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THE CHURCH ROSSER THEOREM FOR STRONG REDUCTION

IN COMBINATORY LOGIC

KENNETH LOEWEN

The Church Rosser theorem concerns a property relating to certain
preordering relations [2a]. Originally it was stated for lambda conversions
in a paper by Church and Rosser [1],

To define the property let Γ be a preordering and = be its symmetric
closure. The property in question states

(C R). If M = N, then there is an L such that M T L and N T L.

In this paper we give a proof that strong reduction (as modified by the
author in a previous paper [3]) has the property (C R). For strong reduction,
the symmetric closure is simply combinatory logic with equality [2b]. The
following results were proved in [3] and [5] and will be used here.

Lemma 1. IfX=[x]l, then λx.Xx >- λx.l by Type I steps only. In
other words, the contractum of a Type HI step may be reversed to the
original redex by a single Type II step followed by Type I steps.

Lemma 2. The contraction of a Type II redex P may be reversed pro-
vided there are no intervening steps interior to the contractum of P.

Lemma 3. (Theorem 2.Π of [5]) If there is a standard reduction from
Mo to Mn and if there is a single step of Type I or III from Mo to No, then
there is an Nn such that there is a standard reduction No >— Nn and Mn.

Lemma A. (Lemma 5 of [5]) If there is a reduction from M0N0 be-
ginning with a Type II step yielding (XX.M^NQ and continuing to (λx.Mm)Nn,
then there is a reduction from MΌN0 to [Nn/x]Mm (where [Nn/x]Mm means
the substitution of Nnfor x in Mm) in exactly the same number of steps.

Lemma 5. (Theorem 3 of [5]) If there is a strong reduction from X to
Y where neither X nor Y contain lambda expressions, then there is a Z
such that there is a standard reduction from X to Z and Y >— Z.

Lemma 6. (Corollary A of [5]) If there is a strong reduction from M
to N, then there is a Z such that there is a reduction consisting of zero or
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more Type HI steps from M to X and a standard reduction from X to Z and
N>- Z.

THE CHURCH ROSSER THEOREM

Theorem 1. If M = N, then there is an L such that N >— L and M >- L.

The proof will be in the form of an induction with Theorem 2 providing the
induction step.

Theorem 2. If Mo >— No in a single step and Mo >— Mm , then there is
an Nn such that Mm >— Nn and No >— Nn.

Proof of Theorem 1: If M = N, then there is a finite sequence of reduc-
tions and expansions (converses of reductions) beginning with M and ending
with N. These reductions and expansions may be in any order. The proof
is by induction on the number of contractions following the first expansion.
If there are no contractions following the first expansion, then the original
proof of equality is already in the desired form.

If there are contractions following the first expansion, let the stage at
which the first expansion sequence begins be Mm and let the end of this
sequence be Mo. Following this expansion Mo will be contracted to N o. Now
apply Theorem 2 to get Nn such that the first expansion sequence begins
with Nn and ends with iV0. We have reduced the induction index by one and
the induction can be completed.

Proof of Theorem 2: First replace the reduction from Mo to Mn by a
reduction of the type derived in Lemma 6 from Mo to X by a sequence of
Type ΠI steps followed by a standard reduction from X to Y where Mn >— Z,

If the reduction from Mo to No is by a Type ΠI step, this redex is con-
tracted in the reduction from Mo to X. Hence by at most a reordering of
these steps we may reduce this one first and have iVo >—X >—Mm .

If the reduction from Mo to No is by a Type II step, apply Lemma 2 to
reverse this step getting No >— Mo >— Mn.

Suppose that Mo reduces to No by the contraction of a single Type I re-
dex P with initial combinator p. Let the cόntractum of P be Q. UP is not
contained in any Type III redexes, then it has a single residual in X which
is of the same type as P. Let Y be the result of reducing all Type III re-
dexes in No. In this case any Type III redexes overlapping P will be con-
tained in arguments of p and will occur in Q with at most a change of
multiplicity. If Y is the result of reducing all Type III redexes in No, the
residual of Q in Y will be Q with Type III redexes in the arguments con-
tracted. This is precisely the same as if the residual of P were contracted
in X, a single step reduction. Now apply Lemma 3 to get Z.

Finally we consider the case in which a Type I redex is contained in
one or more Type III redexes. First we define the residual of P for this
situation. If P does not contain the indeterminate x removed by the Type III
step, then it will be a subcomponent of a component of the form [x]R or else
of the form [Λ;]J2Λ;. In either case the contractum contains a subcomponent
congruent to P and this will be the residual. If P contains x, the residual of
P is [x]P. This has an initial combinator px. If a residual is contained in
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other Type III redexes we simply define the residual of a residual to be a
residual. The initial combinator p of the redex P may be in the interior of
its residual, but it can be identified by going through the steps of the reduc-
tion in any case. If in succeeding steps of the reduction some of the com-
binators introduced by the Type IΠ steps are reduced, but p is not reduced,
the contractum will still be a residual of P.

To complete the proof we let Y be the result of contracting all Type III
redexes in JV0. Then apply Lemma 1 to reduce the residual of Qto Q. Call
the resulting stage JVΊ. This is exactly like Xwith Q replacing the residual
of P since Γwas exactly like X with the residual of Q replacing the residual
of P. Follow JVi with the reduction from Xto Mn except that each residual
of P will be replaced by Q. Let the end of this reduction be N£. We modify
this reduction so that we still have No >— Nn and in addition we have
Mm > - Nn.

As an induction hypothesis we assume that Mimml reduces to Ni^1 by re-
ducing the residuals of P to P and then reducing Pto Q. From this we show
that Mi reduces to JV, of the modified reduction. We already observed that
the induction hypothesis holds for X(=M1) and Nλ. We break up the consid-
eration into five cases.

Case 1. If the step from Mi^ι to Mi is disjoint from any residual of P,
then the reduction from Ni-ι to JV, is unchanged.

Case 2. If the step from M,-̂  toM{ contains one or more residuals of
P in an argument place, then there may be a change of multiplicity of resi-
duals of P. In the reduction from JV^ to Ni Q appears in the place of resi-
duals of P. Hence the same change of multiplicity will be made for Q.
Therefore reducing the residuals of P in Λft will give Ni.

Case 3. The step from M ^ to Mf is a (partial) reduction of a residual
of P. JVf -i and Ni are identical in this case. Here we compare the reduc-
tion stage from Mt . ! to Mi with the corresponding step of the reduction of
the residual of P in M1 to P. Call the redex reduced at this stage P, and
let its initial combinator be pf .

Case 3a. The combinator p, is not a descendent of p. Then p, is a
combinator introduced into the residual of P by a Type III step. If there
are more than one residual of P at this point we look at the redexes in each
of them headed by p*. If the redex headed by pf in the reduction from the
residual of P in M1 to P has at least as many arguments as in any of the
reductions following Mf -i, then we make no changes in the reduction N re-
ductions. If the step from Mi_ι to Mf has the same number of arguments as
the corresponding step from the residual of P to P, then this step is one of
the steps in the reduction of Mim.x to iV, _i = Ni. If the step from M,-^ to Mo-
uses fewer arguments than in Pif it is Type II and we can reverse the step
by a Type II step to M, _i and this reduces as before to JN̂  .i = JV, .

If the step from Mf _i to M, or one of the other instances of p, in an-
other residual of P uses more arguments than P we make the transforma-
tion of Lemma 4 to all residuals of P from the point where the
indeterminate is introduced on. Since P and Q contain the same indetermi-
nates, the indeterminate is also introduced between Y and JVΊ. Make the
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same transformation on the N reductions from the point where this
indeterminate is introduced. The residuals of P in the modified reduction
reduce to the residuals of Q in the modified N reduction, since the same
changes have been made in both reductions up to M, _ i and ΛΓ,-- x. Now the
reduction of Pi of the index is just a step of the reduction from P{ to Q as
modified. At subsequent stages of the reduction the modified reduction will
serve as before without further changes.

Case 3b. P{ has the same head as P. If Pi is the same as P, then this
is simply one step of the reduction of the residuals of P to Q. If Pi is not P
it is a Type II step (P is Type I) and a Type III step will reverse this step
and the reduction from Mi-t gives the remaining reduction.

Case 4. The step fromM/.! to Mi takes place within an argument of P.
Arguments of P occur in Q unchanged for multiplicity. Hence if we make
the same reductions in the arguments of Q corresponding to the particular
residual of P in which the reduction is taking place, we still have M, re-
ducing to Ni.

Case 5. If the step from M,--! to M, is a Type III step, it necessarily
occurs after all Type I and II steps, and applying Lemma 1 gives
Mi > - M,-i > - Ni., = N^

This completes the induction. We can now drop duplications in the N
reductions and we have the theorem proved.
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