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NOTES ON THE AXIOMATICS OF THE
PROPOSITIONAL CALCULUS

C. A. MEREDITH and A. N. PRIOR

In this paper the proofs, unless otherwise stated, are Meredith's, and
the bracketed notes introducing each item or commenting on it, Prior's.
The proofs are all compressed by Meredith's device of writing Όmn' for
the most general result (i.e. without any unnecessary identification of var-
iables) of detaching the formula n, or some substitution in it, from the
formula m, or some substitution in it.

1. -Lukasiewicz's Deduction Shortened. (This is a very slight abridgement
of -Lukasiewicz's proof that CCCpqrCCrpCsp suffices for classical C. It
seems worth including, as Lukasiewicz's own paper [5] is now out of print
and not easily obtainable.)

1. CCCpqrCCrpCsp
2. CCCpqpCrp = DDDlDllln
3. CCCpqrCqr = DDDlDlD121n
4. CpCCpqCrq = D31
5. CCCpqCrsCCCqtsCrs = DDDlDlDlD141n
6. CCCpqCrsCCpsCrs = D51
7. CCpCqrCCpsrCqr = D64
8. CCCCCpqrtCspCCrpCsp = D71
9. CCpqCpq = D83

10. CCCCrpCtpCCCpqrsCuCCCpqrs = D18
11. CCCCpqrCsqCCCqtsCpq = DDlO.lO.n
12. CCCCpqrCsqCCCqtpCsq = D5. l l
13. CCCCpqrsCCsqCpq = D12.6
14. CCCpqrCCrpp = D12.9
15. CpCCpqq = D3.14
16. CCpqCCCprqq = D6.15

*17. CCpqCCqrCpr = DD.13D.16.16.13
*18. CCCpqpp = D14.9
*19. CpCqp = D33
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2. Two Axioms for C-Verum. (Meredith's axiomatisation-- the development
is only given for the first of the two—of that fragment of the two-valued logic
in which implication is supplemented by a constant true proposition, here
symbolised as 'Γ —the same symbol is used for the axiom, but the context
prevents confusion. This is the solution of a problem put to Meredith in
1957 by Lejewski, whose own work in [3] gave him a special interest in ways
of completing the propositional calculus from its implicational fragment. It
is clear that if you know of an axiom AX in C and N, which will yield the
complete propositional calculus when subjoined to a basis known to be com-
plete for C-pure, you can obtain a single axiom for C-N by replacing I in
Meredith's C-I axiom by AX. It may be noted that a C-I single axiom must
in the nature of the case be non-organic, i.e. must contain a law of the sys-
tem as a part, namely the constant /. As with some systems considered in
later sections, a shorter total axiomatisation seems possible with two or-
ganic axioms than with a single non-organic one. In the present case, the
pair consisting of -Lukasiewicz's CCCpqrCCrpCsp and the constant / is
shorter than either of Meredith's single axioms.)

(a) CCCpqCrCIsCCspCrCtp
(b) CCCpqCIrCsCCrpCtCup

1. CCCpqCrCIsCCspCrCtp = (a)
2. CCCtpCpqCCspCrCtp = D l l
3. CCCpqCtpCCspCrCtp = D12
4. CCrCpCqpCtCCspCpCqp = D31 = D33
5. CCrCCspCpCqpCuCtCCspCpCqp = D34
6. CCrpCpCqp = DDD53nn
7. CCqrCqCpr = D16
8. CCrCqpCsCpCqp = D36
9. CCrCpCqpCtCsCpCqp = D38

10. CpCqp = DDD96nn
11. CpCqCrp = D7.10
12. CpCqCrCsp = D7.ll
13. CCCsCpqpCrCtp = D1.12
14. CCpCrCpqCsCtCrCpq = D1.13
15. CCpCrCpqCrCpq = DDDD14.14.n.n.n
16. CCqrCsCqCpr = D77
17. CtCCqrCsCqCpr = D10.16

18. CCCqCprsCCqrCts = D1.17
19. CCCpqCIrCsCCrpCtCup = D18.1
20. CCCpqrCsCtCCrpCuCrp = D18.19
21. CCCpqrCCrpCsCtp = DD15.20.n
22. CCrpCCCpqrCsp = D15.21
23. CCCpqrCCrpp = D15.22
24. CCCCrppsCCCpqrCus = D1.D11.23
25. CCCpqrCtCCrpCsp = D24.7
26. CCpCpqCrCsCpq = D1.D1.11

*27. CCCpqrCCrpCsp = DDD26.25.n.n
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(in view of the next item, the proof of 7 and 24, even without 27, estab-
lishes sufficiency for C-pure. The above deductions will also go through if
/ in the axiom is replaced by t, the result of this replacement being there-
fore a single axiom for C-pure. To prove the constant / itself, prove Cpp
and CrCsCpp in C-pure, and the constant is obtainable as DDDD.Ax.
CrCsCpp.Cpp.n.n.)

3. 2-Axiom 2-Valued C-Pure.

1. CCCpqrCCrpp
2. CCqrCqCpr
3. CCCCrppCpqCpq = Dll
4. CCCpqrCsCCrpp = D21
5. CpCCpqq = D34
6. CCCCCprqqpp = D15
7. CCpCCCprqqCCCprqq = D16
8. CCCCCpqrsCCrppCCrpp = D74
9. CCCCrppCCCpqrsCCCpqrs = D18

10. CCqrCsCqCpr = D22
11. CCCpqrCCrpCsp = D9.10

4. 2-Axiom 2-Valued C-Pure (Others). (About the time when Meredith was
circulating the preceding item, it was noted by Ivo Thomas that the suffi-
ciency of certain axiom-pairs followed easily from Lukasiewicz's proof in
[6], given in D-form in [10], pp. 318-9, that in the Tarski-Bernays axioms
CCpqCCqrCpr, CCCpqpp, CpCqp,the last one may be replaced by any form-
ula of the form CpCaβ. For example, we have the following deductions,
starring the probanda:-

1. CCCpqpCrp
*2. CCpqCCqrCpr

3. CCpCpqCrCpq = DD221
*4. CrCCCpqpp = CpCaβ = D31
*5. CCCpqpp = D4n, for any thesis n;

and the following:-

*1. CCCpqpp
2. CCpqCsCCqrCpr

*3. CuCCCsCCqrCprtCCpqt = CpCaβ = D22
*4. CCpqCCqrCpr = DD3nl, for any n.

When Thomas sent these results to Meredith, the latter replied, in a
letter of August, 1958, that he knew the pair CCCpqpCrp, CCpqCCqrCpr,
and (i) to the other pair he added CCCpqpp with CCpqCCqrCsCpr,
CCpqCCqrCpCsr. He further noted (ii) that Lukasiewicz's CpCaβ result
showed that Pierce and Syll, i.e. CCCpqpp and CCpqCCqrCpr, give Weak
Syll, i.e. CCqrCCpqCpr. Putting capitalised variables for implications—
e.g. CPCqP for CCrpCqCrp— Thomas comments, Ί fill in the reasoning
thus: Peirce and Syll give themselves capitalised, CCpqCaβ (Syll), and so



174 C. A. MEREDITH and A. N. PRIOR

by the Lukasiewicz result (1) CPCQP. Peirce and Syll also give
(2) CCCpqCqrCCpqCpr, hence by Syll, (1), (2) we get Weak Syll\ Finally,
Meredith adds in his letter the theorem that follows below. It may be added
that before-Lukasiewicz's result, Wajsberg had the two Thomas pairs above,
in [14], with more difficult proofs.) (iii) An allied result: Either Syll works
with CCCrCpqpp.

1. CCCrCpqpp
2. CCqrCCpqCpr
3. CCsCCrCpqpCsp = D21
4. CCCCrpqpCrp = D32

*5. CCCpqpp = D3DD232
6. CCsCqrCsCCpqCpr = D22
7. CCqrCCsCpqCsCpr = D62
8. CCrCsCCpqpCrCsp = D75
9. CCrpCCCpqrp = D82

10. CCrpCpp = DD249
11. CqCpp = D4.10
12. CqCrCpp = DD7.11.11
13. CCCqrqCCqrr = DD921
14. CCCqCpprr = D13.12
15. CCpqCrCpq = DD2.14.7
16. CCCpqpCrp = D8.15

*17. CpCqp = D4.16
18. CCCqrCpqCCqrCpr = DD971

*19. CCpqCCqrCpr = DD2.18.15

For 1 and 2. CCpqCCqrCpr I can give no better than DDDD22211 =
CCCpqpp and thence via -Lukasiewicz's result above (i.e.(ii)).

5. C-Pure with Identity. (All the axiom-pairs in the preceding sections
have a total of 9 C's, distributed variously between the axioms. This set
me wondering whether there could be a pair with the distribution 1-8; with
results which I have described in [9]. When I put this problem to Meredith
in 1959, he did not solve it, but he did in 1960 produce not a 9-C but an 8-C
pair with the 1-C axiom Cpp as one member. His independence-proof and
deductions are given below. The 4-valued matrix verifies Axiom 1 and COp
and falsifies Cpp, showing independence, while the inner 3-valued matrix
verifies both 1 and CCppp, falsifying Cpp and allowing no constant k such
that Ckp for all p. The deductions are from Axiom 1 only, and illustrate
the extreme difficulty of getting rid of its extra letter of simplification; but
the set of section 3 is given by 12 and the detachment of Cpp from 20. The
'twiddle' or tilde signifies deductive equivalence. For other uses of the two
axioms which are together equivalent to 1, see 1.4.)

1. CCCpqrCCrpCsCtp
2. Cpp
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C 1 2 3 \ 0
1 with 1—
3. CCppp * I 1 3 2 i 0

is saturated and P -. ~ 7 ' 9
rejects both Cpp and COp j

5 1 1 2 I 2

( 9 I 1 I i | l

l^CCpqCCqrCpCsr, CCCrCpqpp.

1. CCCpqrCCrpCsCtp Axiom
2. CCCrCpqpCsCtp = DDDDlDlllnn
3. CCCqprCpCsr = DDDD121nn
4. CrCuCCrpCsCtp = D31
5. CCCuqCtpCCCqrpCsCtp = DDDDlDHlnn
6. CCCrqCsCtpCuCCrpCsCtp = D51
7. CCqCsCtpCuCCCqrpCsCίp = DD64n
8. CCCCCpqruCtpCCrpCsCtp = DD71n
9. CpCqCrCsp = D32

10. CCpCrCpqCsCtCrCpq = DD69n
11. CCpCrCpqCrCpq = DDDDlO.lOnnn
12. CCCpqrCCrpp = D11.D11.1
13. CrCqCCrpp = D3.12
14. CCpqCsCCCprqq = DD6.13.n
15. CCCCpqtqCsCCCprqq = DD7.14.n
16. CCCsCCCprqqCCpqtCCpqt = D12.15
17. CCCCCprqqtCsCCpqt = D8.16
18. CCpqCCqCprCpr = DD17.12n
19. CCCCqCprCprCCpqtCCpqt = D18.18
20. CCpqCCqrCpCst = D19.6

6. Variations on Tarski. (I once raised with Meredith the question whether
•Lukasiewicz's result, that from CCpqCCqrCpr, CCCpqpp and any CpCaβwe
could obtain the remaining Tarski-Be mays axiom CpCqp, would still hold if
we replaced CCCpqpp with Tarski 's original axiom CCCpqrCCprr. I could
prove particular cases of it, e.g. CpCpp works as follows:-

1. CCpqCCqrCpr
2. CCCpqrCCprr
3. CpCpp
4. CCCCqrCprsCCpqs = Dll
5. CCpCqrCCsqCpCsr = D44
6. CCCppqCpq = D13
7. CCCCprrsCCCpqrs = D12
8. CCCpqpCpp = D76
9. CCpCpqCCpqCpq = D48

10. CCppCpp = D93
11. CCpCppCpp = D2.10
12. C/>/> = D l l . 3
13. CCpCpqCpq = D2.12
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14. CCCpqpCCpqq = D4.13
15. CCCpppp = D14.8
16. CCCpqpp = D7.15

But I could obtain no general result either way. Meredith pointed out in
July 1961 that the matrix

C 1 2 3

*1 1 3 3

2 1 3 3

3 1 1 1

verifies Syll, Tarski and CpCCpqq but falsifies CpCqp. In October of the
same year he implicitly extended this result to three other formulae which
he shows below to be equivalent to Tarski. Capitalised variables stand for
implications, e.g. CPP is CCpqCpq.)

Subject to CCpqCCqrCpr the four theses (A) CCCpqpCCprr,
(B) CCpqCCCpqpr, (C) CCCpqrCCprr, (D) CCprCCCpqrr are equivalent.

The strongest identity (derivable from Syll with any of these) is
CCPqCPq; the strongest Peirce is CCCCPqrCPqCPq; the strongest Simp is
CCPqCRCPq.

Refutation of CPP by C | 1 2 3 4 0

*1 1 1 0 0 0

2 0 0 0 0 0

3 0 4 0 0 0

4 1 1 0 0 0

0 1 1 1 1 1

(A) CCprr = 1 unless p = 0, but CCOqO = 0; hence CCCpqrCCprr = 1.
CCpqCCqrCpr = 1 if p = 0 or p = 2 or q = 2; also if p = 4 q = 2, (CClrC4r =
1); also if p = 4 q = 1 (CClrClr = 1); also if p = 5, q £ 2. But CC32C32 = 0.

Deductions from Syll alone :-

1. CCpqCCqrCpr
2. CCCCqrCprsCCpqs = Dll
3. CCpCqrCCsqCpCsr = D22
4. CCpqCCCprsCCqrs = D21
5. CCCCCprsCCqrstCCpqt = D14
6. CCqsCCpqCCsrCpr = D23
7. CCtCpqCCqsCtCCsrCpr = D36

Adding as second axiom (A) we have:-

8. CCCpqpCCprr (Ax)
9. CCCpqpCCtrCCpCrsCts = DD183
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10. CCCCpqCCCpqCqrCprss = D89
11. CCsCCpqpCCCCprrtCst = D68
12. CCCCCpqrrsCCpqs = D10.il
13. CPCCPqq = D12.8
14. CCpCQrCQCpr = D3.13
15. CCprCCCpqpr = (B) = D14.8
16. CCPqCPq = D12.12
17. CCCCPqrCPqCPq = D15.16
18. CCCprsCCpqCCqrs = D14.4
19. CCCCPqrsCCsCPqCPq = D18.17
20. CCPqCCrCPqCPq = D12.19
21. CCPqCRCPq = DD1.20.12
22. CCsCPqCCCsrCPqCPq = D2.19
23. CCCsrCPqCCsCPqCPq = D 14.22
24. CCCpqCCprrCCprr = D23.8
25. CCCprCCpqrCCprr = DDL 14.24
26. CCCpqrCCprr = (C) = DD1.21.25
27. CCprCCCpqrr = (D) = D14.26

Adding (B) to 1-7 we have:-

8. CCprCCCpqpr (Ax)
9. CCsCCpqpCCprCsr = D38

10. CCCpqsCCprCCspr = D29
11. CCCrsCCpqpCCrtCCprt = DD199
12. CCCpqsCCtCspCCprCtr = DDL 10.3
13. CCCCtrqsCCiuCCCtriu = DDL12.11
14. CCXCCprCCCpqpr = DD1.6.13
15. CCCpqsCXCCCCsprtCCprt = D5D7.14
16. CCCpqpCCCCppprCXr = DD1.15.9
17. CCCpqpCCprCXr = DD3.16.8
18. CCCPCCCCsPrtCCPriuCXu = DD17.15.n
19. CCCPPPqCPq = DD18.9.n
20. CCPqCPq = DDL8.19
21. CCCCPqrCPqCPq = D8.20
22. CCPCPqCPq = D2.21
23. CCCpqpCCprr = (A) = DDL 17.22

Adding (C) to 1-7 we have:-

8. CCCpqrCCprr (Ax)
9. CCpqCCprrCCprr = D88

10. CCsCCpqrCCCCprrtCst = D68
11. CCCpqsCCCCprrtCCsrt = D2.10
12. CCCCCCprrCCsrtCCsrtuCCCpqsu = D10.il
13. CCCpqsCCpsCCsrr = D12.5
14. CCCpqpCCprr = (A) = DDL 13.9

Adding (D) to 1-7 we have:-

8. CCprCCCpqrr (Ax)
9. CCsCCpqrCCprCsr = D38

10. CCCpqrCCprr = D98
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(Meredith has noted that although Tar ski cannot replace Peirce in Lukasie-
wicz's theorem, Tar ski and Simp will yield the full C calculus when com-
bined with either Syll, whereas with Pierce we must have CCpqCCqrCpr.
With Tarski and the weaker Syll the initial deductions are

1. CCqrCCpqCpr

2. CCCpqrCCprr

3. CpCqp

4. CCpqCpCrq = D13
5. CCqCpCqrCpCqr = D23
6. CpCCpqq = D54

The rest follows from the results in the following section.)

7. The System B-C-I. (Meredith observed independently some of the rela-
tions between implicational calculus and combinatory logic developed in
Curry and Feys [2], 9E. In particular, if we write B for CCqrCCpqCpr, then
for any formula a, b, c, DDDBabc = DaDbc, just as in combinatory logic
Babe = a(bc); if we put C for CCpCqrCqCpr, DDDCabc = DDacb, just as in
combinatory logic Cabc = acb; and if we put I for Cpp, DIa = a, just as la = a
in combinatory logic. CpCqp and CCpCpqCpq are similarly related to the
combinators K and W. Following the practice in combinatory logic, Mere-
dith will often write, say, CCqrCCpqCpr ~ λaλbλcDaDbc. The following is
his 1956 summary of deductive equivalents of the set B, C, I.)

B = CCqrCCpqCpr = λaλbλcDaDbc
C = CCpCqrCqCpr = λaλbλcDDacb
1 = Cpp = λaa
T = CpCCpqq = λaλbDba
P = CCpqCCqrCpr = λaλbλcDbDac

3 Axiom bases: T, I and either B or P

2 Axiom bases: I and either

Qi = CCpCqrCCsqCsCpr = λaλbλcλdDDadDbc

or

Q2 = CCsqCCpCqrCsCpr = λaλbλcλdDDbdDac

or

Rx = CCCCpqrsCCqrCps = λaλbλcDaλdDbDdc

or

R2 = CCqrCCCCpqrsCps = λaλbλcDbλdDaDdc

1 Axiom bases: Qx = λaλbλcλdDDadDDblc
Q2 = λaλbλcλdDDbdDDalc

Putting a for DCC, i.e. CqCCpCqrCpr, we have

DDaota = C

DDDPPDPPT = C; DDBBT = a; DCI = T.
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DDQxQiI= Q2; DQ2I = C; DCQ2 = Qi DDQiQ!DQiI= P.
DDRiΠ= T; DDRiRJ = P.

Meredith's main results follow from these; and for R2 he gives

1. CCqrCCCCpqrsCps
2. Cpp
3. CCCCpqqrCpr = D12

*4. CpCCpqq = D32
5. CCCCsCCCpqqrCprtCst = D13
6. CCsCCCpqqrCsCpr = D35

*7. CCqrCCpqCpr = D61

The single axiom Q± is the formula CCpCqrCCssCtqCtCpr mentioned in
III.l, and the other is of comparable length—non-organic, and longer than
the organic axiom-pairs, Qx etc. with I)

8. Single Axiom for B-C-K (see note introducing the last section).

1. CCCpqrCCsCrtCqCst
Dll = 2. CCuCCCsCrtCqCstυCrCuv
D21 = 3. CrCCCxuqCuCCsCrtCst
D23 = 4. CxCrCCxyCCsCrtCst
D41 = 5. CrCClyCCsCrtCst
D25 = 6. CCxCyzCrCCsCrtCst
D61 = 7. CrCCsCrtCst
D77 = 8. CCpCΊqCpq
D87 = 9. CCpCqrCqCpr *
D88 = 10. CClCΊpp
D1.10 = 1 1 . CCqCprCClpCqr
D l . l l = 12. CCsCCCΊpCqrtCCprCst
D12.7 = 13. CCprCqCCΊpr
D8.13 = 14. CCprCClpr
D14.14 = 15. CCΊCprCCΊpr
D1.15 = 16. CCqCCCΊprsCCprCqs
D1.9 = 17. CCsCCqCprtCCqrCst
D17.7 = 18. CCqrCsCqr
D1.18 = 19. CCsCCpCqrtCrCst
D19.7 = 20. CrCqCpr
D8.20 = 21. CpCqp *
D21.1 = 22. Cul
D16.22 = 23. CCqrCuCCsCrtCqCst
D8.23 = 24. CCpqCCsCqrCpCsr
D9.24 = 2 5 . CCsCqrCCprCpCsr
D8.18 = 26. CCqrCqr
D25.26 = 27. CCpqCpCCqrr
DD9D27.27.9 = 28. CCpqCCqrCpr *

9. A Combinatory Base without C-Positive Analogue, (If any formula is
D-derivable from other formulae the combinator corresponding to it is
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definable in terms of those corresponding to the other formulae. The con-
verse, however, does not always hold, as is noted in [2], p. 315, n. 15.
Meredith gives also this example: the combinator corresponding to
CCpqCCCspCqrCpr suffices to define those corresponding to CpCqp and
CCpqCCpCqrCpr, which are jointly sufficient for the positive or intuition-
istic implicational calculus; but the latter two formulae are not deducible
from the first one. Meredith did find them deducible, however, from the
formula resulting from prefixing ζCt*. to the latter. The following deduction
is Ivo Thomas' s:-

1. CtCCpqCCCspCqrCpr
2. CCpqCCCspCqrCpr = Din
3. CCutC2vCtυ = D21
4. CC2vv = D33
5. CCCspCqrCqCpr = D32
6. CpCCpqq = D54
7. CCCpqrCqr = D56

*8. CpCqp = D77
9. CCpqCCqrCpr = DD7D227 = DD22D87

10. CCvuCC2vu = D94
11. CCCC2vuwCCvuw = D9.10

*12. CCpqCCpCqrCpr = DD9.2.11

Thomas has noted that 5 alone gives CpCqp and Cpp. Cpp = DD5DD55nn,
and CpCqp = D5.C/>/>. Also sufficient for C-positive are 8, i.e. in combina-
tory terms K, and the commutation of 12, Frege's axiom CCpCqrCCpqCpr,
which Meredith calls A. This is derived below from P, i.e. Syll, with the
combinators K and R; but R has no C-positive analogue. Items marked with
a dash are all in this last position; those with one cross are in C-positive;
those with two are even in the system B-C-I of Section 7.)

xx x
P = λaλbλcDbDac K = λaλba R = λaDaa

1. DPP = (ab)DaDPb xx
2. DPK = (ab)DaDKb x
3. DIP = (abc)DbDDPac xx
4. D23 = (abc)DbDKDca x
5. D4R = (ab)DaDKDbR
6. D5R = (a)DaR
7. DP4 = (ab)DaD4b x
8. D76 = (ab)Dba= T xx
9. D1R = (abc)DDabDac

10. DP8 = (ab)DaDTb xx
11. D10.9 = (abc)DDbaDca x
12. D1.10 = (abc)DDacb=C xx
13. D12.ll = (abc)DDabDcb x
14. DP.13 = (ab)DaD.13.b x
15. D14.12 = (abc)DDacDbc= A x
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10. Single Axiom Equivalent to CCCppqq and Syll. (Wajsberg showed in
[13] that from CCCppqq and CCpqCCqrCpr we may infer a substitution in
CCpCqrCqCpr, namely CCpCQrCQCpr, from which we can obtain the other
Syll CCqrCCpqCpr. Meredith obtained the same result independently in
1956, when working on pure strict implication, and Belnap also obtained it
when working on entailment. Belnap's proof is in [1]; Meredith's was as
follows :-

1. CCpqCCqrCpr
2. CCCppqq
3. CCCCqrCprsCCpqs = Dll
4. CCpqCCCprsCCqrs = D31
5. CCCCCppqrsCCqrs = D42
6. CCCCqrstCCCCCppqrst = D15
7. CCCCCppqqrr = D62
8. CCCCCprsCCqrstCCpqt = D14
9. CCCppqCCqrr = D87

10. CPCCPqq = D39
11. CCpCQrCQCpr = DD3.3.10

In 1962 Belnap's collaborator A. R. Anderson asked Meredith if he could
find a single axiom equivalent to Wajsberg's two premisses, certain general
methods for obtaining single axioms, e.g. that suggested in Tarski's [12],
p. 44, being unavailable in the absence of CpCqp; and Meredith obtained the
result below. "In sub-systems of (B, C, I)", he commented, "there is com-
plete agreement between theses and combinatory logic and I find the latter
quicker to work with".)

1 = λaa ~ Cpp, 2 = λaDal ~ CCCppqq.

For brevity I omit the λ-prefix, which is understood as sufficient of
λaλb .... to cover the variables. This is possible in the absence of K.

I. Ax 3 = DDDa2cDbd ~ CCCCCppqqCrCst - CCusCrCut
4 = D33 = DDD32bDac = DDacDbd
5 = D34 = DDD42bDac = DDDaclObd
6 = D35 = DDD52bDac = DDDDacllDbd
7 = D63 = DDDD3bllDac = DDDb21Dac

*8 = D57 = DDD7blDac = DbDac ~ CCpqCCqrCpr
9 = DD737 = DDD721D3a = DD3al = DDDa2bc

10 = D98 = DDD82ab = DaDbl
*11 = DD7(10)7 = DDD721D(10)a= DD(10)al = Dal = 2
(11 = DDD7978).

11. The commutation also works but is much heavier, though I got it first.
Very briefly:-

Ax 3 = DDDb2cDad
4 = D33 = DDDa2bD3c
5 = DDDD43333 = DbDDalc
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6 = D4D45 = DDDaclDbd
*7 = D46 = DbDac (= D6D65)

8 = D65 = DDblDac
9 = DD858 = DDalb

10 = D93 = DDDa2bc
*11 = DD(10)89 = DDD829a = Dal = 2

III. Proof of Axiom 1 from

2 = Dal
3 = DbDac

Note: DD231 = DlD2a = D2a = 2
4 = D33 = DaD3b
5 = D44 = DDacDbd
6 = D43 = D3D3a
7 = D4δ = D3D3D3a
8 = DD722 = DD3D3D322

= D2DD3D32a
= DDD3D32al
= DaDD321
= Da2

*9 = DD385 = D5D8a = DDDδacDbd
= DDDa2cDbd

(There follows a later communications supplementing and improving these
results).

With my former conventions:

(i) 1 = λaa, (ii) 2 = λaDal, (iii) omission of the λ-prefix.

I give three more single axioms for the system (CCCppqq, CCpqCCqrCpr):
the first contains encysted 2 and is obviously best possible of this kind; the
others are longer but contain only encysted 1.

Concerning proofs in λ-logic versus prop, logic: I find λ easier for
breakdown of a complex single axiom, but the converse process I find easier
propositionally.

(Al) 3 = DDb2Dac ~ CCpqCCCCCssttCqrCpr
Note: DD3aD3b = XcDbDac

4 = D33 = DDa2D3b
5 = D43 = DD32D3a = DaD2b = DaDbl
6 = D45 = DD52D3a = D2DD3al = DD3all = D2Dal = DDal l

*7 = D63 = D2a = Dal
8 = D4D34 = DD33D34 = D4D3a = DDD3a2D3b = DaD3b

*9 = D88 = DD3aD3b = DbDac

For the next two I use J = λaλbDab = λaDDBal = λaDDBla. DD Jab = Dab; if
X begins with λ, DJX = X.

CCpCQrCQCpr ~DDacDJb
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(A2) 3 = DDDadlDDBbc ~ CCsCCuuCCprtCCqrCCpqCst
4 = D33 = DDDcdlDDBab
5 = D34 = DDDaDbdlDJc
6 = D53 = DDDDacdlDJb
7 = D64 = DDalDDBbc
8 = D57 = DDDaclDJb
9 = D77 = DaDbDcd

*10= D89= DbDac
11 = D88 = DDDbDJall

*12 = DD11.10.3 = Dal = 2

(A3) 3 = DDDadlDDBcb
4 = D33 = DDDcdlDDBba
5 = D34 = DDDbdadlDJc
6 = DD543 = DDalDDBcb
7 = DD534 = DDDaclD3b
8 = D66 = DcDbDad
9 = D74 = DDDaDJblDJc

10 = D93 = DDDaclDJb
11 = D10.8 = DaDbc
12 = D10.10 = DDDbDJall

*13 = DD12.11.3 = Dal = 2
•14= D6.13 = DbDac

11. Two-valued C-O. (In 1952 Meredith obtained two single axioms for the
full propositional calculus in C and O. The development of one of them is
given in [8]; that of the other, below.)

1. CCCpqCCOrsCCspCtCup
2. CCCtCupCpqCrCsCpq = Dll
3. CCCrCpqCtCupCuCsCtCup = D12
4. CCCsCtCupCrCpqCwCvCrCpq = D13
5. CCCpqrCqCsr = DDD41nn
6. CCCυCrCpqCsCtCupCxCwCsCtCup = D14
7. CCCpqpCrCsp = DDDβlnn
8. CCCspCpqCtCrCpq = D17
9. CCCrCpqCspCuCtCsp = D18

10. CCCtCspCrCpqCvCuCrCpq = D19
11. CCqrCqCpr = DDDlO.l.n.n
12. CCCOrsCqCCspCtCup = D51
13. CsCrCqCCspCtCup = D5.12
14. CCCqCCCsrpCtCupsCwCvs = D1.13
15. CCCqCCCsrpCtCupsCxCwCvs = Dll.14
16. CCCwCvsCqCCCsrpCtCupCzCyCqCCCsrpCtCup = D1.15
17. CCsCupCCCsrpCtCup = DDDlθ.l.n.n
18. CsCCspCtCup = DDD8.12.n.n
19. CCCsrCtCupCqCCspCtCup = D17.18
20. CpCqCrCsp = D55
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21. CCpCqCprCsCtCqCpr = DD19.20.n
22. CCpCqCprCqCpr = DDDD21.21.n.n.n
23. CpCCpqq = D22.ll
24. CCpqCCCprCsqCsq = DD19.23.n
25. CCCCpqtCuCCCprCsqCsqCuCCCprCsqCsq = D24.24
26. CCCCCprCsqCsqCCpqtCuCvCCpqt = D1.25
27. CCCpqCCOrsCvCCspCtCup = Dl l . l
28. CCpqCCqCprCtCsCpr = DDD26.27.n.n
29. CCqCprCCpqCsCpr = D22.28
30. CCqCprCtCCpqCsCpr = D11.29
31. CCtCqCprCvCtCCpqCsCpr = D29.30
32. CCqrCCpqCsCpr = DD31.11.Π

*33. CCpqCCqrCpr = D32.22
*34. CCCpqpp = DD22.7.Π
*35. C£C#/> = D33.7

(This proves sufficiency of the axiom for C-pure; to prove it for the full
calculus Meredith should also prove COp. But given C-pure, and so Cpp
and CqCpp, COp is deducible as DDDD1.CqCpp.Cpp.n.n. And COp with
CCCpqrCCrpCsp would be a shorter axiomatisation, although 1 is organic).

12. Full Propositional Calculus in N and K. (1-3 are Rosser's axioms in
[11] for this version of full p.c. Meredith deduces an alternative to Rosser's
second axiom, the deduction of Rosser's axiom from Meredith's going
through analogously. The other alternatives Meredith mentions look longer
than Rosser's axioms but are not when all defined terms in the latter are
duly expanded.)

Dpq = NKpq Cpq = DpNq

1. CpKpp )
2. CKpqp > Rosser
3. CCpqCDqrDrp )

D31 = 4 . CDKppqDqp
D42 = 5. DNpp
D32 = 6. CDprDrKpq
D36 = 7. CDDrKpqsDsDpr
D75 = 8 . DKrKpqDpr
D48 = 9. DDpKpqKpq
D79 = 10. CKpqKpp
D3.10 = 1 1 . CDKpprDrKpq
D11.2 = 12. DNpKpq
Dβ.12 = 13. DKpqKNpr
D4.13 = 14. DKNpqp
D3.14 = 15. Cpp
D3.15 = 1 6 . CDpqDqp
D3.5 = 17. CDpqCqNp
D17.16 = 18. CNDqpNDpq
D3.18 = 19. CDNDpqrCrDqp
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D3.16 = 20. CDDqprDrDpq
D20.19 = 21. DNCrDqpCrDpq
D16.21 = 22. CCrDpqCrDqp
D3.3 = 23. CDCDqrDrpsDsDpq
D23.22 = 24. DNCDqrDprCpq
D16.24 = 25. CCpqCDqrDpr

(25 = DD.22.23.22)
D20.5 = 2 6 . CKqpKpq
DD25.26.2 = 27. CKpqq

With 27 instead of 2 we have alterations only in 6, 7, 8, 9, 10, 11, 12,
13, 14, 27.

14 and DKqNpp are easier than either.

13. Two-valued E-pure. (Lukasiewicz having shown in [4], reproduced in
Polish in [7], that any one of the formulae EEpqEErqEpr, EEpqEEprErq,
EEpqEErpEqr would suffice as a single axiom, with substitution and E- de-
tachment, for that part of the propositional calculus which has no constant
but material equivalence. He has also been credited with showing that no
other axiom of equal length would do, but this is not so, Meredith having
shown in August 1951 that either of the formulae EEEpqrEqErp or
ErEEqErpEpq would do, and later that the same property is possessed by
EpEEqErpEqr, EEpEqrErEpq (the easiest, he claims, in development),
EEpqErEEqrp, EEpqErEErqq, EEEpEqrrEqp and EEEpEqrqErp. We give
below not Meredith's original 1951 deduction from EEEpqrEqErp but his
later improvement on it.)

1. EEEpqrEqErp
2. ErEEqErpEpq = Dll (DD222 = 1)
3. EEsE(l)tEts = D21
4. EEErpEEpqrq = D32
5. EEEpqqp = D42
6. EqEpEpq = D15
7. EErEsEsr(β) = DD666
8. EEsEsrE(6)r = D17
9. EEsrEE(6)rs = D18

10. EE(6)EE(6)rsEsr = D99
11. EEsEtEtsEEErpEEpqrq = DD646
12. EqEEEpEprqr = D10.il
13. EEsE(12)tEts = D2.12
14. EErqEEpEprq = D13.2
15. EEsEsEEpqrEqErp = D14.1
16. EEsEEpqrEqErp = D1.15
17. EEEprEqpErq = D16.14

*18. EEpqEErpEqr = D1.17

(Meredith has noted that 1 will suffice for £-pure not only with ordinary de-
tachment but also with reverse detachment, i.e. the rule to infer a from
Eaβ and β, as its primitive rule. One way of confirming this is to show that
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with this formula and reverse detachment, ordinary detachment is obtain-
able as a derived rule, thus (writing 'Rmn' for the reverse detachment of n
from m):-

1. EEEpqrEqErp
2. Eaβ
3. a
4. EEErpEEpqrq = Rll
5. EErpEEpar = R43
6. EEpEpqEqa = R15
7. EEaEpEpqq = R16
8. EaEpEpa = R73
9. EEEpaap = R18

10. Eaa = RR933
11. EEqEapEpq = R51
12. β = RR(ll)2(10).)
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