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A NOTE ON CONSTRUCTIBLE SETS OF INTEGERS

HILARY PUTNAM

Is there always a constructible1 set of integers of order a + 1 which is
not of order α, when a is less than ω1 ?

 2 I shall answer this question in the
negative. It is clear that there is always a constructible set of order a + 1
which is not of order a; for Ma itself (the set of all sets of order a) is a
member of M<3t+1, and certainly not a member of itself by the axiom of
foundation. But there is not always a set of integers in M α + 1 which is not
already in MiOl. In fact, I shall show that it can happen that "for a long time"
(a Δg ordinal) we get no new sets of integers in the hierarchy of construct-
ible sets, and then "pop!" a new set of integers appears.

The methods used in this paper are new, and not due to me but to Paul
Cohen, who has used them to show3 that there is an o?< ω1 such that < M α ,
ε > is a model for von Neumann-Bernays set theory (VB), if there is any
well-founded model4 for that theory at all. I am indebted to Georg Kreisel
for calling my attention to this method.

THEOREM 1. There is an ordinal a less than constructible coi such that
there is no set of integers in M α + 1 - Ma.

Proof'. Let T be the set of sentences of set theory which are true in the
model V= L (i.e., in the model < L,ε>. By the Lowenheim-Skolem theorem
there is a countable model <Mi,ε> such that <L,ε> is an extension of
<M x ,ε> and such that the same sentences T are true in <M x ,ε> as in
< L,ε>. We call a model < M, ε> transitive if x ε M, y ε x => y ε M. It is
easily proved (by induction on the order of the elements of M) that if <My ε>
is a submodel of < L, ε> then < M, ε> is isomorphic to a transitive model.
So we may assume <M 1 ,ε> is transitive.

Now certain formulas F(#)are invariant relative to the class of transi-
tive models. By an F(x) being invariant we mean that if a satisfies JF(#)in
a transitive model <M,z> then a satisfies F(x) in every transitive model
in which the set a. occurs. For example, "x is an ordinal" (the formula is
F(x) = trans(Λτ) & {y){z)(y ε x & z ε x & y έ z => y ε z v z ε y) where trans(x)
is short for (y)(z)(z ε x 8z y ε z => y ε x)) is easily seen to be invariant rel-
ative to the class of transitive models, and so are "x is the ordinal ω", "x
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is a finite ordinal", "x is the set Ma for some ordinal α " and many other
notions. Since the proof that Gδdel gave in [G] of the "absoluteness" of
these notions in fact shows invariance, I omit details.

The sentence "there is an ordinal σ such that there is no set of integers
in Ma+ι- Ma" is true in <L,ε> since there is no set of integers in Mαwhen
a ^ classical (x\ which is not already in Mω , by theorem 2 of [G*]. So
there is no set of integers in Mωχ + i~ M.ω , for example. But the same
sentences T are true in <MX ,ε> as in <L, ε > . Hence, "there is an ordinal
a such that Ma+ί-Ma contains no set of integers (finite ordinals)" is true
i n < M 1 , ε > . Since this sentence contains only invariant notions, there is
indeed an ordinal azMλ such that Ma+1-Ma contains no set of integers.
Since Mx is countable, every ordinal in Mx is countable, and we have thus
proved that there is an a <classical cθχ such that Ma+1 -Ma contains no set
of integers.

But in fact we have proved more. For essentially the preceding argu-
ment can be formalized in VB. Of course, we cannot construct a model for
all of VB in VB and also prove that it is a model; but we can construct the
structure5 <M ι ω + 2 , ε > in VB and define the set T of sentences true in this
structure. Since we never employed the fact that < L,ε> is a model for VB
in the argument, but only the fact that the sentence "there is an ordinal a
such that there is no set of integers in Ma+2 - Ma" is true in <L,ε> ,this
structure suffices.

Since all theorems of VB are true in < L,ε>, the theorem "there is a
countable a such that Ma+1- Ma contains no set of integers", which we
have just proved, is also true in <L,ε> . Hence there is such an a which
is "countable" even on the interpretation of "countable" afforded by
<L,ε>; i.e., a< constructive ωt. q.e.d.

Let us call an ordinal a invariant whenever there exists an invariant
formula F(x) which is satisfied only by a. It is easily proved (by consider-
ing countable models) that no ordinal > ωx can be invariant. In fact, the in-
variant ordinals are just the Δ \ ordinals6 by an argument of Mostowski.7

These are smaller8 than constructible ωlf but still quite "large"; for ex-
ample, all the ordinals for which there are names in the Church-Kleene
system of notations (cf. [C], [CK]), are only a segment of the Δg ordinals.
Thus there is some possible interest in the following theorem, which says
that there are stretches of length β, for every invariant β, in which we got
no "new" sets of integers in the hierarchy of constructible sets of order

THEOREM 2. If β is an invariant ordinal, then there is an a< constructible
ωx such that there is no set of integers in Ma+γ - Ma for any γ <β.

Proof: Exactly like the proof of theorem 1, using a+ β in place of a+ 1
throughout. Since the Ma are a chain MQ <zM1 c M 2 c . . . , if there is no set
of integers in Ma+ - Mα, then neither is there a set of integers in Ma+γ -
Ma for any γ < β.
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NOTES

1. The term is used throughout in the sense of [G*]. See also [G] for a
more detailed exposition.

2. Here ωi means the least ordinal in the constructible third number class
(i.e., the ωi of Gδdel's model V=L) unless the expression "classical α^"
is used. When I wish to remind the reader that this is how "ωl* is used,
I also write "constructible ωx".

3. In [PC], which is unfortunately not published.

4. A model <M,R> for set theory is an ordered pair consisting of a set of
entities M and a two place predicate R defined (at least) on M such that
the axioms of set theory are satisfied by the interpretation: " se t " means
member of M, and "ε" means R. If there are no infinite-descending ε-
chains, i.e., no chains ax, a2, a3, ... such that a2Raγ, a3Ra2,... the model
is said to be well-founded.

5. By a structure I mean simply an ordered pair < C, R> such that C is a
set and R is a diadic relation on C. The invariance of all the notions
needed holds in the structure <M ωι+ 2 , ε > as well as in < L,ε>.

6. A predicate R(x,y) of integers is called "expressible in both two function-
quantifier forms" if the predicate R(x,y) is definable in second order
number theory using just two second order quantifiers (and arbitrary
first order quantifiers, i.e., quantifiers over numbers, since these can
always be reduced to one when function quantifiers are present, by known
tricks), which can be brought out in the order EA, and also definable (not
necessarily by the same formula, but also using just two second order
quantifiers) in such away that the second order quantifiers can be brought
out in the order AE. These predicates form a family referred to in the
literature as Σ2Γ\π2, or simply as Δg. This family is closely connected
with well-founded models; in fact, a predicate of integers has the same
extension in all well-founded models of some system of set theory if and
only if it is in Δ^. I use the term "Δ^ ordinal" to mean ordinal of some
well ordering R(x,y) of integers such that the predicate R εΔg.

7. Cf. [M]. Mostowski's argument was given for β-models of analysis but
is easily extended to well-founded models of set theory.

8. Shoenfield has shown in [S] that all two function-quantifier notions are
"absolute" in Gδdel's sense. Since it is a theorem that there are only
countably many Δ\ ordinals, they are all < classical α>i. The theorem
must hold in all models, in particular in <L,ε>, so all the Δ\ ordinals
are less than constructible cυ1# Since by the result of Shoenfield just
mentioned, the Δί, predicates of the model <L, ε> are provably the same
as those of < V, ε>, it follows that all Δ^ ordinals (and even all EA ordi-
nals and all AE ordinals) are less than constructible ωx.
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