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THE DEDUCTION THEOREM IN S4, S4.2, AND S5

J. JAY ZEMAN

In a certain sense, there is no trick to merely stating the deduction
theorem for a given system (on the assumption, of course, that it holds for
that system). The general statement of the theorem might be, "If there is
a proof from the hypotheses Al9 . . . , An for the formula B, then there is a
proof from the hypotheses Alf . . . yA^^for the formula An D B." The
problem in formulating the deduction theorem lies not in simply stating it
as above, but in defining just what we mean by "proof from hypotheses" for
the system in question. Once we have such a definition, the statement and
proof of the theorem will ordinarily present no real problem.

The three Lewis-modal systems with which we are concerned will be
considered to be formulated on a CPC base, following, in general, Lemmon
[2], They will contain, first of all, any basis sufficient for the complete
CPC, including the rules of substitution and detachment. Each of these
systems will also contain the rule RL: "If a is a theorem, so too is La."
The additional axioms are, for S4:

1. CLCpqLCLpLq
2. CLpp.

For S4.2, axioms 1. and 2. and also (see [3], p. 313):

3. CMLpLMp.

For S5, axioms 1. and 2. and aiso:

4. CNLpLNLp.

$taϋβ #ie®e systems ;*#e fermu&jfced cm a PC base* we might suspect
Itet a good part of &ie ^efinatien of "proof from hypotheses," for these
systems wiil fee exactly aβ f®v the C#C. This is the case; here we shall
πaaiζe um& of C&ureh's deffoitloa of "ψtocέ firom hypotheses" for the CPC in
[i]f p. %ϊ, fhe cl#i*s«!9 of the definition as be stfatea it are easily extended
I® <M*r mo#aί systems; we may th«s present what will amount to most of our

A finite sequence of wffs Bi, B2, . . » , Bm is called a "proof from the
hypotheses Aίf A2, . . . , An " if for each i, i ^ m, either

Received August 29, 1965



THE DEDUCTION THEOREM IN S4, S4.2, AND S5 57

1. B{ is one of the A19 A2, . . . , An, or
2. Bi is a υarient of an axiom (this understood as in [l]), or
3. Bι is inferred by the rule of detachment from Bj and Bk, where

j, k < i and Bj is of form Bk D B{, or
4. B{ is inferred by the rule of substitution from Bj, where j < i,

and the variable substituted, for does not occur in the Ai, A2,
Δ• > **-n

Note that there will be no difficulty in extending clause 2. above to
include the axioms of the modal systems with which we are concerned.

One thing, however, is missing from the above definition, so far as S4,
S4.2, and S5 are concerned. This is a consideration of the role of the rule
RL in a proof from hypotheses. It is obvious that this rule is analogous to

the rule of "universal generalization" in predicate calculi; we might, then,
expect to get a hint of how to account for RL by an examination of the way
that universal generalization is handled in statements of the deduction
theorem for predicate calculi.

In the definition of "proof from hypotheses" in the predicate calculus,
as in [1], p. 1969 the following move is permitted in the inference of a Bi
from a Bj by universal generalization: The inferred B'£ will be of form
{a)Bj9 where j < i and the 'Variable a does not occur tree in any of thfc
hypotheses Ai, A2, . . . , An.

Our problem is now to find, for the systems S4, S4.2, and S5, an appro-
priate analog of the statement, "The variable a does not occur free in any
of the hypotheses Ai, A2> . . . , An.

9>

Such an analog is available. Prior, in {3], p. 312, has shown that S5 is
derivable, and I have shown that S4 and S4.2 are derivable [4] by subjoining
to the CPC the following rules:

R1: If Caβ is a theorem, so too is CLaβ.

R2: If Caβ is a theorem, so too is CaLβ, provided a is completely

modalized.

The definition of "completely modalized" varies among these systems, and
is the factor which distinguishes them. In S4, a wff a is completely
modalized iff either

1. It is a law of the system, every propositional variable of which is in

the scope of the modal operator belonging to a, or

2. It is of the form KLδKLγ . . . Lv with Lδ as a limiting case.

For S4.2 we have—in addition to the above—that a is completely modalized

if:
3. It is of the form NLNLγ.

For S5, any wff a is completely modalized provided every propositional
variable of a is in the scope of a modal operator belonging to a.

Now note that the complete quantification theory is formulable by sub-
joining to a complete CPC base the following:

RΠ 1: If Caβ is a theorem, so too is CILxaβ.
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RΠ2: If Caβ is a theorem, so too is Callxβ, provided x is not free in a.

The similarity of the above rules to R1 and R2 for i V is obvious. And this
similarity indicates to us what the analog for S4, S4.2, and S5 for the state-
ment "The variable a does not occur free in any of the hypotheses" will be.
Let us now move to a statement of the final clause in our definition of
"proof from hypotheses" for S4, S4.2, and S5.

A finite sequence of wffs B\9 B2, . . . , Bm is called a "proof from the
hypotheses Ai9 A2, . . . , An " if for each i9 i ^ m9 either one of the four
previously mentioned clauses (as stated for the PC in [1]) holds, or,

5. Bi is inferred from Bj by RL, where j < i and each of the hypotheses
Al9 A29 . . . , An is completely modalized in the sense of the system
in which we are working.

With these five clauses, then, defining "proof from hypotheses" in S4,
S4.2, and S5, we shall write

A A /i j — z?
Λ l> Λ2> * ** n -°

for "there is a proof from the hypotheses Al9 A2, . . . , An for the wff B."
The statement of the deduction theorem for these systems is now:

If it is the case that
Ai,A2, . . . , An \- B9

it is also the case that
Ai9A2, . . . ,A(n_Q \-AnOB.

The proof of this theorem for the first four clauses of our definition of
proof from hypotheses will be just as in [1], pp. 88-89. The only extension
of the proof needed is to cover our clause 5; this is easily accomplished.

Let each of the Au A29 . . . 9An be completely modalized. And let Bbe
Bi9 such that if k < i9 then

i l l , A2, . . . , il(β-i) I- An 3 Bk9 (1)

whenever

Ai,Λ2, . . . ,An \~ Bk. (2)

Now let Bi be inferred from B 9 j < i9 by RL. This means that, by our
definition of proof from hypotheses and the fact that B is Bi9 whenever (2)
holds, then

Ai, A2, . . . , An V- B. (3)

With (2) and (3) holding, note that since .; < i9 then also j ^ k9 and by (1),

Al9A29 . . . ,A ( n.1 } h A B D Bf. (4)

But then, since each of the hypotheses is completely modalized, we
have also, by RL and our definition of proof from hypotheses:

ill, A2, . . . , A(n^ h- L(An ^ Bf). (5)

It is easily provable as a theorem of S4, S4.2, or S5 that, where a is com-
pletely modalized,
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CLCapCaLp. (6)

(This schema is, of course, analogous to the predicate calculus theorem

CϊlxCφψCφUxψ, where x is not free in φ.)

But this means that we may move to

Aι, A2, . . . , A{n^ H An D LBj (7)

from (5), since An, along with all the other hypotheses, is completely
modalized. But Bi was inferred from 5 ; by RL, and so is of the form
' LBj', This means that whenever (2) and (3) hold, then also

Al9 A2, . . . , A ^ D \-An =>£ (8)

is true, B being Bi9 From here it is a simple matter of mathematical in-
duction to complete the proof of the deduction theorem for S4, S4.2, and S5,
given our definition of "proof from hypotheses."

As an example of a proof in these systems employing the deduction
theorem, we may quickly show that

CLCpqCLCqpCδpδq (9)

is a theorem schema of S4, S4.2, and S5. (Note that we do not, strictly
speaking, employ 'δ' as a "functor variable," as is commonly done; rather,
we employ this sign as a symbol of the metalanguage, letting eδp9 be a
schema representing any wf function of py including, in this case, modal
functions.)

By the rule of substitutivity of strict equivalence and our definition of
proof from hypotheses, we may write

LCpq, LCqp K Cδpδq. (10)

Note that the hypotheses for this case are completely modalized in any of
the three systems in question. But by the deduction theorem, the schema
(9) stands proven.

Note that we could not in the general case for these systems have
stated

Cpq, Cqp \- Cδpδq.

This in spite of the fact that—as a rule of inference—the substitutivity of
material equivalence holds in these systems. For there is no guarantee
that the rule RL would not have to be applied in order to get the desired
results, and by our definition of proof from hypotheses this application
would not be allowed in the last case, since neither of the "hypotheses" is
completely modalized in any of the three systems in question.
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