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RECURSIVE LINEAR ORDERINGS AND
HYPERARITHMETICAL FUNCTIONS

SHIH-CHAO LIU

The main purpose of this note is to give an alternative proof to a the-
orem by Spector [1] which answers a question raised by Kleene [3, p. 25].
There are two by-products. The first (Theorem 1) specifies a sufficient
condition for a set linearly ordered by a recursive ordering to have a well-
ordered segment of a certain order type.1 The second (Theorem 2) is a gén-
eralization, in some sense, of a theorem of Kleene [4, XXVL]. This enables
us to apply Kleene’s [3, Theorem 2] directly in our proof of Spector’s the-
orem (Theorem 3 in this note). So it seems that the proof becomes much
shorter.

We first introduce some notations. ¢ L = {f is a Gédel number of some
recursive linear ordering 4 which orders some set M/} (2. feW={feL &
M, is well-ordered by / }[2]. S(f, n) is a primitive recursive function such
that f ¢ L implies (i) $(f, n) ¢ L for all n, (ii) if n ¢ M/, MS(/, ) is empty,
(iii) if 7 € M/, MS(/, ayisa segmentéc\(x </ n) of M/ and x S¢ 7l<))/_=.x ./( y
for all x, y € Ms (s n) iZ, p- 156]. ||/|| is the order type of & if fe L, |b] is
the order type named by b, if b ¢ 0 [2]. y* stands for 2%, Hy(u) is defined as
in [2].

Theorem 1. If fe L, f {W, y € 0 and for every function.a () recursive in

Hy.,, (i) (@(i+ 1) < (), then for every b € O with |b| <|y|, there is some
ne M/ such that |&| = [|S(f, n)|.

Proof (by induction on the ordinal |b|). The proof for the case |b| = 0 is
simple.

Suppose 0 < |b| < |y|. Let enm (i) be a primitive recursive function
which enumerates all the numbers <, b [6]. By the induction hypothesis, for
every i, there is somie 7, ¢ M, such that [enm (?)| = [[S(f, »)|. Let n; be de-
termined as a total function of i by n; = pz(z € M/ & |enm (@) | = [|S(f, 2)|).
Note that |enm ()**| = |6*| = |y| we see that n; is recursive in H by [2,
Theotem 3 and Theorem 5].

Since $(f, ;) ¢ W for every i and by the supposition of the theorem,
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f £ W, there must be some (indeed, infinitely many) x ¢ M/ such that (7) (ni 4/
x). Let a total function 6 (i) be defined by

8(0) = pz(d) (n, <f z);
8(i+ 1) =80, if () () (n; 4 2) & 2 4 B

0(i+ 1) = pz((d) (n; {f 2) & 2 *f 8 (1)), otherwise.
It can be seen that §(7) is recursive in (Ez) (() (ni4f 2) & z {I x). Since as
has been shown, n; is recursive in Hy, (Ez) (i) (n; 4/ z) & 24 x) is re-

H
cursive in H_,, (by [S, Lemma 1] and the definition Hb.,(u) =(Eo) T, b(c,
c, u)). So 6(7) is recursive in Hy,,,.
There must be some number, say, i, such that §(j, + 1) = 8(3). For

otherwise, by the definition of 5(z), () (6(i + 1) 4/ 8(#)). This contradicts
the hypothesis of the theorem. Then §(i,) is the least ¢ (in the sense of

-f() in M/ such that (i) (n, 4 t) and therefore ||S (f, 8(3,))| is the least ordinal
¢ such that (i) ([S(/, »)| < {). Since |enm(i)| = |S(f, »)| and || is the
least ordinal { such that (i) (jenm(?)| < ), then |b|/ = |S(f, 6())|. This
completes the proof.

Let @ ¢ HA mean that @ is hyperarithmetical, i.e. there is some y ¢ 0
such that @ is recursive in Hy [4, p. 201].

Corollary. 1f fe L, f ¢ W and for all a e HA, (1) (a(i + 1)4 a(?)), then
for every b ¢ 0, there is some 7 ¢ M, such that |b| = |S(f, n).

Theorem 2. For any recursive R(a, a, x), t_llere is a recursive R'(s, a)
such that (a) (Ex) R (a, a, x) = (@) (Ex) R'(a(x), a) and for no a ¢ HA,
(x) R' (a(x), a).

Proof. By the technique of [3, Lemma 1], we can find a recursive A such
that (@) (Ex) A(a, ¢, ©) = (EQ) 4 ya () TZ (e, ¢, %).

Let (@) (Ex) R(a, a, x) v (a) (Ex) A(a, c, x) oo (a)
= (a) (Ex) B(a, a, c, x) (with B recursive)
= (a) (Ex) Tla (0 (@), ¢, x) (with recursive o, by [5, Lemma 12]).

By (a), (@) (Ex) A(a, 0(a), x) » (@) (Ex) T,@(c(a), 0(a), x). On the other
hand ( ) (Ex) A(a, o(a), x) » (Ea) (x) ia (0 (a), o(a), x). Thus we have
i) (@) (Ex) A(a, o(a), x). By (a) and i), we have ii) (a) (Ex) R(@, a, x) =
(a)(_{ix) T2 (0(a),0(a), x). By the meaning of A, i) implies iii) for noa € HA,
(x) Tl‘z (0 (a), o (a), x). From ii) and iii) we see that T (s, 0(a), 0(a), 1h(s))
is a recursive R'(s, a) as required. This completes the proof of Theorem 2.

For the predicate R'(s, a), we find a recursive function £(a) such that
E@el, ne Mf(a) = {n is a sequence number a(x) & (t)t<x1_2' (a(t), a)} and
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£(a) e W = () (Ex) R'(a(x), a) [2, Theorem 1]. In case (a) (Ex) R'(a(x), a),
since for noa ¢ HA, (x) R (a(x), a), we have that for no a ¢ HA, (i) (a(i + 1)

(a)
5 a (7)) by arguments similar to [6, (J)]. Then by the corollary of The-
orem 1, we have

Lemma 1. For any recursive R(a, 4, x), there is a recursive function
£(a) such that i) if (@) (Ex) R(a, a, x) then £(a) € W, and ii) if (@) (Ex)
R(a, a, x) then for every b ¢ 0, there is some 7 such that |&| = [|S$(£(a), n)|.

Theorem 3 (by Spector). For any recursive R(a, a, x) there is a re-
cursive $(a, 4, x) such that (EQ), 4, (*) S(a, 4, x) = (a) (Ex) R(a, 4, x).

Proof. By [7, Theorem 1], we can find a recursive function k such that
feWak(De0& 7= k] and I7] < lgl » £l < [E@]. Let&(a) be
the recursive function of Lemma 1, and k(S(£(a), n)) be abbreviated to
y(a, n). Let f, f, be the recursive functions of [3, Theorem 2] so that for
any y € 0, (Ea) (x) ia (o (y), t, x) or (Ea) (x) 7‘1"‘ (f, (), t, x) according as
H, (#) or not. Now let us consider the following predicate of y and .

(A) (m) () [(y(2" . 3 =0 & (x) T,NB @355 (1 (3(a, ), 1, ) v

(2. 3= 18& () TABC 35 (£ (y(a, m), 1, ).

Case 1. (5) (Ex) R(a, a, x). Suppose (A) is true, we can show y ¢ HA.
By the meanings of f, f,, (A) implies that for any fixed y(a, 7) € 0, (1) 24
(2" . 3% is the representing function of AtH (a, n) (t) and therefore
(2) )\tHy a, ) (t) is recursive in y. By Lemma 1, we have (3) that for suit-
able n, y(a, n) € 0 and |y(a, n)| > |z|, any pre-assigned constructive ordinal.
Since given any y’ ¢ HA (y’ recursive in, say, H ), all Hy with |y| > |z| are
not recursive in y’, then from (2) and (3) it follows that y ¢ HA.

Case 2. (a) (Ex) R(a, a, x). We can find y, B¢ HA such thaty and 3
satisfy (A). By Lemma 1, £(a) ¢ W. Then k(£(a)) € 0, y(a, n) € 0 and Iy(a,
n)| < |k(£(a)| for every n. By [2, Theorem 5], )\ntHy(a, 2y () is recur-
sive in Hk (g-(a)). A function y € HA is defined by y(x) = 0 i'f x# ?" . 3%,
and y(2" . 3!) = 0 or I according as Hy @, n) (2) or not. A B is defined by
B(x)=0if x<2".3". 5% and B(2" . 3' U5%) ={d;(y(a, n), )} Hyy (y(a, n), 1y

i ) 1),

s) where j is 0 or 1 according as Hy(a, ) (t) or not, and 4., w, are as de-
fined in [3, Theorem 2]. Then it can be seen that y and B satisfy (A).
B € HA because B is defined in terms of some H, with |6| < |k(£(a))| and
then is recursive in Hk &)

From (A) we get (x) S'(y, B, a, x) by contracting the quantifiers.
S'(A t(a(D),, A t(a(t)),, a, x) is a S(a, a, x) for Theorem 3.

NOTES

1. We see that the concept e ¢ W is as complicated as e ¢ W. We can clas-
sify all the numbers e ¢ L into as many hierarchies as the constructive
ordinals. For any e, e’ ¢ L, we say that e belongs to a hierarchy higher
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than that of e’ if M_ contains a well-ordered segment larger than that
contained by M_,. Elsewhere the author classified all e ¢ L into counta-
ble hierarchies based upon a notion Ln(e, z) of [7]. We say e belongs to
the n-th hierarchy if there is an infinite decreasing sequence .. .. Q
@i+ 1) % a) g ... a(0) such that (i) (L (e, a (). This second
type of classification can help us to solve the problem raised in [7, p.

25] partly.

After reading the first version of this manuscript Dr. Spector showed me
a manuscript of Gandy’s which contained also a proof of Theorem 3.
Theotem 1 of this note is essentially the same as Gandy’s except the
former contains some contents more specific. Other parts of both proofs
were carried out through different routs.
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