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Ramsey’s Theorem for Pairs and
Provably Recursive Functions

Alexander Kreuzer and Ulrich Kohlenbach

Abstract This paper addresses the strength of Ramsey’s theorem for pairs
(RT2

2) over a weak base theory from the perspective of ‘proof mining’. Let

RT2−
2 denote Ramsey’s theorem for pairs where the coloring is given by an ex-

plicit term involving only numeric variables. We add this principle to a weak
base theory that includes weak König’s Lemma and a substantial amount of 60

1 -
induction (enough to prove the totality of all primitive recursive functions but
not of all primitive recursive functionals). In the resulting theory we show the
extractability of primitive recursive programs and uniform bounds from proofs
of ∀∃-theorems.

There are two components of this work. The first component is a general
proof-theoretic result, due to the second author, that establishes conservation re-
sults for restricted principles of choice and comprehension over primitive recur-
sive arithmetic PRA as well as a method for the extraction of primitive recursive
bounds from proofs based on such principles. The second component is the main
novelty of the paper: it is shown that a proof of Ramsey’s theorem due to Erdős
and Rado can be formalized using these restricted principles.

So from the perspective of proof unwinding the computational content of con-
crete proofs based on RT2

2 the computational complexity will, in most practical
cases, not go beyond primitive recursive complexity. This even is the case when
the theorem to be proved has function parameters f and the proof uses instances
of RT2

2 that are primitive recursive in f .

1 Introduction

Ramsey’s theorem for pairs and two colors RT2
2 has been at the center of a lot of

research in computability theory and reverse mathematics aiming at determining
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the complexity of the homogeneous sets in RT2
2 and the contribution to the prov-

ably recursive functions of RT2
2 when added to theories such as RCA0 from reverse

mathematics (see, e.g., Specker [22]; Jockusch [10]; Hirst [9]; Seetapun and Sla-
man [20]; Cholak et al. [3]; Hirschfeldt and Shore [8]; Simpson [21]; Hirschfeldt
et al. [7]). One of the main open questions (see [3]) is whether the provably recur-
sive functions of RCA0+RT2

2 are the primitive recursive ones or whether the totality
of the Ackermann function can be established in this system. From the perspec-
tive of applied proof theory (proof mining) this question is of relevance for deter-
mining what type of bounds one can expect to be extractable from concrete math-
ematical proofs of—say—50

2-sentences ∀m ∈ N∃n ∈ N Aq f (m, n) or sentences
∀ f ∈ NN∃n ∈ N Aq f ( f, n) (with Aq f quantifier-free) that are based on RT2

2. Ex-
perience from the logical analysis of many proofs in different areas of mathematics
indicates that, typically, proofs of theorems ∀ f ∈ NN∃n ∈ N Aq f ( f, n) that make
use of second-order principles ∀g P(g) such as RT2

2 that state that for all functions
g or sets of a certain type some property (here for all colorings c a property RT2

2(c))
holds only need explicit instances ψ( f ) for g, respectively, c, that are effectively
definable in the parameter f by some closed term ψ of the underlying system T ;
that is,

T ` ∀ f ∈ NN
(

RT2
2(ψ( f ))→ ∃n ∈ N Aq f ( f, n)

)
.

In this paper we show that, in such a situation and for sufficiently weak systems T ,
the extractability of a primitive recursive functional 8 (in the ordinary sense, see
Kleene [11]; i.e., no higher type recursion in the sense of Gödel’s System T; see
Gödel [5]) with

∀ f Aq f ( f,8( f ))

is guaranteed. Moreover, the proof theoretic method used provides an extraction
algorithm for 8 from a given proof.

We work in a setting based on fragments of (extensional) arithmetic formulated
in the language of functionals of all finite types. In [12] (see also [17]), the sec-
ond author introduced a hierarchy E-GnAω of such fragments containing functionals
corresponding to the nth level of the Grzegorczyk hierarchy and quantifier-free in-
duction.

As usual in proof mining, universal axioms do not matter and so arbitrary true (in
the sense of the full set-theoretic type structure overN; see [17]) universal sentences
can always be added to the theories used in our paper.1

The union of all these systems is denoted by E-G∞Aω and contains terms for
all primitive recursive functions but not for all primitive recursive functionals (in the
sense of Kleene) of type level 2 (e.g., not8it( f, x, y) := f (x)(y)). This distinguishes
the system from Ê-PA

ω
|\ in [12; 17] (sometimes also denoted by PRAω).

As the theory T in the result above we may take

T := E-G∞Aω+QF-AC+WKL,

where QF-AC is the union of the schemata of quantifier-free choice from functions
to numbers

∀ f ∈ NN∃n ∈ N Aq f ( f, n)→ ∃F∀ f ∈ NN Aq f ( f, F( f ))

and quantifier-free choice from numbers to functions

∀n ∈ N∃ f ∈ NNAq f (n, f )→ ∃F∀n ∈ N Aq f (n, F(n)) (Aq f quantifier-free)
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and WKL is the weak König’s Lemma (i.e., König’s Lemma for 0/1-trees; see [21;
17]).

Let WKL∗0 be the theory consisting of WKL0 with 60
1 -induction replaced by

quantifier-free induction plus the exponential function so that sequence coding still
can be defined; see [21, X.4]. The system WKL∗0 can be viewed as a second-order
version of Kalmar elementary arithmetic augmented with WKL. It is clear that T
contains WKL∗0 via the usual embedding.

For this system, the second author has shown in [15; 16] that the addition of the
use of fixed instances 50

1-CA(ϕ( f )) of 50
1-comprehension

50
1-CA( f ) :≡ ∃g ∈ NN∀x ∈ N

(
g(x) = 0↔ ∀y ∈ N( f (x, y) = 0)

)
only causes primitive recursive provably recursive functions. More precisely, by the
proof of Corollaries 4.4 and 4.5 in [16] (for k := 1), we have the following.

Proposition 1.1 ([16]) Let T := E-G∞Aω+QF-AC+WKL and ∀ f ∃n Aq f ( f, n)
a sentence as above. Furthermore, let ϕ be a closed term of T (of suitable type).
Then the following rule holds:

T ` ∀ f ∈ NN
(
50

1-CA(ϕ( f ))→ ∃n ∈ N Aq f ( f, n)
)

⇒ there exists a primitive recursive (in the sense Kleene) functional 8 such that
Ê-PA

ω
|\ ` ∀ f ∈ NN Aq f ( f,8( f )).

In this rule, we may add an arbitrary set of true purely universal sentences P as
additional axioms to both T and Ê-PA

ω
|\.

The main technical result in this paper establishes that over T one can prove RT2
2(c)

(i.e., Ramsey’s theorem for pairs and a 2-coloring c) from a suitable instance 50
1-

CA(ϕ̃(c)) of 50
1-CA.

Theorem 1.2 (see Theorem 4.5 below)

T ` ∀c : [N]2 → 2
(
50

1-CA(ϕ̃(c))→ RT2
2(c)

)
.

Instead of RT2
2 we may have also RT2

n for any fixed number n ≥ 2 of colors, where
then c : [N]2 → n.

Here [N]2 denotes the set of unordered pairs in N and n the set {0, . . . , n − 1}.
Combined with the previous result (and the fact that finitely many and even se-

quences of instances of 50
1-CA can be encoded into a single instance) we obtain the

following theorem.

Theorem 1.3 (see Theorem 5.1 below) Let ϕ,ψ be closed terms of T (of suitable
type). Then the following rule holds:

T ` ∀ f ∈ NN
(
50

1-CA(ϕ( f )) ∧ ∀k ∈ N (RT2
2(ψ( f, k)))→ ∃n ∈ N Aq f ( f, n)

)
⇒ there exists a primitive recursive (in the sense Kleene) functional 8 such that
Ê-PA

ω
|\ ` ∀ f ∈ NN Aq f ( f,8( f )).

Instead of RT2
2 we, again, may have RT2

n for any fixed number n of colors.
We, furthermore, may add arbitrary true universal sentences as axioms to the

theories in question.
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Note that we cannot replace T by Ê-PA
ω
|\ or any other system containing either 60

1 -
induction (with function parameters) or the functional 8it as in such a system even
Proposition 1.1 would be wrong; see [15].

For 50
2-sentences ∀m ∈ N∃n ∈ N Aq f (m, n) one gets with Theorem 1.3—using

the well-known fact that Ê-PA
ω
|\ is 50

2-conservative over primitive recursive arith-
metic (with quantifiers) PRA—as conclusion

PRA ` ∀m ∈ N Aq f (m, ϕ(m)).

Let (for fixed n) RT2−
n and 50

1-CA− be (the universal closures) of all instances
RT2

n(s) and 50
1-CA(t) for terms s, t containing only number parameters. Then we

get the following corollary.

Corollary 1.4

T +50
1-CA− + RT2−

n

is 50
2-conservative over PRA.

Combined with further results from [16], it also follows T + 50
1-CA− + RT2−

n is
50

3-conservative over PRA+60
1 -IA.

The system in Corollary 1.4 contains arbitrary primitive recursively defined se-
quences of instances of 50

1-comprehension and RT2
2. However, these principles can-

not be applied in a nested way where the result of the use of an instance of these
principles is used as a function parameter in forming another instance of one of these
principles. Theorem 1.3 is slightly more general as it includes the use of sequence of
instances of 50

1-comprehension and RT2
n that are primitive recursive in the function

parameter f of the theorem to be proved. In our case, this parameter is usually the
coloring (sequence of colorings).

Officially every variable in our system has a type (e.g., 0 for a natural number and
1 for a function N → N; for details see [17]), but for simplicity of notation in the
following we will denote by b, c, f , g, h, q number-theoretic functions of suitable
arity and by x , y, z, k, l, m, n, u, v, natural numbers.

At a first look, it seems that the framework provided by T is very restricted as
only quantifier-free induction QF-IA (with parameters of arbitrary types) is included.
However, from 50

1-CA(ϕ( f )) (for suitable ϕ) combined with QF-IA one obtains
fixed sequences of instances

60
1 -IA( f ) :≡{
∀l

(
∃y ( f (0, y, l) = 0) ∧ ∀x (∃y ( f (x, y, l) = 0)→ ∃y ( f (x + 1, y, l) = 0))
→ ∀x∃y ( f (x, y, l) = 0)

)
of 60

1 -induction. Hence the theorem above also holds with

50
1-CA(ϕ( f )) ∧ ∀k ∈ N (RT2

2(ψ( f, k)))

being replaced by

50
1-CA(ϕ( f )) ∧ ∀k ∈ N (RT2

2(ψ( f, k))) ∧60
1 -IA(χ( f )).

So, in particular, any sequence of instances of the schema of 60
1 -IA given by a 60

1 -
formula that only has free number variables is allowed (short 60

1 -IA−). What is not
possible is that the result of the application of50

1-CA(ϕ( f )) (i.e., the comprehension
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function) or of RT2
2(ψ( f, k)) (i.e., the monochromatic set given by its characteris-

tic function) is used in a 60
1 -instance of induction featuring as a function argument.

However, we can freely apply WKL, QF-IA and QF-AC to arbitrary function vari-
ables.

The results can be extended to even allow the instances of those principles to
depend on the results of instances of WKL; see Remark 2.2 below.

In the following QF-ACN,N denotes the special case of QF-AC where both vari-
ables (n, f ) are natural numbers.

One can use 50
1-CA( f ) combined with QF-ACN,N even to obtain every instance

of 10
2-comprehension as well as 50

1-countable choice for numbers. As a conse-
quence one can also obtain every fixed sequence of instances of 10

2-induction and
50

1-bounded collection, where the latter is defined as

50
1-CP( f ) :≡

∀k, l
(
∀x < l∃y∀z ( f (k, x, y, z) = 0)

→ ∃y∗∀x < l∃y < y∗∀z ( f (k, x, y, z) = 0)
)
;

(see [15]). Finally, we note that relative to T fixed sequences of instances of the
Bolzano-Weierstraß principle and even the Ascoli lemma can be proven from 50

1-
CA(ξ) for a suitable ξ (see [13]).

What all this indicates is that from the perspective of unwinding the computational
content of concrete proofs based on RT2

2 (and even RT2
n for fixed n) the computa-

tional complexity of that content will in most practical cases not go beyond primitive
recursive complexity.

Let 60
1 -WKL be König’s Lemma for 0/1-trees which are given by a 60

1 -formula.
Theorem 1.2 is established by a careful analysis of the proof of Ramsey’s theorem for
pairs due to Erdős and Rado [4]. This first yields that relative to suitable (sequences
of) instances of 50

1-induction with the coloring c as the only free function variable
(so that these instances can be covered as discussed above)

60
1 -WKL(ϕ(c)) → RT2

2(c)

for a suitable elementary functional ϕ. 60
1 -WKL(ϕ(c)) (as well as the inductions

needed) is then reduced using 50
1-CA(ϕ̃(c)) (for a suitable functional ϕ̃) to WKL

and quantifier-free induction which both are available in T .

2 Elimination of Monotone Skolem Functions

In [15; 16], the second author developed a technique for the elimination of monotone
Skolem functions that allows one to calibrate the arithmetical strength of fixed (se-
quences of) instances of various comprehension and choice principles over systems
such as E-G∞Aω. In this section we collect the results of this type that will be used
later.

The next result immediately follows (as special case for k := 1) from the proofs
of Corollaries 4.4 and 4.5 in [16]. It only differs from Proposition 1.1 by stating the
existence of a bound that is independent from bounded function parameters.

Proposition 2.1 ([16]) Let Aq f ( f, g, n) ∈ L(E-G∞Aω) be a quantifier-free for-
mula which contains only the function variables f, g and the number variable n free.
Furthermore, let ϕ,ψ be functionals (of suitable type) that are definable in E-G∞Aω.
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Then the following rule holds:
E-G∞Aω + QF-AC+WKL`∀ f ∀g ≤ ϕ( f )

(
50

1-CA(ψ( f,g))→∃n Aq f ( f,g,n)
)

then one can extract a closed term 8 of Ê-PA
ω
|\ such that

Ê-PA
ω
|\ ` ∀ f ∀g ≤ ϕ( f ) ∃n ≤ 8( f ) Aq f ( f, g, n).

Here ‘g ≤ h’ for functions g, h is defined pointwise; that is, ∀x g(x) ≤ h(x).

Proof As in the proof of Corollary 4.5 in [16], we can replace WKL by the principle
F− and then use elimination of extensionality (see, e.g., [17], the restrictions on the
types in QF-AC are made precisely to allow for this) to obtain

(G∞Aω + QF-AC)⊕ F− ` ∀ f ∀g ≤ ϕ( f )
(
50

1-CA(ψ( f, g))→ ∃n Aq f ( f, g, n)
)
.

Then apply Corollary 4.4 (for1 := ∅) and note that for k := 1 the conclusion can be
verified in (even the weakly extensional and intuitionistic version of) Ê-PA

ω
|\. �

In the following in expressions like ‘b ≤ 1’ by ‘1’ we denote the constant-1 function.

Remark 2.2 The instance of 50
1-comprehension in Proposition 2.1 may also

depend on the results of instances of WKL: WKL(τ ( f )) is implied by
∃b ≤ 1∀x(τ̃ ( f )(b̄x) = 0) for a suitable term τ̃ in E-G∞Aω, with

E-G∞Aω ` ∀ f, x∗ ∃b ≤ 1∀x ≤ x∗ (τ̃ ( f )(b̄x) = 0);

see [17, Proposition 9.18] (note that the g in the proof of this proposition is definable
in E-G∞Aω). Suppose now that E-G∞Aω+ QF-AC +WKL proves

∀ f ∀g ≤ ϕ( f )

∀b ≤ 1
(
∀x τ̃ ( f )(b̄x) = 0→

(
50

1-CA(ξ( f, b))→ ∃n Aq f ( f, n)
))
,

which is equivalent to

∀ f ∀g ≤ ϕ( f )

∀b ≤ 1
(
50

1-CA(ξ( f, b))→ ∃n, x
(
τ̃ ( f )(b̄x) = 0→ Aq f ( f, g, n)

))
.

Applying Proposition 2.1 yields bounds x∗ := χ( f ) and n∗ := 8( f ) on x and n
depending only on f ; that is,

Ê-PA
ω
|\ ` ∀ f ∀g ≤ ϕ( f ) (∃b ≤ 1∀x ≤ χ( f ) (τ̃ ( f )(b̄x) = 0)

→ ∃n ≤ 8( f ) Aq f ( f, g, n))

and so, finally,

Ê-PA
ω
|\ ` ∀ f ∀g ≤ ϕ( f ) ∃n ≤ 8( f ) Aq f ( f, g, n).

Instead of fixed instances of 50
1-CA also fixed sequences of such instances, that is,

fixed instances of

50
1-CA∗( f ) :≡ ∀l∃g∀x

(
g(x) = 0↔ ∀y( f (l, x, y) = 0)

)
are covered since (provably in E-G∞Aω)

50
1-CA(ϕ( f ))→ 50

1-CA∗( f ),

where ϕ( f ) := f ( j1x, j2x, y) for some unpairing functions j1, j2.
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We now consider sequences of 50
1-instances of countable choice for numbers:

50
1-AC( f ) :≡ ∀l

(
∀x∃y∀z( f (l, x, y, z) =0)→ ∃g∀x, z( f (l, x, g(x), z) = 0)

)
.

50
1-AC( f ) can be reduced to 50

1-CA(g) uniformly by the following.

Proposition 2.3 ([15])

E-G∞Aω + QF-ACN,N ` ∀ f
(
50

1-CA(ϕ( f ))→ 50
1-AC( f )

)
for a suitable elementary functional ϕ.

Similarly, one has the following.

Proposition 2.4 ([16])

E-G∞Aω + QF-ACN,N ` ∀ f, g
(
50

1-CA(ϕ( f, g))→ 10
2-CA( f, g)

)
for a suitable ϕ, where

10
2-CA( f, g) :≡


∀l

(
∀x([∀u∃v ( f (l, x, u, v) = 0)
↔ ∃m∀n(g(l, x,m, n) = 0)])

→ ∃h∀x(h(x) = 0↔ ∀u∃v( f (l, x, u, v) = 0))
)
.

As a consequence of Propositions 2.3 and 2.4 we obtain the following.

Proposition 2.5 ([16]) Proposition 2.1 also holds with 50
1-AC(χ( f, g)) and 10

2-
CA(ζ1( f, g), ζ2( f, g)) in addition to 50

1-CA(ψ( f, g)) (and likewise for sequences
of instances of 10

2-IA and 50
1-CP).

With the restriction P− of second-order principles P to instances with at most num-
ber parameters as discussed in Section 1 we can formulate the next proposition which
follows (as special case for k := 1) from Corollaries 4.8 and 4.10 in [16].

Proposition 2.6 ([16]) E-G∞Aω+QF-AC+WKL+10
2-CA−+50

1-AC− is50
3-con-

servative over PRA+60
1 -IA and 50

4-conservative over PRA+50
1-CP.

3 Trees and König’s Lemma

Definition 3.1 (Tree)

1. A partial order on the natural numbers ≺ is called tree if for every x ∈ N the
set of all predecessors pd(x) := {y ∈ N | y ≺ x} is well-ordered.

2. A maximal linear order in ≺ is called branch.
3. A tree ≺ is called finitely branching if for all x ∈ N the set of all immediate

successors succ(x) := {y ∈ N, x ≺ y ∧ (¬∃z (x ≺ z ∧ z ≺ y)} is finite.
A tree is called n-branching if |succ(x)| ≤ n for all x ∈ N.

Definition 3.2 (König’s Lemma) König’s Lemma is the statement that every infinite,
finitely branching tree contains an infinite branch.

3.1 Fragments of König’s Lemma and formalizations We formalize trees as char-
acteristic functions of finite, initial segments of branches in a tree; that is, a tree ≺ is
described by f if

f (〈〉) = 0
f (〈x〉) = 0 iff x is ≺-minimal

f (〈n1, . . . , nk, x〉) = 0 iff f (〈n1, . . . , nk〉) = 0 and x ∈ succ≺(nk).

We define ∗, 〈 〉, b̄ using a suitable surjective sequence coding; for details see [17].
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Definition 3.3 (Weak König’s Lemma WKL(ϕ))

WKL(ϕ) : T (ϕ) ∧ ∀x0
∃s0 (lth(s) = x ∧ ϕ(s))→ ∃b ≤ 1∀x ϕ(b̄x),

where T asserts that ϕ describes a 0, 1-tree with respect to the prefix relation v

T (ϕ) :≡ ∀s, r (ϕ(s ∗ r)→ ϕ(s)) ∧ ∀s, x (ϕ(s ∗ 〈x〉)→ x ≤ 1) .

Definition 3.4 (Bounded König’s Lemma (WKL∗(ϕ, h))

WKL∗(ϕ, h) : T ∗(ϕ, h) ∧ ∀x0
∃s0 (lth(s) = x ∧ ϕ(s))→ ∃b ≤ h ∀x ϕ(b̄x),

where T ∗ asserts that ϕ describes a tree bounded by h

T ∗(ϕ, h) :≡ ∀s, r (ϕ(s ∗ r)→ ϕ(s)) ∧ ∀s, x (ϕ(s ∗ 〈x〉)→ x ≤ h(lth(s))) .

We denote by 60
1 -WKL( f ), respectively, 60

1 -WKL∗( f ) weak/bounded König’s
Lemma with ϕ(s) ≡ ∃z f (z, s) = 0 and 60

1 -WKL(∗) :≡ ∀ f 60
1 -WKL(∗)( f ).

Proposition 3.5 In E-G∞Aω every instance of bounded König’s Lemma is equiv-
alent to an instance of weak König’s Lemma (WKL). Moreover, every instance of
60

1 -WKL∗ can be proven from an instance of 60
1 -WKL.

Proof Simpson proves this equivalence in the system RCA0 in [21, IV.1.3]. This
proof can be carried out in E-G∞Aω. For ϕ ∈ 60

1 , this property is preserved. �

Remark 3.6

E-G∞Aω + QF-ACN,N ` 60
1 -WKL(ξ( f ))→ 50

1-CA( f ),

since 60
1 -WKL(σ (g)) implies 50

2-WKL(g) for a suitable term σ ; see [14, Proposi-
tion 3.3] or [21, proof of Lemma IV.4.4] and note that E-G∞Aω+QF-ACN,N proves
60

1 -CP. 50
2-WKL(τ f ) implies 50

1-CA( f ); see Troelstra [23, §5].
Combined with the discussion at the end of Section 1, it follows that over

E-G∞Aω + QF-ACN,N + WKL each instance of 60
1 -WKL is equivalent to an

instance of 50
1-CA and vice versa.

4 Ramsey’s Theorem

Now we turn to Ramsey’s Theorem for pairs. In this section we will present two
proofs of it. The first proof is the standard textbook proof (see Graham et al. [6]); the
second is due to Erdős and Rado [4, 10.2].

Definition 4.1

1. [X ]k := {Y ⊆ X | |Y | = k}.
2. An n-coloring c of [X ]k is a map c : [X ]k → n.
3. A set H ⊆ X is called monochromatic under c if c is constant on [H ]k .
4. Let (X,≺) be a partial order and c an n-coloring of [X ]2. A set H ⊆ X is

called min-monochromatic under c if for all i ∈ H the map ci (x) := c({i, x})
is constant on {x ∈ H : i ≺ x}.

Definition 4.2 (Ramsey’s Theorem [19]) For all k, n and every n-coloring c of [N]k

exists an infinite set H ⊆ N such that H is monochromatic under c. RTk
n denotes

Ramsey’s Theorem for n-colorings of [N]k and, RTk
<∞ is defined as ∀n RTk

n .
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The proofs we are going to present share the same structure. First an infinite min-
monochromatic set is constructed. Then using RT1

n one finds an infinite monochro-
matic set.

The textbook proof is simpler and seemingly elementary, but it cannot even be
formalized in ACA0; see [21, p. 123]. Therefore, this proof is unusable for a detailed
analysis of the proof-theoretic strength of RT2

n .
Erdős’ and Rado’s proof can be formalized in ACA0 (see [21, Lemma III.7.4]). It

uses König’s Lemma, which is open for a detailed analysis in this case.

Textbook proof Fix an n-coloring c : [N]2 → n. We construct an enumeration
(x j ) j∈N of an infinite min-monochromatic set. Define cy(x) := c({y, x}).

– Set x0 := 0.
– Using RT1

n we find an infinite set X1 ⊆ N \ {x0} such that X1 is monochro-
matic under c0. Set x1 := min X1.

– Similarly, we find an infinite set X2 ⊆ X1 \ {x1} such that X2 is monochro-
matic under cx1 . Set x2 := min X2.

–
...

Iterating this process gives a sequence (x j ) j∈N. By construction X := {x0, x1, . . . }
is min-monochromatic under c.

Define c′ : X → n with c′(x j ) := c({x j , x j+1}). c′ is well defined since the
sequence (x j ) j is injective. Using RT 1

n we find an infinite H ⊆ X such that H is
monochromatic under c′. Since H is min-monochromatic under c, we get for all
x, y ∈ H , x < y

c({x, y}) = c′(x) = c′(H).
In other words, H is monochromatic under c. �

Erdős’ and Rado’s Proof 2

Fix an n-coloring c : [N]2 → n. Let ck : k → n be defined as x 7→ c({x, k}).
Now define recursively a partial order ≺ on N:

– 0 ≺ 1
– If ≺ is already defined on m, then let

Pk :=
{

x ∈ m | x ≺ k
}

for k ∈ m.

Now, to extend ≺ to m+ 1, for k ∈ m set

k ≺ m iff ck |Pk = cm |Pk .

Claim
(i) ≺ ⊆ <N, in particular, Pk = pd(k).

(ii) 0 ≺ x for all x ∈ N \ {0}.
(iii) ≺ is transitive.
(iv) On pd(m) the relations <N and ≺ describe the same order; that is, for

x, y ∈ pd(m)
x < y iff x ≺ y.

(i) By definition, k ≺ m implies k < m. So Pk = {x ∈ m | x ≺ k} is independent
from the choice of m as long k ∈ m and also Pk = {x ∈ N | x ≺ k} = pd(k).

(ii) Follows immediately from the definition of ≺.
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(iii) We prove the statement (x ≺ y and y ≺ z) ⇒ x ≺ z by induction on z. The
base case z = 0 is trivial because of (i). Assume that transitivity holds for all z′ < z.
Then

x ≺ y and y ≺ z ⇒ cx |Px = cy |Px
, cy |Py

= cz |Py

and Px ⊆ Py (induction hypothesis for y < z)
⇒ cx |Px = cy |Px

= cz |Px

⇒ x ≺ z.

(iv) ⇐: follows from (i).

⇒: By (ii) the case x = 0 is trivial. Let x 6= 0. Proof by induction on m:
– m = 0 is obvious.
– Let m > 0, x, y ∈ pd(m) with x < y and assume the statement holds for

all m′ < m. Let i be the <-maximal natural number such that i ≺ x and
i ≺ y (such an i exists because of 0 ≺ x, y by (ii)). Let p be an immediate
≺-successor of i comparable with m (such a p exists because of i ≺ x ≺ m).
From i ≺ y ≺ m and i ≺ p ≺ m we get

cy(i) = cm(i) = cp(i).

Using the induction hypothesis for m′ = p, we deduce that all i ′ ≺ p are
comparable with i , in particular, p ∈ succ(i) and

Pp = Pi ∪ {i}.

Since i ≺ y and cy(i) = cp(i), this shows p ≺ y (the case p = y is
impossible). Analogously, it follows that p ≺ x or p = x . The maximality
of i renders the case p ≺ x impossible, so p = x and, in particular, x ≺ y.

By (iv) the relation ≺ defines a tree on N. By definition, every branch of ≺ is min-
monochromatic under c. The tree is n-branching (in particular, finitely branching)
since for all x, y ∈ succ(i) such that x < y the induced colorings cx and cy must
differ at i . Otherwise, x ≺ y since cx |Pi = cy |Pi

and Px = Pi ∪ {i}.
By König’s Lemma we find an infinite min-monochromatic branch B. As

in Ramsey’s proof, we construct using RT1
n an infinite monochromatic set H

under c. �

Note that we cannot simply reduce the application of König’s Lemma in this proof (or
in Simpson’s proof [21, Lemma III.4.7]) to WKL using an instance of 50

1-AC since
we need 60

1 -IA depending on the result of a 50
1-AC application to prove that there

is a bounding function on the labels of the tree needed to apply WKL (respectively,
WKL∗). Such a bounding function on the labels of the tree can be constructed using
only fixed instances of 60

1 -IA, 50
1-IA, and 50

1-AC, but this construction depends
crucially on the special structure of the Erdős-Rado-tree (see [18]). However, we
will follow here a slightly different approach.

4.1 Formalized proof of RT2
n In the following we formalize the proof of Erdős

and Rado and show Theorem 1.2. We prove this theorem for every fixed number
n ≥ 2 of colors, since the usual proof of the equivalence between RT2

2 and RT2
n needs

nested applications of RT2
2 and therefore cannot be formalized using only RT2

2.
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In E-G∞Aω we represent an n-coloring c : [N]2 → n using a mapping
ĉ : N × N → n such that ĉ(x, y) = ĉ(y, x) = c({x, y}). We formalize RT2

n as
follows.

(RT2
n) : ∀c : N×N→ n ∃ f ≤ 1 ∃i < n

(
∀k ∃x > k f (x) = 0

∧ ∀x, y (x 6= y ∧ f (x) = 0 ∧ f (y) = 0→ ĉ(x, y) = i)
)
,

where ĉ(x, y) =

{
c(x, y) x ≤ y,
c(y, x) x > y.

RT2
n expresses that f is the characteristic function of an infinite set in which every

(unordered) pair {x, y} is mapped to the color i .
RT2

n(t) denotes RT2
n for a fixed coloring t , RT2−

n denotes the set of all instances of
RT2

n(t), where the only free variables of t are of degree 0, that is, number variables.
We omit n when no confusion can arise.

We now formalize the claims (i)–(iv) from Erdős’ and Rado’s proof.

Lemma 4.3 For every coloring c : N×N→ n the partial order ≺ as in the proof
of Erdős and Rado can be defined in E-G∞Aω. E-G∞Aω proves that ≺-chains are
min-monochromatic and the properties (i)–(iv); that is,

(i) ∀x, y (x ≺ y → x < y),
(ii) ∀x > 0 (0 ≺ x),

(iii) ∀x, y, z (x ≺ y ∧ y ≺ z→ x ≺ z),
(iv) ∀m, x, y (y ≺ m → (x ≺ y ↔ x ≺ m ∧ x < y)).

Proof We may assume c(x, y) = c(y, x). Define

q̃(0) := 〈〉,

q̃(1) := 〈0〉,

q̃(m + 1) := 〈qm+1
0 , . . . , qm+1

m 〉,

where qm+1
k :=

{
0, if ∀x < k ((q̃(k))x = 0→ c(k, x) = c(m + 1, x)) ,
1, otherwise

for k := 0, . . . ,m. By definition q̃(m) ≤ 1(m), where ‘1m’ is the code of the initial
segment of the constant-1 function of length m.

The mapping

q(x, y) :=

{
q̃(y)x x < y
1 x ≥ y

is the characteristic function of ≺. Hence the relation ≺ can be defined with elemen-
tary recursion and so, in particular, in E-G∞Aω. Set

x ≺ y :≡ q(x, y) = 0.

(i), (ii) immediately follow from the definition of ≺, respectively, the mapping q .

(iii) is (using (i)) equivalent to

∀z ∀y < z, x < y (x ≺ y ∧ y ≺ z→ x ≺ z) .
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We prove this statement using quantifier-free course-of-value induction on z. The
base case is trivial. Assume that the statement holds for z′ < z.

x ≺ y ∧ y ≺ z

→
[
(∀i < x (i ≺ x → c(x, i) = c(y, i))) ∧ (∀i < y (i ≺ y→ c(y, i) = c(z, i)))

]
using induction hypothesis for y < z

→
[
(∀i < x (i ≺ x → c(x, i) = c(y, i))) ∧ (∀i < y (i ≺ x → c(y, i) = c(z, i)))

]
→ [∀i < x (i ≺ x → c(x, i) = c(z, i))]
→ x ≺ z.

(iv) The→-direction follows from (i) and (iii).

The←-direction is (using (i)) equivalent to

∀m ∀x < m, y < m (x ≺ m ∧ y ≺ m ∧ x < y → x ≺ y) .

We prove this statement using quantifier-free course-of-value induction on m. The
base step is trivial. Assume that the statement holds for all m′ < m. For x = 0 the
statement is obvious. Hence we assume x 6= 0. Let x ≺ m, y ≺ m, and x < y.

x 6= 0
(ii)
−→∃i < x (i ≺ x ∧ i ≺ y) (e.g., i = 0)
µb
−→∃i < x

(
i ≺ x ∧ i ≺ y ∧ ∀i ′ < x ((i ′ ≺ x ∧ i ′ ≺ y)→ i ′ ≤ i)︸ ︷︷ ︸

≡:i maximal

)
→∃i < x

(
i ≺ x ∧ i ≺ y ∧ i maximal ∧ ∃p<m (p≺m ∧ i≺ p)

)
(e.g., p= x)

µb
−→∃i < x

(
i ≺ x ∧ i ≺ y ∧ i maximal

∧ ∃p < m (p ≺ m ∧ i ≺ p ∧ ∀p′ < m (p′ ≺ m ∧ i ≺ p′→ p′ ≥ p)︸ ︷︷ ︸
p minimal with i ≺ p ≺ m

)
)
.

Using (iii), we deduce i ≺ m. Since y ≺ m and i ≺ y, this gives c(y, i) = c(m, i).
From p ≺ m and i ≺ p it follows c(p, i) = c(m, i). Therefore,

c(y, i) = c(p, i). (1)

From the induction hypothesis (for p) and (i) we obtain

∀ j, j ′
(
( j ≺ p ∧ j ′ ≺ p)→ ( j ≺ j ′ ↔ j < j ′)

)
. (2)

We claim that p is an immediate successor of i . In other words, no i ′ exists such that
i ≺ i ′ ≺ p. Suppose such an i ′ exists. Then (iii) gives i ≺ i ′ ≺ m. As p is minimal
with this property we get i ′ ≥ p. This contradicts (together with (i)) the assumption
i ′ ≺ p.

Combining this with (2), we see

∀i ′
(
i ′ ≺ p→ (i ′ = i ∨ i ′ ≺ i)

)
. (3)

Since i ≺ y, p we get c(p, i ′) = c(i, i ′) = c(y, i ′) for all i ′ ≺ i . This, (1), and
(3) shows c(p, i ′) = c(y, i ′) for all i ′ ≺ p and, in particular, p ≺ y (p = y is
impossible because of p ≤ x < y). This implies

∃i < x
(
i ≺ x ∧ i ≺ y ∧ i maximal ∧ ∃p < m (p ≺ y ∧ p ∈ succ(i))

)
.
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Analogously, we deduce p = x . Here the maximality of i renders the case p ≺ x
impossible. Put together, we obtain

∃i < x (i ≺ x ∧ i ≺ y ∧ i maximal ∧ ∃p < m (p ≺ y ∧ p = x)

and so x ≺ y. �

We now proceed by formalizing the construction of the infinite min-monochromatic
set through König’s Lemma.

Lemma 4.4 For every fixed n ≥ 2 there are closed terms ξ1 and ξ2 such that

E-G∞Aω + QF-ACN,N ` ∀c : N×N→ n
(
50

1-CA(ξ1c) ∧60
1 -WKL(ξ2c)

→ ∃b (b0 = 0 ∧ ∀i b(i + 1) ∈ succ(bi))
)
.

Proof We prove the existence of b using two instances of 50
1-induction ζ1, ζ2, and

60
1 -WKL(ξ2c). These instances of 50

1-induction follow then from corresponding
instances of 50

1-comprehension, which can be coded together into 50
1-CA(ξ1c) for

a suitable ξ1. Notation as in the proof of the preceding lemma.
Define

h(0, q, r) := 〈〉 = 0

h(m + 1, q, r) := h(m, q, r) ∗

{
〈(r)m+1〉 if (q)m+1 = 0
〈〉 = 0 else

h(k, q, r) ≤ r

g(m) := h(m,8〈〉(λx .q(x,m),m),8〈〉(λx .c(x,m),m)).

Here for a binary function f (x, y), λx . f (x, y) denotes the function in x with fixed
y.

The function h deletes the entries i in c, where (q)i 6= 0 holds. Hence
g(m) = 〈c(m, i0), . . . , c(m, ik)〉, where i0 ≺ i1 ≺ · · · ≺ ik are the predeces-
sors of m ordered by ≺. Note h and g can be defined in E-G∞Aω.

By definition of g,

(g(x))i < n, (4)
x ≺ y→ g(x) @ g(y). (5)

We deduce

g(z) = m ∗ 〈x〉
µb
−→∃v < z

(
g(z) = m ∗ 〈x〉 ∧ v ≺ z ∧ ∀v′ < z (v′ ≺ z→ v′ ≤ v︸ ︷︷ ︸

v maximal with v ≺ z

)
)

→∃v < z
(
g(z) = m ∗ 〈x〉 ∧ z ∈ succ(v)

)
(iv)
−→∃v < z

(
g(z) = m ∗ 〈x〉 ∧ z ∈ succ(v) ∧ ∀x < v (x ≺ v ↔ x ≺ z)

)
→∃v < z

(
g(z) = m ∗ 〈x〉 ∧ z ∈ succ(v) ∧ q̃(v) @ q̃(z)

)
since v is maximal with v ≺ z, (i) yields (q̃(z))i = 0 for all i ∈ {v + 1, . . . , z − 1}.
This gives us

∃v < z
(
g(z) = m ∗ 〈x〉 ∧ z ∈ succ(v) ∧ g(v) = m

)
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and, in particular,

∃v (g(v) = m ∧ z ∈ succ(v)) .

We conclude

∀n, x, z
(
g(z) = m ∗ 〈x〉 → ∃v < z (g(v) = m ∧ z ∈ succ(v))

)
. (6)

We proceed to prove that g is injective by showing

∀l ∀x, y (x 6= y ∧ lth(g(x)) = l → g(x) 6= g(y)) (7)

using 50
1-induction on l. Note that the induction formula can be written as

50
1-IA(ζ1c) for a suitable ζ1.
The base case is an immediate consequence of (ii) and the definition of g. Assume

that (7) holds for l.

∃x, y (x 6= y ∧ lth(g(x)) = l + 1 ∧ g(x) = g(y))
(6)
−→∃x, y ∃x ′, y′ (x 6= y ∧ lth(g(x)) = l + 1 ∧ x ∈ succ(x ′) ∧ y ∈ succ(y′)∧

g(x) = g(y)∧g(x ′) @ g(x)∧lth(g(x ′)) = l∧g(y′) @ g(y)∧lth(g(y′)) = l)
IH
−→∃x, y ∃x ′ (x 6= y ∧ lth(g(x) = l + 1 ∧ x, y ∈ succ(x ′) ∧ g(x) = g(y)).

Since x and y are immediate successors of x ′ and c(x, x ′) = (g(x))l = (g(y))l =
c(y, x ′), either x, y are equal or comparable. The former case contradicts our as-
sumption, the latter together with (5) the fact that g(x) = g(y). This finishes the
proof of the injectivity of g.

The injectivity of g together with (6) yields

∀z, v (g(z) = m ∗ 〈x〉 ∧ g(v) = m → v ≺ z) .

Using 50
1-induction and Lemma 4.3(iii), we conclude

∀l ∀x, y (lth(g(y)) = l ∧ g(x) @ g(y)→ x ≺ y).

Since g is definable in terms of E-G∞Aω and c, the induction formula can be written
as 50

1-IA(ζ2c) for a suitable term ζ2. Together with (5), this gives us

x ≺ y ↔ g(x) @ g(y). (8)

Using (6), it is clear that
ξ2(c, x, s) :≡ g(x) = s

defines a 60
1 -tree bounded by the constant-n function. By definition the tree is the

image of g. As g is an injection from the natural numbers the tree is infinite. Apply-
ing 60

1 -WKL(ξ2c) yields a branch b′ with

∀i ∃x g(x) = b̄′i,
QF-AC
−→ ∃b ∀i g(bi) = b̄′i.

This and (8) establishes the lemma. �

Theorem 4.5 For each fixed n ≥ 2 there exists a closed term ξ such that

E-G∞Aω + QF-ACN,N +WKL ` ∀c : N×N→ n
(
50

1-CA(ξc)→ RT2
n(c))

)
.
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Proof Clearly, in E-G∞Aω +WKL, for every closed term ξ there is a closed term
ξ ′ such that

50
1-CA(ξ ′c)→ 60

1 -WKL(ξc).

By coding two instances of comprehension into a single instance we obtain a closed
term ξ satisfying for the terms ξ1 and ξ2 from Lemma 4.4,

50
1-CA(ξc)→

(
50

1-CA(ξ1c) ∧60
1 -WKL(ξ2c)

)
.

Lemma 4.4 gives us now an infinite branch b of the Erdős-Rado tree≺. By definition
of ≺, b(N) is min-monochromatic under c and

∀x, y (x < y ↔ x ≺ y) .

Define c′(x) := c(bx, b(x + 1)). Since b(N) is min-monochromatic, we get

∀x ∀y > x
(
c(bx, by) = c′x

)
.

By RT1
n there exists a color i occurring infinitely often. The set H := {bx | c′x = i}

is infinite and monochromatic under c, so b∗k := t∃x≤k bx=k∧c′k=i [k] forms a solu-
tion of RT2

n . �

Remark 4.6 Using the tuple coding from Section 2 it is obvious that, for a suitable
ξ , 50

1-CA(ξ((ck)k)) proves a sequence of instances (RT2
n(ck))k∈N.

Note that the number of colors in such a sequence of instances of RT2
n has to be

bounded. For an unbounded number of colors we would need RT1
<∞ in the proof

of Theorem 4.5. But as RT1
<∞ is equivalent to 50

1-CP (see [9]) it is not provable in
E-G∞Aω.

5 Results

Using Theorem 4.5 we can extend the theorems of Section 2 by adding RT2
n .

Theorem 5.1 Let Aq f ( f, g, k) ∈ L(E-G∞Aω) be a quantifier-free formula which
contains only the variables f, g, k free. Furthermore, let ϕ,ψ, χ be functionals
(of suitable type) that are definable in E-G∞Aω. Then for every fixed n ≥ 2 the
following rule holds:

E-G∞Aω + QF-AC + WKL
` ∀ f ∀g ≤ ϕ( f )

(
50

1-CA(ψ( f, g)) ∧ ∀lRT2
n(χ( f, g, l))→ ∃k Aq f ( f, g, k)

)
then one can extract a closed term 8 of Ê-PA

ω
|\ such that

Ê-PA
ω
|\ ` ∀ f ∀g ≤ ϕ( f ) ∃k ≤ 8( f ) Aq f ( f, g, k).

Proof Proposition 2.1, Theorem 4.5, and Remark 4.6. �

Theorem 5.2 Let S := E-G∞Aω +QF-AC+WKL+10
2-CA− +50

1-AC− and n
fixed. Then the following hold:

(i) S + RT2−
n is 50

2-conservative over PRA,
(ii) S + RT2−

n is 50
3-conservative over PRA+60

1 -IA,
(iii) S + RT2−

n is 50
4-conservative over PRA+50

1-CP.

Proof (i) follows from Corollary 1.4 and Theorem 4.5. (ii) and (iii) follow from
Proposition 2.6 and Theorem 4.5. �
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The bound in (ii) is sharp. Avigad constructed in [1] a 60
3 -sentence provable from

50
1-CP− and hence from 50

1-AC− that is not provable in PRA + 60
1 -IA. These

theorems cannot be extended to RT2
<∞.

Proposition 5.3

E-G∞Aω + QF-AC+WKL+10
2-CA− +50

1-AC− 0 RT2−
<∞.

Proof A sequence of instances of RT2
<∞ with unbounded number of colors is suf-

ficient to prove the totality of (a version of) the Ackermann function; see [9, 6.12].
All instances of RT2

<∞ in the proof of this theorem are of the form RT2−
<∞. Since the

diagonal of the Ackermann Function cannot be primitive recursively bounded, the
theorem follows from Theorem 1.3 and Propositions 2.3 and 2.4. �

Remark 5.4 Our formalization of the proof of RT2
n also can be used to analyze the

complexity of RT2
n relative to the comprehension used (in our case 60

1 -WKL) like
Bellin did in [2] using Ramsey’s proof. The proof of Lemma 4.4 yields the concrete
instance of the comprehension needed as an elementary functional in the coloring
c (namely, the term ξ3 derived from the construction of the Erdős-Rado-tree). As
we are not using Ramsey’s proof in our case, a weaker instance of comprehension
suffices. It should be noted, though, that the main concern in [2] is to derive a
parametric version of Ramsey’s theorem that displays the common structural features
of the (proofs of the) (infinite) Ramsey theorem, the finite Ramsey theorem, and the
Paris-Harrington theorem.

Notes

1. In [12] we officially added all true universal sentences as axioms. As in the convention
made in Chapter 13 of [17], we in this paper instead only add universal sentences that are
provable in Ê-PA

ω
|\ (see below) which covers, in particular, the schema of quantifier-free

induction. In this way we can state various conservation results over primitive recursive
arithmetic PRA but still can add further universal axioms as might be useful in concrete
proofs.

2. The notation of this proof follows Farah’s lecture notes “Set theory and its applications,”
York University, 2008.
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