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QUANTIFICATION AND 4T-MODALITY

A. N. PRIOR

1. The Formula ΣaKΔ®laVLla with Δ and V as Variable Functors. In his

paper "Arithmetic and Modal Logic*, 'fcukasiewicz drew attention to an

odd theorem which is deducible when certain arithmetical laws are sub-

joined to his *£-modal calculus, namely the theorem (with *®abn for *a - bn

and «Lab» for «a < bn)

5.4 ΣaKA®laVLla.

What is odd about this theorem is that it holds despite the fact that, ac-

cording to -fcukasiewicz, there exists no positive integer a for which

KA®ldSJLla is true. But is this really so?

It is noteworthy that while -Lukasiewicz's proof of the theorem 5.4 is

perfectly rigorous and formal, his proof that there is no positive integer a

for which KΔ®ldS7\-la holds is not, but depends on the interpretation of Δ

and V as constant four-valued truth-operators, and on certain truth-value

calculations based on this interpretation. If, on the contrary, we interpret

Δ and V as variable two-valued functors with their range restricted to V and

5*, with V taking the opposite value to Δ in any given formula, we obtain a

different result. For suppose that in the formula 5.4 we assign to Δ the

value S and consequently to V the value V. Then if a > 1, KΔ®la5/Lla =

KS0V1 = KOI = 0, but if a = 1, KA®laVLla = KS1V0 = Kll = 1; so that with

this assignment of values to Δ and V, there is at least one positive integer,

namely 1, for which KΔ®la¥Lla is true. Again, if we assign to Δ the value

V and consequently to V the value S, then if a = 2, KΔ®laVLla = KV1S0 =

K10 = 0, but if a > 2, KΔ®laVLla = KV0S1 = Kll = 1. Hence for this as-

signment of values also, there is at least one positive integer, namely any

greater than 1, for which KΔ®lάSI\-la is true. Hence on both possible as-

signments of values to Δ and V, the formula 5.4 is true in its natural sense,

and its appearing as a logical law, i.e. as true for all possible values of

its free variables, presents no difficulties.

2. The Formula ΣαKΔΘlα Lla with Δ and V as Constant Functors. It re-

mains true, however, that the Δ and V of the L-modal system may be inter-

preted, not as above, but as constant four-valued functors; and if they are
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so interpreted, the puzzle mentioned by -Lukasiewicz does arise. But if we
adopt a logic of more than two truth-values, we must be prepared to find
that not only truth-operators but also quantifiers do not behave exactly as
they do in two-valued systems, and -Lukasiewicz's paradox will be suffi-
ciently explained if we can see what broader features of his system, con-
sidered as a four-valued system, give rise to it.

In a many-valued system there will always be several different operators
which we might with good reason identify with the existential quantifier;
some resembling in one way, and some in another, but none resembling in
all ways, the existential quantifier of classical logic. -Lukasiewicz has
chosen to symbolise by n Σ n , his usual symbol for the existential quantifier,
an operator which preserves the following two rules:

Σ2: \-Cφxa-*\-CΣx<pxa,forx not free in a .

Σ2: ^CH^KSx^x,

when C is defined by the matrix

C I 1 2 3 4

~Γ"Ί 2 3 ~4~

2 1 1 3 3

3 1 2 1 2

4 1 1 1 1

His paradox is, in the end, a consequence of this choice.
Given any propositional function ^ x in a four-valued system, the fol-

lowing eight possibilities exist:

1. φx may sometimes take the value 1 (whether or not it ever takes other
values also).

2. φx may take no value but 2.
3. φx may take no value but 3.
4. φ x may take no value but 4.
5. φx may sometimes take the value 2 and sometimes 3, but no others.
6. φ x may sometimes take the value 2 and sometimes 4, but no others.
7. φ x may sometimes take the value 3 and sometimes 4, but no others.
8. φ x may sometimes take the value 2 and sometimes 3 and sometimes

4, but never 1.

Let us consider what value Σxφx must have under each of these conditions
if the rules Σ2 and Σ2 are both to be preserved.

Case 1. lίφx sometimes takes the value 2, then a might be capable of
taking any value and Caφx still be a law (for C a 1 = 2 for any value of α,
and when φx =j= 2, Q might be so connected with φx - since x might occur
freely in a also - that it always takes a value for which Cotφx = 2). But
under these conditions, the only value for Σxφx which will guarantee that
CaΣxφx will also be a law (as the rule Σ2 requires) will be 2, since it is
only when β = 1 that Caβ = 1 no matter what the value of a may be. Hence
iίφx sometimes takes the value 2, ΣΛΓ^X = 2.
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Case 2. If φx takes no value but 2, Cφx a will be a law only if a can
take no value but 1, if it can take no value but 2, or if it can take either 1
or 2 but no others (C2 a is a law only if Of = 1 or α = 2). CΣX<£Λ; Of will be a
law (as Σl requires) under all of these conditions, only if Σxψx = 2 or 4.
(For only if β - 2 or 4 do we have both Cβl and Cβ2). But it can be shown
by similar considerations that Σ2 is preserved only if Σxφx = 1 or 2. Hence,
Σl and Σ2 will both be preserved, for this sort of φx, only if Σxφx = 2.

Case 5. If ^ x sometimes takes the value 2 and sometimes 3 but no
others, then a might be capable of taking any value and Caφx still be a
law. For C12 = 1, C22 = 1, C33 = I, C42 = 1 and C43 = L But under these
conditions, the only value for Xxφx which will guarantee that CoCLxψx will
also be a law (as Σ2 requires) is 1.

We need not consider other cases in detail, but the results of an exami-
nation of this sort will be found to be as follows:

(a) If φx sometimes takes the value 1, or if it sometimes takes the value
2 and sometimes 3 but no others, or if it sometimes takes 2, some-
times 3, and sometimes 4, but never 1, then Σx<px = 1.

(b) If φx always takes the value 2, or the values 2 and 4 only, Σx<px = 2.
(c) If φx always takes the value 3, or the values 3 and 4 only, Σxφx = 3.
(d) If φx always takes the value 4, Σxφx = 4.

Only if the values assigned to Σxj£* under these various conditions are as
above, will the rules Σl and Σ2 be preserved for the C of the <L-modal sys-
tem.

If we describe a proposition with value 1 as "plain true", one with
value 2 as "nearly true*, one with value 3 as "nearly false* and one with
value 4 as "plain false", we may say, in view of the above results, that
"Something φ's" is plain false if and only if φ^x is plain false for every
value of x; and so far, this is in agreement with the ordinary two valued
use of this form. But it must also be observed that "Something φ*sn, in
'Lukasiewicz's sense, is plain true not only when φx is plain true for some
value of x, but also when ^ x is not plain true for any value of x, but is
nearly true for some values and nearly false for others; and here the preser-
vation of the rules Σl and Σ2 with this 4-valued C has had to be paid for
by a departure from the behaviour of the quantifier in its ordinary two-valued
context. -Lukasiewicz's arithmetical paradox is simply an illustration of
this point.

3. The Existential Quantifier and Alternation in the )L-Modal System, —It
has often been observed that the form "Something ^ ' s * is equivalent to an
indefinitely continued alternation of the form "Either a φ's or b φ's or c
φ's or d φ's, etc." In the 4L-modal system the alternation operator A, de-
fined as an abbreviation for CN, has the matrix

A l l 2 3 4

1 1 1 1 1

2 1 2 1 2

3 1 1 3 3

4 1 2 3 4
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If we regard existential quantification as a continued alternation with this
matrix, we obtain the same results as before. For

1. If any of the ^x 's = 1, the whole alternation Hx<px — 1 (for AlOί = 1,
for any a ).

2. If every φx - 2, the whole alternation Σxψx ~ 2 (for Λ22 = 2, hence
AA222= A22= 2, etc.)

3. If every φx = 3, Σx<£>x = 3 (for A3 3 = 3, hence A A3 33 = A33 = 3, etc.)
4. If every φx = 4, Σxφx = 4 (proved similarly).
5. If the φx's include 2's and 3's, and these only, Xxφx = 1 (for A23 = 2,

hence AA23α = Ala = 1).
6. If the φx's include 2's and 4's, and these only, Σxφx = 2 (for A24 =

A42 = Λ22 = 2).
7. If the ^ x ' s include 3's and 4's, and these only, Σxφx = 3 (proved

similarly)
8. If the φx's include 2's, 3's and 4's, and these only, Σxφx = 1 (proof

as for case 5).

The "odd" cases 5 and 8 are thus connected with the *oddity* of this
4-valued alternation, which is such that "Either p or cf may be plain true
even when neither p nor q is plain true, since it is plain true also when one
of the alternants is nearly true and the other nearly false. And this property
of this alternation is used by -{Lukasiewicz in his proof of 5.4; one step in
his proof being to establish the proposition AAL11VL11, which is a theorem
of the system despite the fact that neither ΔL11 nor VLll has the value 1
(the former has the value 3 and the latter the value 2).

This peculiarity of HL-altemation also accounts for the fact (noted by
Anderson^) that the system contains a thesis, A&pyq, which is "unreason-
able" in the sense of Hallden, being an alternation of which neither alternant
is a thesis although the two alternants have no variable in common. This
''unreasonableness" disappears, however, if Δ and V are interpreted as
variable functors with a limited range. For on this interpretation, when
AΔpSlq ι s expanded by the definition of V to AΔpCΔqq, the alternants do
contain a common variable, namely Δ; moreover, each of the possible sub-
stitutions for Δ turns one of the alternants into a thesis (the substitution
Δ/' turns the whole into ApCqq, and Δ/C" turns it into ACppCCqqq).

4. Rejection and Existential Quantification of the Contradictory in the \J-
Modal System - Earlier in the same paper, -Lukasiewicz has a discussion of
the proposition "If it is possible that a should not equal b, then it is a fact
that a does not equal hn. He argues against this that if the number a has
been thrown with a die, it is possible that the next number thrown, b, will
be different from a, but it does not follow that b will in fact be different
from a, for "it is possible to throw the same number twice". I do not wish
here to dispute the force of this argument, but it should be pointed out that,
whatever its force in itself, it is not an argument which can be consistently
used by an advocate of theΛl-modal system, considered as a logic of neces-
sity and possibility in the ordinary sense. For the supposition made is that
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it is possible for b to be different from a9 and also possible for it not to be
different; but in the <L-modal system, Δp and ΔNp are never true together.
(In his earlier paper, -Lukasiewicz is rightly emphatic about this, and even
argues that this peculiarity of Δ is in accord with out intuitive notions of
"possibility"5).

What is a little confusing at this point is that although it can be shown
that no proposition of the form KΔpΔNp is true, yet the negation of this
form, NKΔpΔNp, is not asserted but rejected in the system (it is equivalent
to NKΔpNΓp, and so to CΔpΓp, which must be rejected since the weaker
CΔpp is rejected). This is confusing, and even paradoxical, for the follow-
ing reason: To say that a formula, e.g. NKΔpΔNp, is asserted is to say
that it is true for all values of its variables; and in fact if NKΔpΔNp were a
thesis we could derive from it, by Lukasiewicz's rules for Π, the further
thesis UpN KΔpΔNp. It would seem, therefore, that to say that this formula
is not asserted but rejected, is to say that for at least one value of p its op-
posite is true; that is, the rejection -\NKApΔNp would appear to be equiva-
lent to the existentially quantified assertion \-ΣpKΔpΔNp. (The possibility
of thus dispensing with rejection in favour of existential quantification of
the contradictory form was elsewhere suggested by -Lukasiewicz himself. )
But in fact the form ΣpKΔpΔNp is not asserted but rejected-even with the
peculiar sense which "Some" here bears. For it can be shown that for any
p the formula KΔpΔNp will have the value 3, so that its existential quanti-
fication will have the value 3 (see last section).

This result, like that considered earlier, is capable of two alternative
explanations. If we treat Δ as a constant functor in a 4-valued logic, we
may say that α may be asserted if and only if Hpqr. . . . α is plain true,
but that this may fail to be plain true (and a may in consequence be rejected)
not only when NRpqr. . . . α , i.e. l<pqr. . . .Nα, is plain true, but also
when both of them have intermediate values. If, on the other hand, we treat
Δ as a variable functor (with restricted range) in a 2-valued logic, - |α will
be equivalent to \-Ίpq. . . . Nα, and -|Nα to |-Σp$. . . . <*, provided that
all the variables in α, including Δ, are existentially bound at the beginning.
For instance, although the rejection -\N KΔpΔNp is not equivalent to the
assertion [-ΣpKΔpΔNp, it is equivalent to the assertion [-ΣpΣΔKΔpΔNp.
And this assertion, "For some p and Δ, KΔpΔNp", can easily be seen to be
true, for when Δ = V, KΔpΔNp = KVpVNp = Kll = 1.

There are similar alternative explanations of the fact that although the
formulae Δp and NTp are rejected, no proposition of the form NΔ α or Tα is
ever true by the matrices.

This discussion illustrates one point—so far as I can see, it is the only
point-at which it makes a formal difference, i.e. a difference in the sym-
bolic system itself, when we interpret Δ as a restrictedly variable 2-valued
functor instead of a constant 4-valued one. If we introduce the quantifiers
Π and Σ as capable of binding any variables of the system, the forms UΔa

and ΣΔ α (where Of is a statement-form) will be well-formed on the one in-
terpretation but not on the other, since there is no such thing as the binding
of a constant.
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