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NOTES ON THE AXIOMATICS OF THE
PROPOSITIONAL CALCULUS

C. A. MEREDITH and A. N. PRIOR

In this paper the proofs, unless otherwise stated, are Meredith’s, and
the bracketed notes introducing each item or commenting on it, Prior’s.
The proofs are all compressed by Meredith’s device of writing ‘Dmn’ for
the most general result (i.e. without any unnecessary identification of var-
iables) of detaching the formula n, or some substitution in it, from the
formula m, or some substitution in it.

1. fukasiewicz’s Deduction Shortened. (This is a very slight abridgement
of tukasiewicz’s proof that CCCpgrCCvpCsp suffices for classical C. It
seems worth including, as Eukasiewicz’s own paper [5] is now out of print
and not easily obtainable.)

1. CCCpqrCCrpCsh

2. CCCpgpCrp DDD1D111n

3. CCCpgrCqr DDD1D1D121n

4. CpCCpqCrq D31

5. CCCpqCrsCCCqtsCyvs = DDD1D1D1D141n
6

7

8

1}

. CCCpqCrsCCpsCrs = D51
. CCpCqrCCpsrCqr = D64
. CCCCCpqrtCspCCrpCsp = DT1
9. CCpqCpq = D83
10. CCCCrpCtpCCChqrsCuCCChqvs = D18
11. CCCCpqrCsqCCCqtsCpq = DD10.10.n
12. CCCCpqrCsqCCCqtpCsq = D5.11
13. CCCCpqgrsCCsqCpq = D12.6
14. CCCpgrCCrpp = DI12.9
15. CpCCpqq = D3.14
16. CCpqCCCprqq = D6.15
*17. CCpqCCqrCpr = DD.13D.16.16.13
*18. CCCpqpp = D14.9
*19. CpCqp = D33
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2. Two Axioms for C-Verum. (Meredith’s axiomatisation—the development
is only given for thefirst of the two—of that fragment of the two-valued logic
in which implication is supplemented by a constant true proposition, here
symbolised as ‘I’ --the same symbol is used for the axiom, but the context
prevents confusion. This is the solution of a problem put to Meredith in
1957 by Lejewski, whose own work in [3] gave him a special interest in ways
of completing the propositional calculus from its implicational fragment. It
is clear that if you know of an axiom AX in C and N, which will yield the
complete propositional calculus when subjoined to a basis known to be com-
plete for C-pure, you can obtain a single axiom for C-N by replacing I in
Meredith’s C-I axiom by AX. It may be noted that a C-I single axiom must
in the nature of the case be non-organic, i.e. must contain a law of the sys-
tem as a part, namely the constant /. As with some systems considered in
later sections, a shorter total axiomatisation seems possible with two or-
ganic axioms than with a single non-organic one. In the present case, the
pair consisting of Eukasiewicz’s CCCpqvCCvpCsp and the constant I is
shorter than either of Meredith’s single axioms.)

(@) CCCpqCrCIsCCspCrCtp
(b) CCCpqCI¥CsCCrpCiCup

1. CCCpqCrCIsCCspCrCtp = (a)
CCCtpCpqCCspCrCtp = D11
CCCpqCtpCCspCvCtp = D12
CCrCpCqpCtCCspCpCqp = D31
CCyCCspCpCqpCuCtCCspCpCqp
CCypCpCqgp = DDD53nn
CCqrCqCpr = D16
CCrCqpCsCpCqp = D36
CCrCpCqpCtCsCpCqp = D38
10. CpCqp = DDD96nn

11. CpCqCrp = D7T.10

12. CpCqCrCsp = DT.11

13. CCCsCpgpCrCtp = D1.12

14. CCpCrCpqCsCtCvCpq = D1.13
15. CCpCrCpqCrCpgq = DDDD14.14.n.n.n
16. CCqrCsCqCpr = DT7

17, CiCCqrCsCqCpr = D10.16

18. CCCqCprsCCqrCts = D1.17

19. CCCpqCIyCsCCrpCtCup = D18.1
20. CCCpgrCsCtCCrpCuCrp = D18.19
21. CCCpqrCCrpCsCtp = DD15.20.n

22. CCrpCCCpgrCsp = D15.21

23. CCCpgrCCrpp = D15.22

24. CCCCrppsCCCpqrCus = D1.D11.23
25. CCCpqrCtCCrpCsp = D24.7

26. CCpCpqCrCsCpq = D1.D1.11

*27. CCCpqrCCvpCsp = DDD26.25.n.n

D33
D34
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(In view of the next item, the proof of 7 and 24, even without 27, estab-
lishes sufficiency for C-pure. The above deductions will also go through if
I in the axiom is replaced by £, the result of this replacement being there-
fore a single axiom for C~pure. To prove the constant I itself, prove Cpp
and C7»CsCpp in C-pure, and the constant is obtainable as DDDD.Ax.
CrCsCpp.Cpp.n.n.)

3. 2-Axiom 2-Valued C-Pure.

[a=y

CCCpqrCCrpp
CCqrCqCpr
CCCCrppCphqCphq
CCCpgrCsCCrhp
CpCCpgqq = D34
CCCCCprqqpp = D15
CCpCCCprqqCCCprqq = D16
CCCCCpqrsCCrppCCrpp = DT4
CCCCrppCCChpqrsCCCpqrs = D18
CCqrCsCqCpr = D22
CCCpqrCCrpCsp = D9.10

D11
D21

HO®O®®AS gk

[Sgu—y

4, 2-Axiom 2-Valued C-Puve (Others). (About the time when Meredith was
circulating the preceding item, it was noted by Ivo Thomas that the suffi-
ciency of certain axiom-pairs followed easily from Lukasiewicz’s proof in
[6], given in D-form in [10], pp. 318-9, that in the Tarski- Bernays axioms
CCpqCCqrCpr, CCCpgpp, CpCqp,the last one may be replaced by any form-
ula of the form CpCaB. For example, we have the following deductions,
starring the probanda:-

1. CCCpqpCrp

*2. CCpgCCqrCpr

3. CCpCpqCrCpq = DD221

*4. CyCCCpqpp = CpCaBp = D31

*5. CCCpgpp = D4n, for any thesis n;

and the following:-

*1. CCCpgpp

2. CCpqCsCCqrCpr

*3. CuCCCsCCqrCprtCCpqt = CpCaB = D22
*4. CCpqCCqrCpr = DD 3nl, for any n.

When Thomas sent these results to Meredith, the latter replied, in a
letter of August, 1958, that he knew the pair CCCpgpCrp, CCpqCCqrChr,
and (i) to the other pair he added CCCpgpp with CCpgqCCqrCsCpr,
CCpqCCqrCpCsy. He further noted (ii) that Lukasiewicz’s CpCap result
showed that Pierce and Syll, i.e. CCCpgpp and CCpqCCqrCpr, give Weak
Syll, i.e. CCqrCCpqCpr. Putting capitalised variables for implications—
e.g. CPCqP for CCrpCqCvp—Thomas comments, ‘I fill in the reasoning
thus: Peirce and Syll give themselves capitalised, CCpgCap (Syll), and so
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by the &%ukasiewicz result (1) CPCQP. Peirce and Syll also give
(2) ccCpqCqrCCpqCpr, hence by Syll, (1), (2) we get Weak Syll’. Finally,
Meredith adds in his letter the theorem that follows below. It may be added
that before f.ukasiewicz’s result, Wajsberg had the two Thomas pairs above,
in [14], with more difficult proofs.) (iii) An allied result: Either Syll works
with CCC¥Cpgpp.

1. CCCrCpgpp

2. CCqrCCpqChr

3. CCsCCrCpgpCsp = D21

4. CCCCrpgpCrp = D32

*5. CCCpqpp = D3DD232

6. CCsCqrCsCCpqCpr = D22

7. CCqrCCsCpqCsCpr = D62

8. CCvCsCCpgpCrCsp = D75

9. CCrpCCCpqrp = D82

10. CCvpCpp = DD249
11. CqCpp = D4.10

12. CqCrCpp = DD7.11.11
13. CCCqrqCCqry = DD921
14. CCCqCpprr = D13.12
15. CCpqCrCpq = DD2.14.7
16. CCCpgpCrp = D8.15
*117. CpCqp = D4.16

18. CCCqrCpqCCqrCpr = DD9T1
*19. CCpqCCqrCpr = DD2.18.15

For 1 and 2. CCpqCCqrCpr I can give no better than DDDD22211 =
CCCpgpp and thence via ukasiewicz’s result above (i.e.(ii)).

5. C-Puve with Identity. (All the axiom-pairs in the preceding sections
have a total of 9 C’s, distributed variously between the axioms. This set
me wondering whether there could be a pair with the distribution 1-8; with
results which I have described in [9]. When I put this problem to Meredith
in 1959, he did not solve it, but he did in 1960 produce not a 9-C but an 8-C
pair with the 1-C axiom Cpp as one member. His independence-proof and
deductions are given below. The 4-valued matrix verifies Axiom 1 and COp
and falsifies Cpp, showing independence, while the inner 3-valued matrix
verifies both 1 and CCppp, falsifying Cpp and allowing no constant 2 such
that Ckp for all p. The deductions are from Axiom 1 only, and illustrate
the extreme difficulty of getting rid of its extra letter of simplification; but
the set of section 3 is given by 12 and the detachment of Cpp from 20. The
‘twiddle’ or tilde signifies deductive equivalence. For other uses of the two
axioms which are together equivalent to 1, see 1.4.)

1. CCCpqrCCrpCsCtp
2. Cpp
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1 with

3. CCppp
is saturated and

rejects both Cpp and COp

©

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

6. Variations on Tarski.

Sl B i ol i

cl|1 2
*1— 1 3
211 3
311 1
ol1 1

1~CCpgCCqrCpCsv, CCCrCpgpp.

CCCpqrCCrpCsCtp
CCCrCpgpCsCtp
CCCqprCpCsr
CrCuCC¥pCsCtp

CCCuqCtpCCCqrpCsCip

CCCrqCsCtpCuCCrpCsCtp
CCqCsCitpCuCCCqrpCsCip
CCCCCpqruCtpCCrpCsCth

CpCqCrCsp

CCPCrCpqCsCtCrCpq

CCpCrCpqCrCphq
CCCpqrCCrpp
CrCqCCrpp
CCpgqCsCCCprqq

CCCCpqtqCsCCCprqq

Axiom
DDDD1D111nn
DDDD121nn

= D31

CCCsCCCprqqCCpqitCCpqt =

CCCCCprqqtCsCCpqt

CCpqCCqCprChr

CCCCqCprCprCCpqtCClpqt

CCpqCCqrCpCst

DDDD1D141nn
D51

DD64n

DD71n

D32

DD69n
DDDD10.10nnn
D11.D11.1
D3.12
DD6.13.n
DD7.14.n
D12.15

D8.16

= DD17.12n

D18.18
D19.6
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(I once raised with Meredith the question whether

Eukasiewicz’s result, that from CCpqCCqrCpr, CCCpgpp and any CpCap we
could obtain the remaining Tarski-Bernays axiom CpCgqp, would still hold if
we replaced CCCpgpp with Tarski’s original axiom CCCpgrCCprr. I could
prove particular cases of it, e.g. CpCpp works as follows:-

e

CCpqCCqrCpr
CCCpgqrCCprr
CpCpp
CCCCqrCprsCCphgqs
CCpCqrCCsqCpCsr
CCCppqCphq
CCCCprrsCCCphqrs
CCCpgpCpp
CCpCpqCCPqChq
CCppChp

. CCpCppCpp
. Cpp
. CCHpCpqChq

D11
D44
D13
D12
D76
D48
D93

D2.10
D11.3
D2.12
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14. CCCpgpCChaq = D4.13
15. CCCpppp = D14.8
16. CCCpqpp = D7.15

But I could obtain no general result either way. Meredith pointed out in
July 1961 that the matrix

verifies Syll, Tarski and CpCCpqq but falsifies CpCqp. In October of the
same year he implicitly extended this result to three other formulae which
he shows below to be equivalent to Tarski. Capitalised variables stand for
implications, e.g. CPP is CCpqCpq.)

Subject to CCpqCCqrCpr the four theses (A) CCCpgpCCprr,
(B) cCpgCCCpqpr, (C) CCCpqvCCprr, (D) CCprCCChqry are equivalent.

The strongest identity (derivable from Syll with any of these) is
CCPqCPq; the strongest Peirce is CCCCPqvCPqCPgq; the strongest Simp is

CCPqCRCPyq. )
Refutation of CPP by c|1 2 3 4 0
1|1 1 0 0 0
210 0 0 o0 o0
310 4 0 o0 o
401 1 0 0 0
ol1 1 1 1 1

(A) CCprr =1 unless p = 0, but CCOqO = 0; hence CCCpqvCCprr = 1.
CCpgCCqrCpr = 1 if p=0orp=2orq=2;alsoif p=4q=1,(CClrC4r =
1); also if p=4qg=1(CC1¥Clr =1); alsoif p =3, ¢ # 2. But CC32C32 = 0.

Deductions from Syll alone:-

1. CCpqCCqrCpr

2. CCCCqrCprsCCpqs = D11
3. CCpCqrCCsqCpCsv» = D22
4. CCpqCCCprsCCqrs = D21
5. CCCCCprsCCqrstCCpqt = D14
6. CCqsCCpqCCsvCpr = D23
7. CCtCpqCCqsCtCCsvCphr = D36

Adding as second axiom (A) we have:-

8. CCCpgpCCprr (AXx)

9. CCCpgpCCtrCCpCrsCis DD183



AXIOMATICS OF THE PROPOSITIONAL CALCULUS

10. CCCCpqCCCpqCqrCprss = D89

11. CCsCCpgpCCCCPrriCst = D68

12. CCCCCpqrrsCCpgs = D10.11

13. CPCCPqq = D12.8

14. CCpCQRvrCQCHr = D3.13

15. CCprCCCpqpr = (B) = D14.8

16. CCPqCPq = D12.12

17. CCCCPqyCPqCPq = D15.16

18. CCCprsCCpqCCqrs = D14.4

19.'CCCCPqrsCCsCPqCPq = D18.17

20. CCPgCCy»CPqCPq = D12.19

21. CCPqCRCPq = DD1.20.12

22. CCsCPqCCCsyCPqCPq = D2.19

23. CCCsrCPqCCsCPqCPq = D14.22

24. CCCpqCChrrCCPrr = D23.8

25. CCCprCCpqrCChrr = DD1.14.24

26. CCCpqrCChpry = (C) = DD1.21.25

27. CCprCCCpqry = (D) = D14.26
Adding (B) to 1-7 we have:-

8. CCprCCCpqpr (Ax)

9. CCsCCpqpCCprCsr = D38

10. CCCpgsCCprCCspr = D29

11. CCCrsCCpgpCCriCCprt = DD199

12. CCCpgsCCtCspCCprCtr = DD1.10.3

13. CCCCtrgsCCtuCCCtriu = DD1.12.11

14. CCXCCprCCCpqpr = DD1.6.13

15. CCCpgsCXCCCCsprtCCprt = D5D7T.14

16. CCCpgpCCCCppprCXr = DD1.15.9

17. CCCpqpCCprCXr = DD3.16.8

18. CCCPCCCCsPrtCCPrtuCXu = DD17.15.n

19. CCCPPP¢CPq = DD18.9.n

20. CCPqCPq = DD1.8.19

21. CCCCPqrCPqCPq = D8.20

22. CCPCPqCPq = D2.21

23. CCCpgpCCpry =(A) = DD1.17.22
Adding (C) to 1-7 we have:-

8. CCCpqrCCprr (AX)

9. CCpqCCprrCCpry = D88

10. CCsCCpqrCCCCprriCst = D68

11. CCCpgsCCCCprriCCsrt = D2.10

12. CCCCCCprrCCsrtCCsrtuCCChpqsu = D10.11

13. CCCpgsCCpsCCsrr = D12.5

14. CCCpgpCCprr =(A) = DD1.13.9
Adding (D) to 1-7 we have:-

8. CCprCCCpgrr (Ax)

9. CCsCCpqrCCpvCsr = D38

10. CCCpqrCCprr = D98

177
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(Meredith has noted that although Tarski cannot replace Peirce in fukasie-
wicz’s theorem, Tarski and Simp will yield the full C calculus when com-
bined with either Syll, whereas with Pierce we must have CCpgCCqrCpr.
With Tarski and the weaker Syll the initial deductions are

1. CCqrCCpqCphpr

2. CCCpgrCCprr

3. CpCqp

4. CCpqCpCrq = D13
5. CCqCpCqrCpCqr = D23
6. CHpCCpqq = D54

The rest follows from the results in the following section.)

7. The System B-C-I. (Meredith observed independently some of the rela-
tions between implicational calculus and combinatory logic developed in
Curry and Feys [2], 9E. In particular, if we write B for CCqr»CCpqCpr, then
for any formula a, b, c, DDDBabc = DaDbc, just as in combinatory logic
Babc = a(be); if we put C for CCpCqrCqCpr, DDDCabc = DDacb, just as in
combinatory logic Cabc = acb; and if we put I for Cpp, DIa = a, just asIa=a
in combinatory logic. CpCqgp and CCpCpqCpq are similarly related to the
combinators K and W. Following the practice in combinatory logic, Mere-
dith will often write, say, CCq»CCpqCpr ~ rarbarcDaDbc. The following is
his 1956 summary of deductive equivalents of the set B, C, L.)

B = CCqrCCpqCpr = xarbacDaDbc
C = CCpCqrCqCpr = rarbacDDacb
I =Cpp = aa

T = CpCCpqq = aaxbDba

P = CCpqCCqrCpr = )apbacDbDac

3 Axiom bases: T, I and either B or P
2 Axiom bases: I and either

Q; = CCpCqrCCsqCsCphpr = xaxbrcxdDDadDbce
or

Q:z

CCsqCCpCqrCsCpr = xaxbxexdDDbdDac
or

R, = CCCCpqrsCCqrCps = xaxbxcDaxdDbDdc
or

R; = CCqrCCCCpqrsCps = xaxbxcDbrxdDaDdc

1 Axiom bases: Q, = xaxbrxcxdDDadDDblIc
Q: = xaxbxchdDDbdDDalc

Putting a for DCC, i.e. CqCCpCqrCpr, we have

DDana = C
DDDPPDPPT = C; DDBBT = o; DCI=T.
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DDQ,QiI = Qz; DQI = C; DCQ:z = Qu; DDQ,aDQI = P.
DDR,II = T; DDR;R;I = P.

Meredith’s main results follow from these; and for R: he gives

1. CCqrCCCCpqrsCps

2. Cpp

3. CCCCpqqrCpr

*4, CpCCpqq

5. CCCCsCCCpqqrCpriCst
6. CCsCCCpqqrCsChpr

*7. CCqrCCpqCpr

D12
= D32
D13
D35
D61
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The single axiom Q, is the formula CCpCqrCCssCtqCtCpr mentioned in
III.1, and the other is of comparable length--non-organic, and longer than
the organic axiom-pairs, Q, etc. with I)

8. Single Axiom for B-C-K (see note introducing the last section).

D11
D21
D23
D41
D25
D61
D77
D87
D88
D1.10
D1.11
D12.7
D8.13
D14.14
D1.15
D1.9
D17.7
D1.18
D19.7
D8.20
D21.1
D16.22
D8.23
D9.24
D8.18
D25.26
DD9D27.217.9

©

10.
11.
= 12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.

PO TS O EWN

CCCpqvCCsCriCqCst
CCuCCCsCritCqCstvCrCuv
CrCCCxuqCuCCsCriCst
CxCrCCxyCCsCriCst
CrCC1yCCsCriCst
CCxCyzCrCCsCriCst
CrCCsCrtCst
CCpC'igCphq
CCpCqrCqCpr *
CCTCpp
CCqCprCCTpCqr
CCsCCCTpCqrtCCprCst
CCprCqCCpy
CCprCCTpr
CCTCprCCpr
CCqCCCTprsCCprCqs
CCsCCqCprtCCqrCst
CCqrCsCqr
CCsCCpCqrtCrCst
CrCqCpr

CpCqp *

Cul
CCqrCuCCsCritCqCst
CCpqCCsCqrCpCsry
CCsCqrCCprCpCsy
CCqrCqr

CCpqCpCCqrr
CCpqCCqrChr *

9. A Combinatory Base without C-Positive Analogue. (If any formula is
D-derivable from other formulae the combinator corresponding to it is
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definable in terms of those corresponding to the other formulae. The con-
verse, however, does not always hold, as is noted in [2], p. 315, n. 15.
Meredith gives also this example: the combinator corresponding to
CCpqCCCspCqrCpr suffices to define those corresponding to CpCqp and
CCpqCCpCqrCpr, which are jointly sufficient for the positive or intuition-
istic implicational calculus; but the latter two formulae are not deducible
from the first one. Meredith did find them deducible, however, from the
formula resulting from prefixing ‘C#’ to the latter. The following deduction
is Ivo Thomas’s:-

1. CiCCpqCCCspCqrCphr

2. CCpqCCCspCqrCpv = Dln
3. CCutC2vCtv = D21
4. CC2vv = D33
5. CCCspCqrCqCpr = D32
6. CpCCpqq = D54
7. CCCpqrCqr = D56
*8. CpCqp = D77
9. CCpqgCCqrCpr = DD7D227 = DD22D87
10. CCouCC2lvu = D94
11. cCcCC2uuwCCuouw = D9.10

*¥12. CCpqCCpCqrChpr

DD9.2.11

Thomas has noted that 5 alone gives CpCqp and Cpp. Cpp = DD5DD55nn,
and CpCqp = D5.Cpp. Also sufficient for C-positive are 8, i.e. in combina-
tory terms K, and the commutation of 12, Frege’s axiom CCpCqrCCpqCpr,
which Meredith calls A. This is derived below from P, i.e. Syll, with the
combinators K and R; but R has no C-positive analogue. Items marked with
a dash are all in this last position; those with one cross are in C-positive;
those with two are even in the system B-C-I of Section 7.)

XX X -
P= xaxbxcDbDac K = xaxba R = raDaa
1. DPP = (ab)DaDPb XX
2. DPK = (ab)DaDKb X
3. D1P = (abc)DbDDPac XX
4, D23 = (abc)DbDKDca X
5. D4R = (ab)DaDKDbR -
6. D5R = (a)DaR -
7. DP4 = (ab)DaD4b X
8. D76 = (ab)Dba=T XX
9. DIR = (abc)DDabDac -
10. DPS8 = (ab)DaDTb XX
11. D10.9 = (abc)DDbaDca X
12. D1.10 = (abc)DDacb = C plo’s
13. Di12.11 = (abc)DDabDcb X
14. DP.13 = (ab)DaD.13.b X
15. D14.12 = (abc)DDacDbe = A X
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10. Single Axiom Equivalent to CCCppqq and Syll. (Wajsberg showed in
[13] that from CCCppgq and CCpqCCqrCpr we may infer a substitution in
CCpCqrCqCpr, namely CCpCQvCQCHv, from which we can obtain the other
Syll CCqvCCpqCpr. Meredith obtained the same result independently in
1956, when working on pure strict implication, and Belnap also obtained it
when working on entailment. Belnap’s proof is in [1]; Meredith’s was as
follows:-

1. CCpqCCqrCpr

2. CCCppqq

3. CCCCqrCprsCCpqs = D11
4. CCpqCCCprsCCqrs = D31
5. CCCCCppqrsCCqrs = D42
6. CCCCqrstCCCCCppqrst = D15
7. CCCCCppgqrr = D62
8. CCCCCprsCCqrstCCpqt = D14
9. CCCppgCCqrr = D87
10. CPCCPqq = D39
11. CCpCRvCQCHr = DD3.3.10

In 1962 Belnap’s collaborator A. R. Anderson asked Meredith if he could
find a single axiom equivalent to Wajsberg’s two premisses, certain general
methods for obtaining single axioms, e.g. that suggested in Tarski’s [12],
p. 44, being unavailable in the absence of CpCqp; and Meredith obtained the
result below. ¢‘In sub-systems of (B, C, I)’’, he commented, ‘‘there is com-
plete agreement between theses and combinatory logic and I find the latter
quicker to work with’’.)

l=2xaa ~ Cpp,2= xaDal ~ CCCppqq.

For brevity I omit the )-prefix, which is understood as sufficient of
raxb .... to cover the variables. This is possible in the absence of K.

I.  Ax 3= DDDa2cDbd ~ CCCCCppqqCrCst - CCusCrCut
4 = D33 = DDD32bDac = DDacDbd
5 = D34 = DDD42bDac = DDDac1Dbd
6 = D35 = DDD52bDac = DDDDac11Dbd
7 = D63 = DDDD3b11Dac = DDDb21Dac
*8 = D57 = DDD7b1Dac = DbDac ~ CCpqCCqrCpr
9 = DD737 = DDD721D3a = DD3al = DDDa2bc
10 = D98 = DDD82ab = DaDb1
*11 = DD7(10)7 = DDD721D(10)a = DD(10)al = Dal = 2
(11 = DDD7978).

II. The commutation also works but is much heavier, though I got it first.
Very briefly:-

Ax 3 = DDDb2cDad
4 = D33 = DDDa2bD3c
5 = DDDD43333 = DbDDalc
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6 = D4D45 = DDDac1Dbd
*7 = D46 = DbDac (= D6D65)
8 = D65 = DDb1Dac
9 = DD858 = DDalb
10 = D93 = DDDa2bc
*11 = DD(10)89 = DDD829a = Dal = 2

III. Proof of Axiom 1 from

2 = Dal
3 = DbDac
Note: DD231 = D1D2a = D2a =2
4 = D33 = DaD3b
5 = D44 = DDacDbd
6 = D43 = D3D3a
7 = D46 = D3D3D3a
8 = DD722 = DD3D3D322
D2DD3D32a
DDD3D32al
= DaDD321
= Da2
*9 = DD385 = D5D8a = DDD8acDbd
DDDa2cDhbd

(There follows a later communications supplementing and improving these
results).
With my former conventions:

(i) 1 = xaa, (ii) 2 = xaDal, (iii) omission of the x-prefix.

I give three more single axioms for the system (CCCppqq, CCpqCCqrCpr):
the first contains encysted 2 and is obviously best possible of this kind; the
others are longer but contain only encysted 1.

Concerning proofs in a-logic versus prop. logic: I find \ easier for
breakdown of a complex single axiom, but the converse process I find easier
propositionally.

(A1) 3= DDb2Dac~ CCpqCCCCCssttCqrCpr
Note: DD3aD3b = xcDbDac
4 = D33 = DDa2D3b
5 = D43 = DD32D3a = DaD2b = DaDb1l
6 = D45 = DD52D3a = D2DD3al = DD3all = D2Dal = DDall
*7 = D63 = D2a = Dal
8 = D4D34 = DD33D34 = D4D3a = DDD3a2D3b = DaD3b
*9 = D88 = DD3aD3b = DbDac

For the next two I use J = xaxbDab = xaDDBal = xaDDBla. DDJab = Dab; if
X begins with A, DJX = X,

CCpCQrCQCpr ~ DDacDJb
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(A2) 3 = DDDadl1DDBbc ~ CCsCCuuCCprtCCqrCCpqCst

4 = D33 = DDDcd1DDBab
5= D34 = DDDaDbd1DJc
6 = D53 = DDDDacdl1DJb
7 = D64 = DDalDDBbc
8 = D57 = DDDac1DJb
9 = D77 = DaDbDcd
*10 = D89 = DbDac
11 = D88 = DDDbDJall
*12 = DD11.10.3=Dal =2

(A3) 3 = DDDad1DDBcb
4 = D33 = DDDcd1DDBba
5 = D34 = DDDbdad1DJc
6 = DD543 = DDalDDBcb
7 = DD534 = DDDac1D3b
8 = D66 = DcDbDad
9 = D74 = DDDaDJb1DJc
10 = D93 = DDDac1DJb
11 = D10.8 = DaDbc
12 = D10.10 = DDDbDJall
*13 = DD12.11.3 = Dal = 2
*14 = D6.13 = DbDac
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11. Two-valued C-O. (In 1952 Meredith obtained two single axioms for the
full propositional calculus in C and O. The development of one of them is

given in [8]; that of the other, below.)

1. CCCpqCCOrsCCspCtCup
2. CCCtCupCpqCrCsCpq

3. CCCrCpqCtCupCuCsCitCup

4. CCCsCiCupCrCpqCwCuvCrCphq

5. CCCpgrCqCsr

6. CCCuCrCpqCsCitCupCxCwCsCitCup

7. CCCpgpCrCsp

8. CCCspCpqCtCrCphq

9. CCCrCpqCspCuCitCsp

10. CCCtCspCrCpqCvCuCrCpq

11. CCqvCqCpr

12. CCCOrsCqCCspCtCup

13. CsCrCqCCspCtCup

14. CCCqCCCs¥pCitCupsCwCus

15. CCCqCCCsrpCtCupsCxCwCuvs

16. CCCwCuvsCqCCCsrpCtCupCzCyCqCCCs¥pCtCup
17. CCsCupCCCsrpCitCup

18. CsCCspCtCup

19. CCCsvCtCupCqCCspCitCup

20. CpCqCrCsp

1)

D11

D12

D13
DDD41nn
D14
DDD61nn
D17

D18

D19
DDD10.1.n.n
D51

D5.12

D1.13
D11.14
D1.15
DDD16.1.n.n
DDD8.12.n.n
D17.18

D55
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21. CCpCqCprCsCitCqCpr
22. CCpCqCprCqCpr

23. CpCCpqq

24. CCpgqCCCprCsqCsq

25. CCCCpqtCuCCCprCsqCsqCuCCCprCsqCsq
26. CCCCCprCsqCsqCCpqtCuCuvCCpqt

27. CCCpgCCOysCvCCspCiCup
28. CCpgqCCqCprCiCsCpr

29. CCqCprCCpqCsCpr

30. CCqCprCiCCpgCsCpr

31. CCtCqCprCvCtCChpqCsChpr
32. CCqvCCpqCsCpr

*33. CCpqCCqrCpv
*34. CCCpqpp

*35. CpCqp

(This proves sufficiency of the axiom for C-pure;

DD19.20.n
DDDD21.21.n.n.n
D22.11
DD19.23.n
D24.24

D1.25

D11.1

= DDD26.27.n.n
= D22.28

= D11.29

= D29.30

= DD31.11.n

= D32.22

= DD22.7.n

= D33.7

to prove it for the full

calculus Meredith should also prove COp. But given C-pure, and so Cpp

and CqCpp, COp is deducible as DDDD1.CqCpp.Cpp.n.n.

And COp with

CCCpqrCCrpCsp would be a shorter axiomatisation, although 1 is organic).

12. Full Pyopositional Calculus in N and K. (1-3 are Rosser’s axioms in
[11] for this version of full p.c. Meredith deduces an alternative to Rosser’s
second axiom, the deduction of Rosser’s axiom from Meredith’s going
through analogously. The other alternatives Meredith mentions look longer
than Rosser’s axioms but are not when all defined terms in the latter are

duly expanded.)

Dpq = NKpq

1. CpKpp

2. CKpgp

3. CCpqCDqvrDvp
D31 = 4. CDKppqDgp
D42 = 5. DNpp
D32 = 6. CDprDvKpq
D36 = 1. CDDvKpqsDsDpr
D75 = 8. DKvKpqDpv
D48 = 9. DDpKpqKpbq
D79 = 10. CKpqKpp
D3.10 = 11. CDKpprDrKpq
D11.2 = 12. DNpKpq
D6.12 = 13. DKpgqKNpr
D4.13 = 14. DKNpgpb
D3.14 = 15. Cpp
D3.15 = 16. CDpgDgp
D3.5 = 17. CDpgCqNp
D17.16 = 18. CNDgpNDpq
D3.18 = 19. CDNDpqrCrDgp

Cpq = DpNq
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D3.16 = 20. CDDgprDvDpq
D20.19 = 21. DNCrDqpCrDpq
D16.21 = 22. CCvDpqCvDgqp
D3.3 = 23. CDCDqvDvpsDsDpgq
D23.22 = 24. DNCDqrDpvCpq
D16.24 = 25. CCpqCDqrDpy

(25 = DD.22.23.22)
D20.5 = 26. CKqpKpq
DD25.26.2 = 27. CKpqq
With 27 instead of 2 we have alterations only in 6, 7, 8, 9, 10, 11, 12,

13, 14, 27,

14 and DKqNpp are easier than either.

13. Two-valued E-pure. (Lukasiewicz having shown in [4], reproduced in
Polish in [7], that any one of the formulae EEpqEEvqEpy, EEpqEEprEYY,
EEpgqEEvpEqr would suffice as a single axiom, with substitution and E-de-
tachment, for that part of the propositional calculus which has no constant
but material equivalence. He has also been credited with showing that no
other axiom of equal length would do, but this is not so, Meredith having
shown in August 1951 that either of the formulae EEEpqrEqEvp or
EyEEqEvpEpq would do, and later that the same property is possessed by
EpEEqEvpEqr, EEpEqvEvEpq (the easiest, he claims, in development),
EEpqEvEEqvbd, EEpqEvEEYqq, EEEpEqvvEqp and EEEpEqvqEvp. We give
below not Meredith’s original 1951 deduction from EEEpgqvEqEvp but his
later improvement on it.)

1. EEEpqvEqQEvD

2. EvEEqEvpEpq = D11 (DD222=1)
3. EEsE(1)tEts = D21

4. EEEvpEEDqrq = D32

5. EEEpqqp = D42

6. EqEpEDq = D15

7. EEvEsEsv(6) = DD666
8. EESEsvE(8)r = D17

9. EEsvEE(68)rs = D18
10. EE(B)EE(8)vsEsv = D99
11. EEsSE!EisEEEvpEEpqrq = DD646
12. EqQEEEpEprqr = D10.11

13. EEsE(12)tEts = D2.12

14. EEvqEEpEprq = D13.2
15. EEsSESEEpqvEqQEvD = D14.1
16. EESEEpqrEqErp = D1.15
17. EEEpvEqpEvq = D16.14
*18. EEpqEEvpEqr = D1.17

(Meredith has noted that 1 will suffice for E-pure not only with ordinary de-
tachment but also with reverse detachment, i.e. the rule to infer o from
Eop and B, as its primitive rule. One way of confirming this is to show that
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with this formula and reverse detachment, ordinary detachment is obtain-
able as a derived rule, thus (writing ‘Rmn’ for the reverse detachment of n
from m):-

1. EEEpqvEqErD

2. Eof

3. a

4. EEEvpEEpqrq = R11
5. EEvpEEpar = R43
6. EEpEpgqEqa = R15
7. EEaEpEpqq = R16
8. EaEpEpa = R73
9. EEEpoaap = R18
10. Eaa = RR933
11. EEqEapEpq = R51
12. B = RR(11)2(10).)
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