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A NOTE ABOUT CONNECTION OF THE FIRST-ORDER
FUNCTIONAL CALCULUS WITH MANY VALUED
PROPOSITIONAL CALCULI

JULIUSZ REICHBACH

By virtue of a generalization of the satisfiability definition, see [2], we
described in [3] an approximation of the first-order functional calculus by
Boolean many valued propositional calculi in which the quantifier II had a
finite meaning.

In this paper we shall describe another approximation of the calculus
by many valued Boolean propositional calculi based in [4]; the proof of the
approximation is analogical to [3] and it is given in [5].

We consider here a Boolean algebra with operations /complemention/,
+ /addition/ and with elements which are n-tuples (wy,,...... , wy,) of numbers
0 and 1.

We use notations of [3] and especially the following:

1. variables of the calculus:
(1') free: x,, ... /simply x/,
(2') apparent: a,, ... /simply a/ .

2. relations signs: f,, ..., fc; ¢ - maximum of arguments of ones.

3. w(E) - the number of different free /p(E) - apparent/variables occurring
in E.

4, i(E) - maximum of indices of those and only those variables which occur
in E.

5. n(E) = i(E) + p(E).

6. E(u/z) - substitution of « for each occurrence of z in E /with knowing
conditions/.

7. C{E} - the set of all significant parts of E:
HeC{E}.=. H = E or there exist E,eC{E}, F, G, H, such that:
(H=F) A(E,=F) v{H=F)v(H=G)} A(E,=F + C)v(I{H=H,(x;/a) } A
(E,=TaH,). ‘

8. S(k) - the set of all atomic formulas R such that indices of free variables
occurring in R are < k.

9. @-function on S(k) with values n-tuples (w,, ..., w,) of numbers 0 and
1.
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D.1. gk, j, t, @, m).=. (k< m) A(R){(ReS(R) A {QR) =(wy, ..., wy)
for some wy, . .., w, } = (w; =w,)}

By means of the function @ we give an inductive definition of the func-
tional V which is defined for an arbitrary formula E such that {(E) < 2 and
E+p(E) < m:

(19) V{k, @, m, R} = Q(R), if ReS(m),

(2d) Vik, @, m, F'} =V Yk, Q, m, F},

(3d) V{k, Q, m, F+G}=Vi{k, @ m, F} +V{k, @, m, G},

(4d) V{e, @, m, NaF} = (wy, ..., w,), for some wy,...,w, .=.
(G <sn) —=(w;=1.=.
(MN(r<k)a(Vik, Q, m,F(x,/a)} = (w5, . .. ,w,) for some w{, . .. ,wj
- (w;- =D}a@D{(t < n)aglk, §, t, Q, ma{V{k+1, Q, m, F(xy4+,/a) } =
(1)« «.,v,) for some vy, ...,v,} — W, =1)}) .

D.2. J(Q,m, G).=. (k) {({(GQ) < k) A(k+p(C)<m)— (V{k+1,Q,m, G} C V{k, Q,
m, G}}.

D.3. FeP(Q,m,E).=. (36 {(GeC{E}) A (J(Q, m, G)— V{i(F),Q, m, F} =
(1,...,1)}. )

D.4. FePlm,E].=."(Q:){(1 < n < 2 )= (FeP(Qu, m, E))}.

D.5. FeP |El.=.(3m){(m =>n(F)) a (FeP[m, E])}.

D.6. EeP.=. EeP|E|.

The meaning of the above definitions is analogical to the given in [3]
and is explained in [5].

T.1. If E is a thesis, then E€P.

The proof of T.1. is inductive on the length of the formal proof of E,
see [3], and is given in [5].
If we replace D.3. by:

D.3". FeP(Q,m,E).=. J(Q,m,E) = V{i(F),Q,m,F} =(1, ..., 1),
then using Herbrand’s proof rules, see [1], we may analogously to [3] prove:

T.2. I E is an alternative of normal forms, then E is a thesis if and
only if Ee P, see [5].

By an extension of the calculus we mean a first-order functional cal-
culus in which apart of the described signs there are also relations signs
f}, f;, . . . of one argument; in this case the number c of all relations may
be infinite.

Of course, all notations and theorems remain true for the extended
calculus; in one we may prove:

T.3. A formula E is a thesis if and only if E€P.

1. Because @ depends on 7, therefore we write here @ = @,,.
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We note that in T.5. the number ¢ which occur in D.4. may be infinite,

see [5]%; analogical remarks relevant to [3].

T.2-3. prove a new possibility of approximation of the first-order func-

tional calculus by many valued Boolean propositional calculi; in the approxi-
mation the quantifier IT is interpreted in T.2. as a finite operator, see (4d).

Some problems connected with T.2-3. we develop in [6]; examples in

another paper.
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2. We explain assuming [3]:

To prove the converse theorem to T.1. we prove an analogical theorem to T.2, from

[3] in which we assume:

R(M) . =. (¢) () (M/if = M/j/) — (i=])}

Then, the theorem holds for all formulas.
But to construct M with the property R(M) we use a new sequence of relations f},f},
see [5].





