski school itself, his former student Andrzej Mostowski [20] had
already brought attention to those unary operations of monadic type that are invariant
under all permutations of the domain of individuals, including the various cardinality
quantifiers mentioned above.

Consider a relation Q D over a domain D of signature σ = (k1, . . . , kn) (ki > 0).
As already mentioned, McGee characterized which such Q D are invariant under
permutations of D in terms of the language L∞,∞, whose formulas for the statement
of his result are generated as follows.
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(i) For each i = 1, . . . , n and ki -ary sequence of variables x , Pi (x) is an atomic
formula; also each equation between variables is an atomic formula;

(ii) if ϕ is a formula then ¬ϕ is a formula;
(iii) if 8 is any nonempty set of formulas then

∨
ϕ[ϕ ∈ 8] is a formula;

(iv) if ϕ is a formula and U is any nonempty set of variables then (∃U )ϕ is a
formula.

Given a domain D, an interpretation R = (R1, . . . , Rn) in D of the predicate sym-
bols P1, . . . , Pn , respectively, a formula ϕ of L∞,∞, and an assignment s to the free
variables of ϕ in D, one inductively defines as usual

(D, R) |H ϕ[s].

When ϕ is a sentence, this is simply written

(D, R) |H ϕ.

ϕ is said to define Q D over D if for any R = (R1, . . . , Rn) with Ri a ki -ary relation
in D, we have

Q D(R) = T iff (D, R) |H ϕ.

Theorem 2.1 (McGee [19]) Q D is invariant under arbitrary permutations of the
domain D of individuals if and only if Q D is definable in L∞,∞.

It is straightforward that every L∞,∞ definable operation is invariant under arbitrary
permutations of the domain of individuals. The idea of McGee’s proof in the other
direction is to lay out all possibilities for the operation Q D as its arguments range
over all possible R ∈ D[σ ]. This can be achieved using a set W of variables with
card(W ) = κ + 1. Enumerate D as {dα : α < κ}, and W as {xa : α < κ} ∪ {y}.
The xα act as formal surrogates of the dα . Let ψR be the diagram of R under this
association together with ¬(xα = xβ) for each α < β, and then take χR to be the
formula which says that there exist xa(α < κ) such that ψR holds and such that each
y in the domain is one of the xα . Finally, take ϕ to be the disjunction of all the χR
over all sequences R such that Q D(R) holds; note that this final disjunction may be
of cardinality as large as 2κ , and the longest quantifier sequences in ϕ are of length
at least κ .

McGee says that this theorem “gives us good reason to believe that the logical
operations on a particular domain are the operations invariant under permutations.” I
shall take strong issue with that below. But even if one accepts that, it is natural not
to tie logical operations to specific domains. And, indeed, McGee goes on to con-
sider operations across domains which for each nonempty set D of individuals gives
a relation Q D of type σ over D. Then he argues (rightly, in my view), that “(i)n order
for an operation across domains to count as logical, it is not enough that its restric-
tion to each particular domain be a logical operation.” For example, McGee defines
a relation of “wombat disjunction” QW across domains which acts like ordinary dis-
junction when there are wombats in the universe of discourse D and like conjunction
when there are no wombats in D. Clearly wombat disjunction is not a logical notion,
though on each domain it is invariant under permutations. Another example given is
that of “affluent cylindrification” $(A), for A unary, which holds in a domain just in
case some rich person belongs to the class A; again this is not a logical operation,
but meets the permutation invariance condition on “upper-crust domains” in which
every person is rich. However, on an equinumerous domain containing at least one
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rich and one poor person, the operation $ is not permutation invariant, by taking A
to be a singleton of one of these. Thus McGee is led to consider an extension of
the permutation invariance criterion for logicality as proposed by Sher [23]: by the
Tarski-Sher thesis, McGee means the claim that the logical operations across do-
mains are just those invariant under bijections between them. The following is then
a corollary of Theorem 2.1.

Theorem 2.2 (McGee [19]) An operation Q across domains is a logical operation
according to the Tarski-Sher thesis if and only if for each cardinal κ 6= 0 there is a
formula ϕκ of L∞,∞ which describes the action of Q on domains of cardinality κ .

More specifically, one can take ϕκ to be the formula constructed for the proof of
Theorem 2.1 for any domain D of cardinality κ . Whatever such ϕκ is taken, in order
to obtain a single definition of the operation Q across arbitrary domains, one must
take something like the disjunction—over the class of all nonzero cardinals κ—of
ϕκ conjoined with the sentence expressing that there are exactly κ elements in the
domain. This goes well beyond L∞,∞ as ordinarily conceived.

3 Critiques of the Tarski-Sher Thesis. Homomorphism Invariant Operations

McGee’s results lay bare the character of logical operations according to the Tarski-
Sher thesis. In my article “Logic, logics and logicism” [10], I raised three basic
criticisms of it:

I. The thesis assimilates logic to mathematics, more specifically to set theory.

II. The set-theoretical notions involved in explaining the semantics of L∞,∞ are not
robust.

III. No natural explanation is given by it of what constitutes the same logical opera-
tion over arbitrary basic domains.

The first of these, also referred to as the “overgeneration problem,” speaks for itself,
given McGee’s results, but it will evidently depend on one’s gut feelings about the
nature of logic as to whether this is considered objectionable or not. For Sher, to take
one example, that is no problem. Indeed, she avers that

The bounds of logic, on my view, are the bounds of mathematical reasoning.
Any higher-order mathematical predicate or relation can function as a logical
term, provided it is introduced in the right way into the syntactic-semantic
apparatus of first-order logic. (Sher [23], pp. xii–xiii, italics mine)3

What that “right way” is for Sher, is spelled out in a series of syntactic/semantic
conditions A–E (op. cit. pp. 54–55), of which the crucial ones are the “first-order”
condition A—that a logical operation be of type-level at most 2—and condition E,
which is that for invariance under bijections. The paradigms of condition A are
the cardinality quantifiers of Mostowski [20] and, more generally, the generalized
quantifiers of Lindström [15], where the bound variables range over individuals of
the domain. But note that despite the appearance of this being limited to first-order
quantification, L∞,∞ also accommodates second-order quantification as a logical
operation across domains (in the Tarski-Sher sense). This is seen as follows. First,
given formulas ψ(X) and θ(x) of this language, where X is a second-order variable,
by ψ({x : θ(x)}) is meant the result of substituting θ(t) for each occurrence of
an atomic formula t ∈ X in ψ . Thus, on a domain of cardinality κ, (∀X)ψ(X) is
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equivalent to the statement ϕκ that there exist κ elements xα which are distinct and
exhaustive of the domain, and are such that∧

S⊆κ
ψ({y :

∨
y = xα[α ∈ S]})

holds. (Again, we require a conjunction of cardinality 2κ in this formula.) So, from
Theorem 2.2 above, the restriction to bound first-order variables is only apparent,
and Sher’s condition A is not set-theoretically restrictive. By a trick similar to the
preceding, we can quantify over arbitrary relations on the domain, and then say that
they are functions, and so on. In particular, we can express the Continuum Hypoth-
esis and many other substantial mathematical propositions as logically determinate
statements on the Tarski-Sher thesis. Of course, if one follows Tarski by allow-
ing consideration of invariant notions in all finite types, the assimilation of logic
to set theory is patent on his thesis, without needing to invoke infinite formulas at
all. But insofar as one or the other version of the thesis requires the existence of
set-theoretical entities of a special kind, or at least of their determinate properties, it
is evident that we have thereby transcended logic as the arena of universal notions
independent of “what there is.”

The critique II is in a way subsidiary to that in I. The notion of “robustness” for
set-theoretical concepts is vague, but the idea is that if logical notions are at all to be
explicated set-theoretically, they should have the same meaning independent of the
exact extent of the set-theoretical universe. For example, they should give equivalent
results in the constructible sets and in forcing-generic extensions. Gödel’s well-
known concept of absoluteness provides a necessary criterion for such notions, and
when applied to operations defined in L∞,∞, considerably restricts those that meet
this test. For example, the quantifier “there exist uncountably many x” would not be
logical according to this restriction, since the property of being uncountable is not
absolute. My proposed alternative to the Tarski-Sher thesis in Section 5 below will
hinge directly on a restriction to absolute notions.

At first, critique III was for me perhaps the strongest reason for rejecting the
Tarski-Sher thesis, at least as it stands. It seems to me there is a sense in which the
usual operations of the first-order predicate calculus have the same meaning indepen-
dent of the domain of individuals over which they are applied. This characteristic is
not captured by invariance under bijections. As McGee puts it, “(t)he Tarski-Sher
thesis does not require that there be any connections among the ways a logical oper-
ation acts on domains of different sizes. Thus, it would permit a logical connective
which acts like disjunction when the size of the domain is an even successor cardinal,
like conjunction when the size of the domain is an odd successor cardinal, and like a
biconditional at limits” (McGee [19], p. 577).

In the end (though perhaps more for other reasons), McGee accepted the Tarski-
Sher thesis as a necessary condition for an operation across domains to count as log-
ical, but not a sufficient one. I agree completely, and believe that if there is to be an
explication of the notion of a logical operation in set-theoretical/semantical terms,
it has to be one which shows how the way an operation behaves when applied over
one domain D connects naturally with how it behaves over any other domain D′.
I made a first step in that direction in [10], where I proposed a notion of (strong)
homomorphism invariance as a criterion for logicality of operations Q across do-
mains. By such a homomorphism h : (D, R) → (D′, R′) is meant one that is a
map from D onto D′ such that for each i = 1, . . . , n and each ki -ary sequence x
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of individuals in D, and for h(x) the corresponding sequence of h values in D′, we
have Ri (x) if and only if R′

i (h(x)). Immediately excluded by homomorphism invari-
ance are the identity relation between individuals and all the cardinality quantifiers.
This evidently brings us closer to first-order logic. Then a truth-valued operation
Q across domains is said to be (strong) homomorphism invariant if whenever h is
such a homomorphism then Q(D, R) = Q(D′, R′). The paradigmatic homomor-
phism invariant operation is that of existential quantification, which is of monadic
type. Note also that the truth-functional operations such as negation and conjunction
preserve homomorphism invariance. In the following we shall write FOL for the
first-order predicate calculus with equality, and FOL− for the same without equality.

Theorem 3.1 (Feferman [10]) The operations definable in FOL− are exactly those
λ-definable from homomorphism invariant operations of monadic type.

To explain the sense of λ-definability that is intended in this statement, consider, for
example, the operation Q(P, R, S) defined for unary P and binary R and S in FOL−

by the sentence
∀x[P(x) → ∃y∃z(R(x, y) ∧ S(x, z))],

which is equivalent to

¬∃x[P(x) ∧ ¬∃y∃z(R(x, y) ∧ S(x, z))].

Then its λ-definition is given in terms of the operations of negation (N ), conjunc-
tion (C), and existential quantification (E) and the characteristic functions p, r, s
of P, R, S, respectively, by N (E(λx[C(p(x), N (E(λyE(λzC(r(x, y), s(x, z))))]).
The reader is referred to [10] for the proof of Theorem 3.1.

As is shown by the result of Denis Bonnay in the next section, homomorphism
invariant operations in general go far beyond the first-order predicate calculus. For a
simple example for the moment, consider the negation of the well-foundedness quan-
tifier WF, that is, the operation Q D(R) for binary R which holds in a given domain
D just in case there exists a function f : N → D such that ∀n[R( f (n + 1), f (n))];
that is homomorphism invariant.

Independently of such examples, one immediate criticism of the homomorphism-
invariance criterion for logicality is that it excludes the identity relation, which is
ordinarily counted as a part of FOL. Actually, that is a controversial matter. See,
for example, the discussion by Quine of that question in his Philosophy of Logic
([22], pp. 61ff.). On the one hand, he says that it “seems fitting” that the predicate
of = is to be counted with predicates such as < and ∈ as part of mathematics and
not of logic. On the other hand, he gives three arguments for counting = as part of
logic. The first is the completeness of the logic of the first-order predicate calculus
with equality, the second is the “universality” of =, and the third is the possibility
of “simulating” = in a language L containing finitely many predicate symbols; by
that he means its explicit definition from those predicates to satisfy the condition of
identity of indiscernibles.

Finally, as pointed out to me by Bonnay, it is hard to see how identity could be
determined to be logical or not by a set-theoretical invariance criterion of the sort
considered here, since either it is presumed in the very notion of invariance itself
that is employed—as is the case with invariance under isomorphism or one of the
partial isomorphism relations considered in the next section—or it is eliminated from
consideration as is the case with invariance under homomorphism.
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4 Invariance With Respect to Similarity Relations. Bonnay’s Work

As mentioned above, it has been shown by Bonnay that the operations in general
that are homomorphism invariant go far beyond those definable in FOL. The result
is stated in his paper [6], but a proof is not given there; instead the reader is referred
back to his dissertation.

Theorem 4.1 (Bonnay [5]) An operation Q across domains is invariant under ho-
momorphisms if and only if it is definable in the language L∞,∞ without equality.

The proof of this in [5] proceeds by a straightforward modification of McGee’s proof
of Theorem 2.1 using a detour via quotient structures. Moreover, for each choice of
finitely many predicate symbols, this language is essentially of the same expressive
power as full L∞,∞, by means of Quine’s method of simulating identity.

Bonnay has obtained further interesting results by consideration of a more general
question: Which operations across domains are S-invariant where S is a “similarity”
relation M ∼S M ′ between structures M = (D, R) and M ′

= (D′, R′) of the same
signature? Basic examples of such are isomorphism and strong homomorphism as
above. But Bonnay also considers a number of others, including α-isomorphism and
potential isomorphism, defined by Karp [13] as follows: An α-isomorphism I from
M = (D, R) to M ′

= (D′, R′) is a sequence I0 ⊇ I1 ⊇ · · · ⊇ Iβ ⊇ · · · ⊇ Iα
such that (i) Iα is nonempty, (ii) for any β ≤ α, Iβ is a set of partial isomorphisms
f between these two structures with dom( f ) ⊆ D and rng( f ) ⊆ D′, and (iii) if
β + 1 ≤ α then for any f ∈ Iβ+1 and x in D (respectively, y in D′) there exists g
in Iβ with f ⊆ g and x ∈ dom(g) (respectively, y ∈ rng(g)). We write M ∼α M ′

if there exists such an α-isomorphism; the similarity relation in this case is denoted
Isoα .

A potential isomorphism I between M = (D, R) and M ′
= (D′, R′) is a

nonempty collection of partial isomorphisms such that for each f ∈ I and x ∈ D
(respectively, y ∈ D) there exists g ∈ I with f ⊆ g and x ∈ dom(g) (respectively,
y ∈ rng(g)). We write M ∼p M ′ if there exists such an I , and the similarity relation
in this case is denoted Isop.

The similarity relations are partially ordered by S ≤ S′ if and only if S′
⊆ S.

The smallest S with respect to ≤ is the universal relation Univ between structures of
the same signature; where there are no constant symbols, this agrees with Iso0. For
any α, Iso0 ≤ Isoα ≤ Isop ≤ Iso, where Iso is the relation of being isomorphic;
the strong homomorphism relation is incomparable with Isop. It is a familiar result
due to Fraïssé [12] that two structures are elementarily equivalent in Lω,ω(= FOL)
just in case they are in the Isoω relation. Karp [13] obtained analogous results for
the languages L∞,ω whose formulas ϕ are generated by arbitrary conjunctions and
disjunctions and closed under ordinary quantification, that is, formation of ∀xϕ and
∃xϕ for any variable x . One defines the quantifier rank of ϕ, qr(ϕ), in a natural way.
Then Karp’s theorems are that for limit α, two structures are in the Isoα relation if and
only if they satisfy the same sentences ϕ for which qr(ϕ) < α, and two structures
are in the Isop relation if and only they satisfy the same sentences of L∞,ω.

The class of operations Q across domains that are invariant under a given similar-
ity relation S is denoted by Inv(S). Bonnay’s main result characterizes the similarity
relation Isop in two different ways in the ≤ relation. The first of these makes use of a
natural additional criterion for logicality, namely, that any operation definable from
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the operations in Inv(S) should already be invariant under S. We can explain this no-
tion of definability by setting up a language L S containing a generalized quantifier
symbol Q for each Q invariant under S, with the semantics that interprets Q as Q in
the way explained by Lindström [15]. Taking CInv(S) to consist of all the operations
definable in L S , Bonnay argues for the following:

Principle for Closure under Definability CInv(S) = Inv(S).

This is a strong condition; for example, S = Isoω fails to satisfy it. A counterexample
is provided by the “infinitely many” quantifier: it is Isoω invariant but one constructs
a quantifier from it that is first-order definable but which is not Isoω invariant. In
fact, Bonnay’s main result is the following.

Theorem 4.2 (Bonnay [6]) Isop is the least S in the ≤ relation for which Iso1 ≤ S
and CInv(S) = Inv(S).

Bonnay also defines an operation Sim dual to the operation Inv; the domain of
Inv is the class of all similarity relations S between structures M and the domain
of Sim is the class of all collections K of operations Q across structures. Inv
maps the former to the latter, while Sim maps the latter to the former as follows:
two structures M,M ′ of the same signature are in the relation Sim(K ) if for ev-
ery Q in K , Q(M) = Q(M ′). The classes K of operators across structures are
ordered by K ≤ K ′ if and only if K ⊆ K ′. It is shown that the class of all sim-
ilarity relations S and the class of all classes of operators K form a Galois con-
nection with respect to their respective orderings. In particular, for the class K
of operators definable in L∞,ω, we have Sim(K ) = Isop by Karp’s theorem and
CInv(Sim(K )) = Inv(Sim(K )) by Theorem 4.2. Note well that this does not tell
us that Inv(Sim(K )) = K ; for, the well-foundedness quantifier WF is Isop-invariant
but not definable in L∞,ω ([13]).

In further favor of Isop as a distinguished similarity relation, Bonnay quotes the
following characterization of it due to Barwise in terms of the notion of absoluteness,
to be discussed at length in Section 5.

Theorem 4.3 (Barwise [3]) Isop is the greatest S in the ≤ relation that is absolute
with respect to ZFC and for which ZFC proves that S ≤ Iso.4

Theorems 4.2 and 4.3 together lead Bonnay to state the following:

Isop Thesis for Logicality An operator Q is logical if and only if Q is Isop-invariant.
(Bonnay [6], p. 61).

We shall discuss Bonnay’s arguments for this thesis at length in Section 6 below. But
I’d like here to look at his approach via similarity relations from a different angle.
Historically speaking, one started with natural logics L like Lω,ω and L∞,ω and
asked for a mathematical characterization of elementary equivalence with respect
to such L , the results being given in these particular cases by the work of Fraïssé
and Karp via the similarity relations Isoω and Isop, respectively. In each case, we
could ask of the given L , if each operation in L is to be counted as logical, what
else ought to be counted as logical? Let KL be the class of operations defined in
L . The first thought from a similarity invariance point of view is to count as logical
all those operations invariant under Sim(KL), that is, the operators in Inv(Sim(KL)).
But in each of the two specific cases, as we have seen, that takes us beyond the given
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logic. In the case of Lω,ω an example is provided by the “infinitely many” quantifier,
and in the case of L∞,ω that is provided by the “well-foundedness” quantifier. But
if one asks whether an individual operator Q ought to be counted as logical, given
that each operator in L is counted as logical, we are asking that it pass too strong a
test. For we could say of each operator defined in L that the reason it is logical is
based on a more refined invariance condition than that of being invariant with respect
to the associated similarity relation Sim(KL). And then we should not require of a
new operation Q under consideration to pass anything stronger than such a refined
condition. Specifically, in the case of FOL, the following theorem tells us that there
is no reason to count as logical anything stronger than what is counted as logical
anything that is not Ison-invariant for some n.

Theorem 4.4 Q is definable in FOL if and only if there exists n < ω such that Q
is Ison-invariant.

Proof In the forward direction, one shows as usual that if Q is definable by a sen-
tence ϕ of FOL with qr(ϕ) < n, then Q is Ison-invariant. The idea of the proof
in the converse direction stems from Fraïssé [12]. First, one shows that for each n
and M there is a sentence χn(M) of FOL such that for all M ′,M ∼n M ′ if and
only if M ′

|H χn(M). Moreover, the set Typn of all sentences χn(M) is finite. Let
Typn = {χn(M1), . . . , χn(Mk)} for suitable M1, . . . ,Mk . Then given an operation
Q and an n such that whenever M ∼n M ′ then Q(M) = Q(M ′), we can take the
disjunction of those (and only those) χn(Mi ) for which Q(Mi ) = T as the sentence
that defines Q in FOL. A similar result can be stated for L∞,ω using the work of
Karp [13]. �

5 Adding Absoluteness Criteria to Isomorphism Invariance

To return to the central question, let’s look in more detail at the absoluteness criterion
suggested by my critique II of the Tarski-Sher thesis. Let T be a set of axioms
in the language of set theory. A formula ϕ of set theory is defined to be absolute
with respect to T if ϕ is invariant under end-extensions for models of T . It was
proved some time ago by Kreisel and me, as strengthened in Feferman [8], that
ϕ is absolute with respect to T if and only if it is 1 relative to T ; that is, it is
provably equivalent to both a 6 and a 5 formula relative to S where here by 6(5)
is meant the class of formulas in prenex form in which all unbounded quantifiers are
existential (universal). Note well that the notion of being absolute is relative to a
system of axioms. For his proof of the consistency of AC and GCH relative to ZF,
Gödel needed to show that a number of notions are absolute relative to that system.
It was since established that all those notions are absolute relative to Kripke-Platek
set theory KP; below it will be more useful to deal with the slightly weaker system
KPU, which allows urelements, and if we speak of absoluteness without explicit
reference to a system of axioms, one means relative to KPU. This system includes
the Axiom of Infinity, Inf, in the form that guarantees the existence of ω; also, in it
(even without Inf) every 6(5) formula is equivalent to a 61(51) formula. Among
the notions that are absolute with respect to KPU are being an ordinal, being ω, and
being a formula of FOL true in a structure M . Among those that are not absolute are
being an uncountable ordinal, being ω1, and being the power set of ω.

For the determination of which operators across domains ought to be counted as
logical on the basis of certain absoluteness invariance criteria, it turns out one can
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make use of results about absolute logics within the framework of abstract model-
theory. The general background is explained in the chapters by Ebbinghaus [7] and
Flum [11] of the volume Model-Theoretic Logics [2]. For our purposes, an abstract
logic is determined by specifying for each signature σ of type level 2 a set Sentσ of
“sentences” and a relation M |H ϕ between structures of signature σ and members
of Sentσ , satisfying certain regularity conditions. A class C of structures of a given
signature σ is said to be an elementary class for L , if for some ϕ ∈ Sentσ , C consists
of all M for which M |H ϕ. Logics are ordered by the relation L ≤ L ′ which holds
when every class C that is elementary for L is also elementary for L ′. Examples of
logics that we shall consider below are Lω,ω(= FOL), L∞,ω, and L∞,∞. The reg-
ularity conditions usually assumed on a logic L insure that Lω,ω ≤ L . Lindström’s
famous theorem [16] characterizes Lω,ω as the largest logic satisfying the compact-
ness theorem and the Löwenheim-Skolem theorem; he also showed that it is the
largest logic such that the set of L-valid sentences is recursively enumerable and that
satisfies the Löwenheim-Skolem theorem. Another relevant theorem from the same
paper characterizes first-order logic as the largest logic that satisfies the Löwenheim-
Skolem-Tarski theorem; in other words, no sentence of the logic can have models in
just one infinite cardinal. That is a generalization of a result of Mostowski for his
cardinality quantifiers.

A logic L is said to be absolute if the sets Sentσ and the |H relation for L are abso-
lute. Barwise [4] initiated the study of absolute logics with his proof that L∞,ω is the
largest logic which is absolute for KP if no restriction is made as to the sets Sentσ .5

The subject of set-theoretic definability of logics and in particular of absolute log-
ics was extensively surveyed and considerably advanced in the chapter by Väänä-
nen [26] in [2]. A number of further results have been obtained in the 1995 thesis [1]
of Väänänen’s student Jyrki Akkanen. A natural question to ask after Barwise’s re-
sult is whether FOL can be characterized by more refined absoluteness criteria than
that of [4]. Indeed, in an unpublished manuscript dated 1979, Ken Manders proved
the following.

Theorem 5.1 (Manders [17]) Lω,ω is the largest logic L that is absolute relative to
KPU−Inf, whose set of sentences is contained in the hereditarily finite sets HF and
whose structures M = (D, R) have domains D consisting only of urelements.

A published proof of Theorem 5.1 is to be found in [26], pp. 620–22, though the re-
sult there (3.1.5) is incorrectly stated for KP−Inf instead of KPU−Inf.6 Väänänen’s
proof of this theorem is different from Manders’ in that it makes essential use of
my notion of adequacy to truth of the notion of one logic L being adequate to truth
for another language L ′ [9]. Roughly speaking what this means is that the satisfac-
tion relation for L ′ for all subformulas of any given formula of L ′ is, in a suitable
sense, uniformly implicitly invariantly definable in L . L is said to be truth maximal
if whenever it is adequate to truth in L ′ we have L ′

≤ L . The main results in [9] for
that notion were that a logic is truth maximal if and only if it has the1-interpolation
property, and that Lω,ω is truth maximal among all logics whose sentences are rep-
resented in HF. The crucial step in Väänänen’s proof is to push back being absolute
with respect to KPU−Inf to the 1-interpolation property.

Relative to any set S of axioms in the language of KPU, an operation Q across
domains is said to be absolute if the relation between D and R such that D is a set of
urelements and Q D(R) = T is absolute. When Q is preserved under isomorphism, it
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serves to determine a Lindström quantifier in the sense of [15]. Then we can formally
extend the language of FOL by a symbol Q for Q, with its semantics determined by
Q.

Lemma 5.2 If Q is absolute with respect to an extension S of KPU−Inf then the
logic L = Lω,ω(Q), obtained by adjoining Q to Lω,ω, is also absolute with respect
to S.

This is easily seen by the fact that the satisfaction relation for L among subformulas
of any given formula is 1 in Q with respect to S, and that being 1 in 1 definable is
equivalent to being 1 definable.

Theorem 5.3 If an operation Q across domains is isomorphism invariant and is
absolute with respect to KPU−Inf then Q is definable in Lω,ω.

By Lemma 5.2, this is a corollary of Manders’ Theorem 5.1.

Conjecture 5.4 If an operation Q across domains is homomorphism invariant and
is absolute with respect to KPU−Inf then Q is definable in FOL−.

6 Discussion

Bonnay [6] presents an interesting analysis of the informal arguments for various set-
theoretical invariance criteria for logicality. He formulates the first such, for Tarski’s
thesis, in terms of the idea of levels of generality. In the Klein Erlanger Programm,
levels of generality of a geometry are distinguished by the levels of generality of the
associated groups of transformations. Thus, for example, affine geometry is more
general than Euclidean geometry since the affine transformations are more general
than the isometric transformations (as well as the more general similarity transfor-
mations). Continuing in this vein leads one to explaining logic, which is the most
general theory of all, in terms of the largest group of transformations, namely, the
class of permutations on any given domain, and to the identification of the logical
notions with those invariant under permutations of the underlying universe. More
explicitly as given by Bonnay, the generality argument for Tarski’s thesis runs as
follows.

G.1 The distinctive feature of logic among other theories is that it is the most
general theory one can think of.

G.2 The bigger the group of transformations associated with a theory, the more
general the theory.

G.3 The biggest group of transformations is the class of all permutations.
[Hence]
The logical notions are notions invariant under permutation. ([6], p. 33)

By contrast, Bonnay analyzes the informal case made by Sher and others for the
permutation invariance criterion in terms of what he calls the formality argument,
which runs as follows.

F.1 Logic deals with formal notions, as opposed to nonformal ones.
F.2 Formal notions are those which are insensitive to arbitrary switching of

objects.
F.3 A notion is insensitive to arbitrary switching of objects if and only if it is

invariant under permutation.
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[Hence]
The logical notions are the notions invariant under permutation. ([6], p. 34)

Bonnay rejects the Tarski-Sher thesis on the grounds that it overgenerates, for reasons
along the lines of my Critique I, and more specifically because it counts as logical
any isomorphism invariant mathematical notion. At the conclusion of [6] he tries to
make a case instead for his Isop thesis, via a pair of informal arguments modifying
the preceding. The first is what he calls the mild generality argument, that runs as
follows.

MG.1 Logic deals with very general notions, but not only with trivial notions.
MG.2 The truth-functions, functional application, and first-order existential quan-

tification are logical operators.
MG.3 The good notion of invariance for logicality is to be provided by a similarity

relation S such that S is closed under definability.
MG.4 The good notion of invariance for logicality is to be provided by the lowest

similarity relation compatible with MG.2 and MG.3.
[Hence]
The logical notions are the Isop-invariant notions. ([6], p. 59)

Bonnay’s reasoning is that the conclusion follows from MG.1–MG.4 by means of
his main result stated as Theorem 4.2 above. And in place of the formality argument,
he proposes the following lack of content argument, to reflect the idea that “logical
notions should not encapsulate any problematic set-theoretical content.”

LC.1 Logic deals with notions which are deprived of nonformal content and of
problematic set-theoretic contents.

LC.2 The good notion of invariance for logicality is to be provided by a similarity
relation S such that S ≤ Iso.

LC.3 The good notion of invariance for logicality is to be provided by a similarity
relation S such that S is absolute with respect to ZFC.

LC.4 The good notion of invariance for logicality is to be provided by the greatest
similarity relation S satisfying LC.2 and LC.3.
[Hence]
The logical notions are the Isop-invariant notions. ([6], p. 60)

In this case, the reasoning is supported by Barwise’s Theorem 4.3 above.
Bonnay returns to the overgeneration problem as a challenge to the Isop thesis

for logicality in his final subsection (4.3). Though cardinality quantifiers like ∃≥κ

for κ an uncountable cardinal are not logical on this thesis, the quantifier “there exist
infinitely many” is. Thence, as Bonnay acknowledges, all arithmetical truths count
as logical truths, and “the overgeneration problem is at least eased, if not solved, by
the shift from Iso invariance to Isop-invariance” ([6], p. 65).7

I don’t find either of the modified arguments—mild generality and lack of
content—convincing even with the supporting theorems, and certainly not as com-
pelling on the face of it as the generality and formality arguments for permutation
invariance as the criterion for logicality. For one thing, the presumption in both
arguments is that invariance is to be expressed in terms of a single, global (or
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“coarse-grained”) similarity relation.8 But Theorem 4.4 above uses invariance in-
stead with respect to what might be called a collection of local similarity relations,
and reaches the much different conclusion that the logical notions are just those
definable in FOL. And even if one accepts that invariance is to be given by a single,
global similarity relation, it seems to me equally plausible to substitute for LC.3 the
following:

LC.3′ The good notion of invariance for logicality is to be provided by a similarity
relation S such that S is absolute with respect to KPU−Inf,

since much more so than absoluteness with respect to ZFC (and even more so than
with respect to KP), absoluteness with respect to KPU−Inf guarantees that one does
“not encapsulate any problematic set-theoretical content.” (Not that the Infinity Ax-
iom is mathematically problematic; rather it is problematic as an assumption in the
explanation of what counts as a logical notion.) My guess would be that if one substi-
tutes LC.3′ for LC.3, one would be led (in analogy to Barwise’s Theorem 4.3 above)
to the conclusion that the logical notions are just those invariant under Isoω, thus
bringing us closer to FOL as given by Theorem 5.3. But beyond meeting my Cri-
tiques I and II of the Tarski-Sher thesis, which have also been Bonnay’s motivations,
Theorem 5.3 was mainly designed to meet Critique III, namely, that the criterion of
isomorphism invariance does not explain what it means to be the same logical opera-
tion for domains of different size. To be sure, the result of Theorem 5.3 still does not
insure sameness of meaning, since we can define an operator in FOL by means of a
sentence which has one semantics on domains, say, of ≤ 5 elements and another on
domains of ≥ 6 elements. Similar examples can be provided in FOL−, so this is not
an issue that depends in any essential way on whether identity is taken to be a logical
notion. For either case, a better explanation is needed of what constitutes sameness
of meaning across domains if Critique III is to be dealt with in any way beyond what
is done here.

Coming back to the Critique II: by requiring of the definition of Q that it be
absolute relative to a weak set theory without the axiom of infinity, we are insuring
that its meaning does not depend on any special set-theoretical assumptions about
what exists beyond the most elementary set-constructions that generate HF from any
set of urelements. That is, it rests on just what is needed for a theory of the syntax of
any humanly manageable system of logical reasoning.

This last connects with the completely different program to characterize logical
notions in terms of rules of inference that implicitly determine them; that was ini-
tiated by Gerhard Gentzen and has subsequently been pursued by Dag Prawitz, Per
Martin-Löf, Ian Hacking, Kosta Došen, and Jeffery Zucker among others; cf. [10],
Section 6.5 for references. And that returns us to the traditional conception of logic
as the study of the forms of correct reasoning, of what invariably leads from truths to
truths. Despite the various appealing results above, and despite my personal feeling
that the logical operations do not go beyond those represented in FOL, I do not find
the various arguments for logicality based on any of the invariance notions consid-
ered here convincing in their own right. In my view, the semantical and syntactic
(inferential-theoretic) approaches are complementary to each other, and a proper ex-
planation of what are logical notions and of what is logic—if there is to be one—will
have to take both into account. In the direction of a characterization of the logical
notions that does just that, consider, by way of conclusion, the following result.
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Theorem 6.1 Suppose Q is an operation across domains that is
(i) isomorphism invariant,

(ii) absolute with respect to KP,
(iii) and is such that the set of valid sentences of Lω,ω(Q) is recursively enumer-

able.
Then Q is definable in FOL.

Proof By Lemma 5.2 and (ii), the logic Lω,ω(Q) is absolute with respect to KP, and
of course its sentences are representable in HF. Then by Theorem 3.2 of Barwise [4]
(p. 325), the logic Lω,ω(Q) is contained in L A, where A is the least admissible set
that contains ω, namely, the constructible sets below the least nonrecursive ordi-
nal. That language L A satisfies the Löwenheim-Skolem theorem, hence so also does
Lω,ω(Q). But then by Lindström [16], Lω,ω(Q) is contained in Lω,ω. �

Note that condition (ii) is more robust on the set-theoretical side than absoluteness
with respect to KPU−Inf as assumed in Theorem 5.3. Re condition (iii), it is plausi-
ble to assume of any system of human logical reasoning, that its sentences are repre-
sented in HF and that it makes use of some finite set of effective rules. It follows that
the totality of sentences that can be shown to be valid in the given logic constitutes
a recursively enumerable set. Of course, it does not follow from that that (iii) must
hold, since there is no guarantee that any such system of rules for the semantics that
is determined by the given Q is complete.

Notes

1. The material for this article is drawn from the second of three Tarski Lectures that I gave
at the University of California at Berkeley during the week of April 3, 2006, this one
under the title, “The ‘logic’ question.” It has not previously been published.

2. In [10] I also allowed individuals and truth values as arguments to an operation Q over
any given domain; the restriction here to n-ary relations as arguments (n > 0) is taken
for simplicity.

3. Bonnay [6], 1.2, points out that any mathematical notion in the form of a class K of
structures (D, R) of a given signature that is closed under isomorphism determines a
logical notion Q in the Tarski-Sher sense by Q(D, R) = T if and only if (D, R) ∈ K .

4. In fact, Isop is absolute with respect to KP by [4].

5. There are larger logics that are absolute with respect to stronger systems such as L∞,ω

(WF) and its further extension by the “game quantifier.”

6. Akkanen [1] pointed out that the “infinitely many” quantifier is absolute with respect to
KP−Inf. I recently asked Väänänen what the problem is with his proof of 3.1.5 in [26],
and he replied that it only works if one is dealing with L-structures M = (D, R) for
which D is a set of urelements.

7. In defense of the Isop thesis, Bonnay calls on natural language use to support the logi-
cality of arithmetic notions, as well as the quantifiers “infinitely many” and “most” (the
latter only for countable structures), [6], pp. 64–65. On the face of it this seems at odds
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with his questioning my appeal to natural language use in support of the homomorphism
invariance criterion via reduction to monadic quantifiers ([6], p. 44); however, there are
independent considerations for each. For a comprehensive treatment of quantifiers in
natural language and logic see Peters and Westerståhl [21].

8. Denis Bonnay has pointed out that this criticism also applies to the original generality
argument, since it is a hidden assumption there that one is dealing with a global similarity
relation, rather than a family of such relations.
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