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On Interpretability in the
Theory of Concatenation

Vítězslav Švejdar

Abstract We prove that a variant of Robinson arithmetic Q with nontotal
operations is interpretable in the theory of concatenation TC introduced by
A. Grzegorczyk. Since Q is known to be interpretable in that nontotal variant,
our result gives a positive answer to the problem whether Q is interpretable
in TC. An immediate consequence is essential undecidability of TC.

1 Why Weak Theories, Why Concatenation?

Several versions of Gödel, Church, and Rosser theorems state the incompleteness
and undecidability of every sufficiently strong recursively axiomatizable (consistent)
theory T . The notion of “sufficiently strong” is usually made precise by stipulat-
ing that T extends Robinson arithmetic Q, or more generally, that T interprets Q.
Robinson arithmetic Q (see Tarski [8]) is a theory useful from more than one point
of view. It is finitely axiomatized and thus can be used in a straightforward proof of
undecidability of first-order predicate logic. It is weak, but some richer arithmetics,
like I10, are interpretable in it.

A natural question reads whether Q is the only or the best theory for explanation
of incompleteness and undecidability phenomena. In connection with this question,
A. Grzegorczyk in [3] proposed to study the theory TC, the theory of concatenation.
Instead of numbers that can be added and multiplied, in TC one has strings that
can be concatenated, and there are two irreducible (single-letter) strings a and b.
Some ideas behind formulation of axioms of TC go back to Quine [6] and Tarski.
Grzegorczyk’s motivations to study the theory TC are philosophical and are ex-
plained in Introduction and in the beginning of Section 8 of [3]. Speaking
briefly, when reasoning, computing, or expressing knowledge, we deal with texts.
Our ability to perform these tasks depends on discernibility, that is, the possibility
to identify and discriminate graphical objects. Thus decidability can be defined
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directly in terms of discernibility, without a reference to natural numbers. Then also
the proof of undecidability of first-order predicate logic could be more straightfor-
ward if based on strings and concatenation, because it can avoid coding of syntax,
and also avoid the use of mathematical tools like Chinese Remainder Theorem.

The theory of concatenation is an interesting theory regardless whether one finds
Grzegorczyk’s motivations appealing. The paper [3] contains a proof of undecid-
ability of TC. Later Grzegorczyk and Zdanowski proved essential undecidability
of TC in [4] and left open the question whether Q is interpretable in TC. In the
present paper we offer a positive answer to this question. Since a theory in which Q
is interpretable must be essentially undecidable (see [8]), our result not only gives
a piece of information missing in [4], it also yields an alternative proof of essential
undecidability of TC.

A straightforward idea of constructing an interpretation of Q in TC is the follow-
ing. Numbers are strings of the form ak , that is, strings a_a_ . . _a where a is one
of the two irreducible strings and _ denotes concatenation. Addition of numbers is
their concatenation. As to multiplication, ak

· an
= am if there exists a sequence w

consisting of pairs such that (i) the first element of w is [a,ak
], (ii) every ele-

ment [x, y] except the last one is immediately followed by an element [x_a, y_ak
],

and (iii) the last element is [an,am
]. We basically follow this idea. However, there

are some difficulties to be solved. For example, some expected properties of strings,
like ∀x∀y∀u(x_u = y_u → x = y), are not provable in TC. It is difficult or even
impossible to define in TC a reasonable notion of a sequence so that sequences of
arbitrary lengths exist. And it is even not quite obvious how to define strings of the
form ak in TC. We show that none of these difficulties is essential. In particular, it
does not matter that TC does not have sequences of arbitrary lengths, because what
we really interpret in TC is a weaker variant of Q with possibly nontotal addition and
multiplication, not the full Q.

Thus we prove an existence of an interpretation of Q in TC by constructing an
interpretation of a nontotal variant of Q in TC and then combining this result with
known facts that the interpretability relation is transitive and that Q is interpretable
in that nontotal variant. An obvious choice for the nontotal variant is the theory Q−,
accidentally also introduced by Grzegorczyk, because a proof of interpretability of Q
in Q− can be found in Švejdar [7]. However, we will be able to advise a reader who
wants to see a self-contained proof how to avoid reading the somewhat technically
involved proof in [7].

Another proof of interpretability of Q in TC, obtained independently but earlier
than ours, is in Visser’s paper “Growing commas” [10]. While that paper is more
general, the present paper was intended to be short and single-purpose, listing only
those properties of TC needed for the main result. Visser’s paper, and also the pa-
per Čačić et al. [1], contains also an information about unprovability in TC and about
its models. Yet other proofs of interpretability of Q in TC, independent of each other
and of the present paper, were obtained by Sterken and Ganea (see [2]). Ganea’s
proof is different from ours, but it also uses the result in [7], that is, uses the detour
via Q−.

2 Preliminaries: TC, Q−, and the Notion of Interpretability

We work with a somewhat different variant of the theory of concatenation than in [3]
and [4], having an empty string ε and having three irreducible strings a, b, c rather
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than two. The exact choice of variant is inessential because all reasonable variants
of TC are mutually interpretable (Grzegorczyk and Zdanowski [4]; Visser [10]). So
our variant of the theory of concatenation TC has the language {

_, ε,a,b,c} with
a binary function symbol and four constants. We systematically omit the symbol _,
that is, write xy for the concatenation x_y of x and y. The axioms of TC are

TC1 ∀x(xε = εx = x),

TC2 ∀x∀y∀z(x(yz) = (xy)z),

TC3 ∀x∀y∀u∀v(xy = uv →

→ ∃w((xw = u & wv = y) ∨ (uw = x & wy = v))),

TC4 a 6= ε & ∀x∀y(xy = a → x = ε ∨ y = ε),

TC5 b 6= ε & ∀x∀y(xy = b → x = ε ∨ y = ε),

TC6 c 6= ε & ∀x∀y(xy = c → x = ε ∨ y = ε),

TC7 a 6= b & a 6= c & b 6= c.

Our numbering of axioms of TC is more or less as in [10]; the difference is caused by
the third letter c we have in the language. By axiom TC2, we can omit parentheses,
and we do so almost everywhere. The axiom TC3 is called the editor axiom in [3]
and is attributed to Tarski. It describes what happens if two editors independently
suggest splitting a large text into two volumes: the first volume of one of the editors
consists of two parts, the other editor’s first volume and a text (possibly empty) that
appears as a starting part of the other editor’s second volume.

The theory Q−, weaker variant of Robinson arithmetic defined by Grzegorczyk,
has language {0, S, A, M} with a constant, a unary function symbol, and two ternary
relation symbols. The formulas A(x, y, z) and M(x, y, z) express that “z is the sum,
or product, respectively, of x and y.” The axioms of Q− are

A ∀x∀y∀z1∀z2(A(x, y, z1) & A(x, y, z2) → z1 = z2),

M ∀x∀y∀z1∀z2(M(x, y, z1) & M(x, y, z2) → z1 = z2),

Q1 ∀x∀y(S(x) = S(y) → x = y),

Q2 ∀x(S(x) 6= 0),

Q3 ∀x(x 6= 0 → ∃y(x = S(y))),

G4 ∀xA(x, 0, x),

G5 ∀x∀y∀u(∃z(A(x, y, z) & u = S(z)) → A(x, S(y), u)),

G6 ∀xM(x, 0, 0),

G7 ∀x∀y∀u(∃z(M(x, y, z) & A(z, x, u)) → M(x, S(y), u)).

Axioms Q1– Q3 are the same as in the full Robinson arithmetic Q, as defined in [8].
Axioms G4 – G7 are Grzegorczyk’s reformulations of axioms Q4 – Q7 of Q. They
say that the number 0 can be added to any x from the right and that any x can be
multiplied by 0 from the right, with the obvious results. If y can be added to x from
the right then also S(y) can be added to x from the right. If x can be multiplied by y
and the result is z, then it might not be possible to multiply x by S(y), which happens
if the sum of z and x does not exist.

A translation ∗ of formulas of a theory T to formulas of a theory S is determined
by a definitional extension S′ of the theory S, a translation of symbols, and a do-
main. A translation of symbols maps each symbol of the theory T to a symbol of
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the definitional extension S′ having the same kind (function or predicate) and arity.
A domain is a formula δ(x) of S′ with one free variable used to relativize quanti-
fiers in the given translation ∗ of formulas: (∀xϕ)∗ is ∀x(δ(x) → ϕ∗) and (∃xϕ)∗ is
∃x(δ(x)&ϕ∗). The remaining logical symbols, that is, connectives, are preserved by
translation of formulas. One can think of the domain δ(x) as of the set { x ; δ(x) },
regardless whether the theory S comes with a notion of set. A translation ∗ of for-
mulas is a (global, nonparametric, one-dimensional) interpretation of T in S if its
domain δ(x) is (provably in S′) nonempty and closed under all functions in the range
of the corresponding translation of symbols, and if, in addition, ∗ maps all axioms
of T to sentences provable in S′. A theory T is interpretable in a theory S if there
exists an interpretation of T in S.

Interpretability can be taken as a measure of strength of axiomatic theories. If,
for example, T is interpretable in S and vice versa, that is, if T and S are mutually
interpretable, then one can conclude that T and S do not differ in strength. It is
known that if T is interpretable in S and S is consistent then T must be consistent,
too, and as already noted, if T is essentially undecidable then S must be essentially
undecidable, too. The notion of interpretability, as well as the notion of essential
undecidability and Robinson arithmetic itself, were defined in [8]. For more infor-
mation on the notion of interpretation see, for example, Visser [9]. As also already
noted, Q− is mutually interpretable with Q (see [7]).

3 An Interpretation of Q− in TC

In a series of lemmas, when saying that something is the case we mean “provably
in TC,” and by proofs we mean proofs in TC. Some of the statements in Lemma 3.1
also appeared in [4].

Lemma 3.1

(a) ∀x(xa 6= ε & ax 6= ε). The same is true for b and c.
(b) ∀x∀y(xy = ε → x = ε & y = ε).
(c) ∀x∀y(xa = ya ∨ ax = ay → x = y). The same is true for b and c.
(d) ∀x∀y∀u(ua = xy → y = ε ∨ ∃y′(y = y′a)). The same is true for b and c.

Proof (a) Assume xa = ε. Then bxa = b. By TC5, bx = ε or a = ε. However,
a = ε is not the case by TC4, while bx = ε yields a = b by TC1, a contradiction
with TC7.

(b) If xy = ε then xya = a. By TC4, x = ε or ya = ε. The latter is excluded
by (a). From x = ε we have ya = a. Using TC4 again, we have y = ε or a = ε. So
y = ε.

(c) Assume xa = ya. By TC3 there exists a w such that xw = y and wa = a, or
yw = x and wa = a. In both cases, from wa = a we have w = ε. So x = y.

(d) Assume ua = xy. By TC3 we have a w such that uw = x & wy = a, or
xw = u & wa = y. In the second case we can take y′

:= w. So consider the first
case, uw = x & wy = a. By TC4 we have w = ε or y = ε. If y = ε then we are
done, and if w = ε then for y′

:= ε we have y′a = y. �

We write x v y as a shortcut for ∃s∃t (sxt = y). We read x v y as the string x
is a substring of the string y, or x occurs in y, or x has occurrences in y. We write
x y for ∃t (xt = y), that is to say that x is an initial segment of y or that y
begins by x . Similarly, we write x y to say that x is an end segment of y, that
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is, that y ends by x . Using this notation, we can rewrite Lemma 3.1(d) as follows:
a xy → y = ε ∨ a y. We know that if x y or x y then x v y. It is
easy to use Lemma 3.1(b) to show that if x v a then x = ε or x = a, and if x v ε
then x = ε.

Lemma 3.2 a v xy → a v x ∨ a v y. The same is true for b and c.

Proof We have s and t such that (sa)t = xy. By TC3 there is a w such that
saw = x & wy = t , or xw = sa & wt = y. In the first case a v x . In the second
case, from xw = sa and Lemma 3.1(d) we have w = ε or a w. If w = ε then
xw = sa yields a v x . If a w then wt = y yields a v y. �

We say that x is a number and write Num(x) if each nonempty substring of x ends
by a. In symbols, Num(x) ≡ ∀u(u v x & u 6= ε → a u).

Lemma 3.3

(a) Any substring of a number is a number. A number has no occurrences of b or c.
(b) The strings ε and a are numbers.
(c) If x is a number and x 6= ε then x = ya for some (number) y.
(d) If x and y are numbers then xy is a number.

Proof Verification of (a) – (c) is left to the reader. In (d), assume that x and y are
numbers and u is a nonempty substring of xy. We have sut = xy for some s and t .
By axiom TC3, there is a w satisfying suw = x & wy = t , or xw = su & wt = y.
In the first case u is a nonempty substring of x and thus must end by a. In the second
case, where xw = su & wt = y, distinguish cases w = ε and w 6= ε. If w = ε
then again, u v x and so a u. If w 6= ε then w is a nonempty substring of y. So
a w; that is, w = w′a for some w′. Now from xw′a = su we have a u by
Lemma 3.1(d). �

We take the formula Num(x) as the domain of the interpretation we construct, an
interpretation of Q− in TC. The domain is nonempty by Lemma 3.3(b). We de-
fine 0 as ε and, for a number x , S(x) as xa. And we define the sum of numbers
x and y to be the concatenation xy; that is, we interpret A(x, y, z) as xy = z. By
Lemma 3.3(b) and (d), our domain is closed under both functions in the language
of Q−, that is, 0 and S. Validity of axioms Q1– Q3 follows from Lemma 3.1(c),
Lemma 3.1(a), and Lemma 3.3(c), respectively. Validity of axioms A, G4, and G5
is immediate. Note that, for the purpose of interpreting Q− in TC, addition could
have been a nontotal function, but in our setting it is total. It remains to interpret
multiplication.

Lemma 3.4

(a) Assume that sbu = qbx and u and x have no occurrences of b. Then s = q
and u = x. The same is true for a and c.

(b) Assume that sbubt = qbxb and u and x have no occurrences of b. Then
either s = q, u = x, and t = ε, or there exists a w such that sbubw = qb and
wxb = t .

Proof Apply axiom TC3 to (sb)u = (qb)x . There is a w such that sbw = qb and
wx = u, or qbw = sb and wu = x . Consider the case sbw = qb and wx = u,
and note that the other case is symmetric. If w 6= ε then b w by Lemma 3.1(d).
Then from wx = u we have b v u, a contradiction with the assumption that u has
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no occurrences of b. So w = ε. Then x = u, and from sb = qb we have s = q
using Lemma 3.1(c).

In (b), apply axiom TC3 to (sbub)t = (qb)(xb). If there is a w satisfying
sbubw = qb and wxb = t then we are done.

So suppose that we have a w such that qbw = sbub and wt = xb. We may
assume that w 6= ε since otherwise sbubε = qb and εxb = t , and we are done
again. Then t must be empty: if t 6= ε then from wt = xb and Lemma 3.1(d) we
would have t = t ′b for some t ′, from w 6= ε, Lemma 3.1(d), and qbw = sbub we
have w = w′b for some w′, and then w′bt ′b = xb and Lemma 3.1(c) would yield
w′bt ′ = x , a contradiction with the assumption that x has no occurrences of b.

From t = ε we have w = xb and qbxb = sbub. Then, using Lemma 3.1(c) and
using (a) already proved, q = s and x = u follows. �

We say that w is a (product) witness for x × y and write PWitn(x, y, w) if the fol-
lowing conditions are true:

(i) the strings x and y are numbers,
(ii) there is a number z such that byczb w,

(iii) ∀u2∀v2∀s∀t (sbu2cv2bt = w & Num(u2) & Num(v2) & s 6= ε →

∃u1∃v1(Num(u1) & Num(v1) & u2 = u1a & v2 = v1x &
& bu1cv1 s)),

(iv) bcb w.

The formula PWitn(x, y, w) roughly says that “w ends by byczb, begins by bcb,
and each substring bu2cv2b of w, which is not an initial segment of w, is immedi-
ately preceded by bu1cv1, where u2 = u1 + 1 and v2 = v1 + x .” So, for example,
bcbacaabaacaaaabaaacaaaaaab is a product witness for 2 × 3.

Lemma 3.5 Let x and y be numbers.
(a) PWitn(x, ε,bcb).
(b) ∀w′(PWitn(x, ε, w′) → w′

= bcb).
(c) ∀q∀z(PWitn(x, y, qbyczb) → PWitn(x, ya, qbyczbyaczxb)).
(d) Let w′ be a witness for x × ya. Then there is a string q ′ and a number v such
that w′

= q ′bycvbyacvxb, where PWitn(x, y, q ′bycvb).

Proof In (a), where in addition y = ε, the string bcb evidently ends by a
string byczb where z is a number, and begins by bcb. So, in the definition
of product witness, it remains to verify the condition (iii). Let u2, v2, s, t
be such that u2 and v2 are numbers and sbu2cv2bt = bcb. Repeated use of
Lemma 3.1(d) and (c), axiom TC5, and Lemma 3.1(a) shows that t , v2, u2, and s
must all be empty. So bcb cannot be written as sbu2cv2bt with nonempty s, and
thus condition (iii) is satisfied.

We omit the proof of (b) as similar to the proof of (d) given below. In (c), assume
that qbyczb is a product witness for x × y. Think about the string qbyczbyaczxb.
The strings ya and zx are numbers by Lemma 3.3(d); so conditions (i) and (ii) are
satisfied with respect to x and ya. Also (iv) is satisfied because already qbyczb
begins by bcb. It remains to verify the condition (iii). So consider s 6= ε and t
and numbers u2, v2 such that sbu2cv2bt = qbyczbyaczxb. By Lemma 3.2, the
strings u2cv2 and yaczx have no occurrences of b. So Lemma 3.4(b) can be used
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as follows:

sb u2cv2︸ ︷︷ ︸
u

bt = qbycz︸ ︷︷ ︸b yaczx︸ ︷︷ ︸b.

In the first case, where s = qbycz, u2cv2 = yaczx , and t = ε, one can easily
use Lemma 3.4(a) and conclude that u2 = ya and v2 = zx . So indeed, s ends
by bu1cv1 where u2 = u1a and v2 = v1x . In the second case we have a w such
that sbu2cv2bw = qbyczb and wyaczxb = t . By the assumption that qbyczb is
a product witness for x × y, the string s must end by bu1cv1 as required.

Finally, to prove (d), assume that w′ is a witness for x × ya. We know that w′ ends
by byacv′b where v′ is a number, and begins by bcb. So we have strings t and q ′′

and a situation where Lemma 3.4(b) can be used as follows:

w′
= ︸︷︷︸

s

b c︸︷︷︸
u

bt = q ′′b yacv′︸ ︷︷ ︸
x

b.

The case where ε = q ′′, c = yacv′, t = ε is impossible; c cannot have a sub-
string ac. So we have a w such that bcbw = q ′′b and wyacv′b = t . From
bcbw = q ′′b one can conclude q ′′

6= ε. Since w′ is a witness, condition (iii) says
that q ′′

= q ′bu1cv for some q ′ and some numbers u1 and v such that ya = u1a
and v′

= vx . Then y = u1 and w′
= q ′bycvbyacvxb. Evidently, q ′bycvb, which

is the same as q ′′b, satisfies all conditions (i) – (iv) in the definition of a witness
for x × y. �

Having Lemma 3.5, we can define the formula M(x, y, z), saying that z is a product
of x and y, as follows:

M(x, y, z) ≡ ∃w(PWitn(x, y, w) &

∀w′(PWitn(x, y, w′) → w′
= w) & czb w).

Theorem 3.6 The theory Q− is interpretable in TC. Thus also Robinson arith-
metic Q is interpretable in TC, and TC is essentially undecidable.

Proof It remains to consider axioms about multiplication, that is, M, G6, and G7.
If M(x, y, z1) and M(x, y, z2), then there is a w that is the unique witness for x × y
and such that bycz1b w and bycz2b w. Then the usual argument, that is,
Lemma 3.1(c) and Lemma 3.4(a), shows that z1 = z2. So validity of axiom M in our
interpretation follows. Validity of axiom G6 follows from Lemma 3.5(a) and (b).
Consider axiom G7. Let M(x, y, z) and A(z, x, u). We have to verify M(x, S(y), u).
According to our definitions, A(z, x, u) says zx = u, while S(y) is ya. We know
from M(x, y, z) that there exists a unique witness for x × y; it must have the
form qbyczb. Then Lemma 3.5(c) says that qbyczbyaczxb is a witness for
x × ya. To verify that it is the only witness, let w′ be a witness for x × ya. By
Lemma 3.5(d), w′

= q ′bycvbyacvxb where v is a number and q ′bycvb is a
witness for x × y. However, we know that qbyczb is the only witness for x × y.
Thus q ′bycvb = qbyczb. Then q ′bycv = qbycz, and Lemma 3.4(a) says v = z
and q ′

= q . Thus indeed, w′
= qbyczbyaczxb. �
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Hájek considered a somewhat stronger variant Qh of Q−, having the same lan-
guage and similar axioms, but with equivalences instead of implications in axioms
G5 and G7 (see Hájek [5]). So in Qh, if S(y) can be added to x from the right then
also y can be added to x from the right, and if x can be multiplied by S(y) from the
right then x can also be multiplied by y, and their product can be added to x from the
left. One can verify that Hájek’s axioms are valid in our interpretation as well. Visser
noticed that there exists a simple interpretation of Q in Qh, one that does not use the
Solovay’s technique of shortening of cuts: it is basically sufficient to introduce an
“ideal” individual ∞ and stipulate that ∞ is the new sum or product of x and y
whenever the old sum or product of x and y do not exist. So since the Solovay’s
technique is an essential ingredient of [7], “Visser’s detour” via Qh yields a more
straightforward interpretation of Q in TC than the detour via Grzegorczyk’s Q−.

Note that TC is easily interpretable in the bounded arithmetic I10. Since I10 is
known to be interpretable in Q, all theories TC, Q−, Qh, Q, and I10 are mutually
interpretable.
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