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A STANDARDIZATION THEOREM FOR STRONG REDUCTION

KENNETH LOEWEN

In a previous paper [2], the writer introduced a modified definition of
strong reduction in combinatory logic [1a]. This paper shows that with such
a strong reduction there is associated a standard reduction [3a]. All reduc-
tions are considered according to the modified definition. This allows some
essential simplifications in proofs, especially of Theorem 1.

Definition of a Standard Reduction.

A strong reduction is called standard if it satisfies the following condi-

tions:

i) The Type III steps are made last and are performed from right to
left.

ii) Among the Type I and II reductions the redexes are to be contracted
in the order (from left to right) of the combinators appearing at
their heads. However, the redex contracted need not be of maximal
extent.

The condition that Type III steps be contracted from right to left is
automatically satisfied in the case that they overlap; and in case they do
not, the order is irrelevant.

In the context of standard reductions, steps of Type IIc, IId, and IIf have
the effect of freezing certain combinators, since they introduce expressions
which can only be reduced further by Type III steps. We shall refer to
combinators as being frozen without resorting to the mechanism of these
steps. A combinator not frozen is called free.

Since the transformation of a modified strong reduction into a strong
reduction in the original sense involves introduction of Type III steps ahead
of Type I and II steps, a standard reduction in the present sense need not be
standard in the sense of the original definition.

Two Lemmas. Two lemmas were introduced in [2] and will be used
here. They are:

Lemma'l, If X =[x]X, ther Ax.Xx >— Ax.X by Type I steps only. In
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other words the contractum of a Type III step may be reversed to the orig-
inal vedex by a single Type II step followed by Type I steps.

Lemma 2, The contraction of a Type II vedex P may be veversed pro-
vided there ave no intevvening steps inteviov to the contractum of P.

Standavdization of a Special Case.

In this section we will prove that any reduction involving only Type I
and II steps can be standardized.

Theorem 1, If M veduces to N using only Type I and II steps, then
there is a standavd veduction from M to N using only Type I and II steps.

The proof is an induction on the number of steps in the reduction from
M to N. It proceeds by construction of the standard reduction from the
original induction. The induction step is provided by Lemma 3. This may
alter the number of steps following the point at which it is applied so the
induction is applied by working backwards from N to M. In this way the in-
duction index is not affected.

Lemma 3. If theve is a single step veduction using a Type I or II step
from M to N, and a standavd veduction using only steps of Type I andIl
from N, to N,, then theve is a standavd veduction using only Type I
and II steps from M fo N,.

Proof of the theorem. Let M = My, My, Mz, ..., M = N be the stages
of the reduction. Since a single step reduction can always be considered
standard by appropriate freezing, the reduction from M;_, to M, is stan-
dard. This is the basic step of the induction. Now if the reduction has been
standardized from M; to M,, then Lemma 3 shows that we can standardize
from M;., to M. We have now decreased the index and a descending in-
duction on j gives the desired result.

Proof of the lemma: Note that if » = 0 the situation is trivial, since
then we have only a single step reduction.

Designate the redex used to reduce M to N, by P and the initial combi-
nator of P by p. Designate the redex used to reduce N;_; to N; by 7;.

Look at the leftmost free combinator in M. If it is not p, then it
appears in N,. If this combinator is frozen in the reduction from N, to N,
then freeze it in M. Proceed to the right in M until we reach a combinator
which is not frozen. If this leftmost free combinator in M is p, we have a
standard reduction from M to N, and there is nothing more to prove. If this
combinator is not p, it is 7,. In the following we assume 7, is to the left of
p.

We now construct a sequence of L;’s such that we have a standard re-
duction from M to L; and that a left to right reduction of all residuals of P
in L; continues this given reduction to N,_;. This certainly holds for % = I,
if we take 7i=0 and L, to be M. In the induction step we construct a
sequence from L; to L; such that a reduction of all residuals of Pin L;
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gives a standard reduction from M via L; and then to L; and ending at M,.
We carry out the inductive step in two parts. In the first we show, assum-
ing simply that the residuals of P in L; are of the same type as P, and
whose contraction in standard order leads to N_,; that this leads to a
standard reduction from L;via L; to N;. In the second part we shall show,
assuming the rest of the inductive hypothesis, that we obtain a standard re-
duction from M to N, by carrying out first the standard reduction from M to
L;, and then the new reduction from N; to N,.

The reduction from L;to N,.; is by means of the reduction of the
residuals of P. Thus each of these will have a recognizable trace in N,_,.
Suppose that 7, lies to the left of all those traces of P in N,_;. Then there
will be an instance 7' of 7, in L; such that the reductions from L; to N;_;
consist of replacement of components lying to the right of ,'. Accordingly,
there will be a component R,' in L;, headed by 7;' such that these replace-
ments will be either replacements inside R,' (or one of its traces), or
entirely to the right of R,'. Thus R,' is a redex of the same type as R,.
Since the replacements are all steps of Type I or II, which do not allow a
lambda to be eliminated, R,' is a redex of the same type as R;. Let L;
(= L;+,) be obtained by contracting R,' in L;. The effect of this is merely
to change the order and multiplicity of the residuals of P. Hence if all
these residuals, in standard order, are replaced by their contracta, we are
led from L; to L; and thence to N; by a reduction which is standard.

Suppose now that 7, lies to the right of, or inside,the trace of some
residual of P. Let L;., be obtained by contracting, in standard order,
exactly those residuals of P in L; whose traces in N;—, contain or lie to the
left of ;. Then since the residuals of P are non-over-lapping, those which
appear in L;-, will be replicas of certain ones in L;; moreover, the con-
traction of all residuals of P in L; will pass through L;_, on its way to
Np-y. Thus Lj-, can take the place of L; in the argument of the preceding
paragraph; and the reduction from L; to L; and hence to N; will be standard.

This completes the first part of the proof. Before starting on the
second part we note the position of 74, in N;. Since the reduction from N
to N, is standard, 734, lies in or to the right of the contractum of R;.
Accordingly no ancestor of 7;+; can be frozen in the reduction from M to
N.. Likewise the traces of residuals of P which still exist in L; all lie
within or to the right of the contractum of R;. Let us suppose, as part of
the inductive hypothesis, that the analogous statements hold with respect to
7 and N, i.e., with 2-1 in place of 2 They evidently hold when 2 = 0 since
then we have only a single step reduction from M to N,, there is no R,,
i=0, and j = 1. Thus no ancestor of 7; nor any ancestor of the head of any
residual of P contracted in going from L; to L; can be frozen in the reduc-
tion from M to L;. These ancestors, therefore, are in the reduction from
Mto L;. Since they are not frozen in the reduction from L;_, to N, the
reduction from M to N, is standard.

This completes the proof of the lemma and the theorem.

An Auxiliavy Theorem. The following theorem is used in the proof of
the standardization theorem and in other contexts.
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Theorem 2, I. If theve is a strong veduction from M, to M, and if
theve is a single step reduction of Type II or Type III from M, to N, then
N >— M,.

II. If theve is a standavd veduction from M, to M, and if theve is a
single step veduction using a step of Type I ov Type III from M, to N, then
there is an L such that therve is a standavd veduction from N to L and
M, >— L.

Proof: PartI. By Lemma 1 or 2 the step from M, to N may be re-
versed giving N >— M, >— M.

Part II. If the step from M, to N is a Type III step it can be reversed
by Lemma 1. This introduces only Type I and II steps from N to M,. If the
reduction following this is standard, the entire reduction from N to M, can
be standardized by Theorem 1, since all Type III steps are already at the
end of the reduction.

Now let the original reduction be given by

(1) M,> My, > ...>— M,

and the reduction from M, to N be by the contraction of a Type I redex P.
The proof is in the form on an induction on the number of steps in the re-
duction (1). We assume that the reduction from M, to N is standard. Also
that the redex P contracted in the reduction from M, to N has initial com-
binator p. The reduction from M;.; to M; is by the contraction x; of R; with
initial combinator r; (in case R; is Type I or II).

If n = 0, then N is the required L. This is the basic step of the induc-
tion.

For the induction step we assume that by contracting all residuals of P
in M _;, as well as certain redexes congruent to residuals of P (recon-
structed in the reduction from M;_, to N; and which we will call semire-
siduals) corresponding to residuals of P destroyed by the contraction of a
competing redex in (1) prior to reaching M;_,, we obtain an N; such that
M;., > Nj and N= N, > N;. From this we show that we can contract R;
to get M; and then by a similar sequence of steps arrive at N, such that
M; >— N and N; >— N.

We may need Type III steps to reconstruct certain semiresiduals in
these reductions. The details of definition of semiresiduals are left till
appropriate points in the proof. Because P is a Type I, each residual (and
semiresidual) of P must be headed by an instance of p.

It will be helpful in the following steps of the proof to recall that if a
redex has more than one residual, these cannot overlap. We now consider
the possible cases for the induction.

Case 1. R; is disjoint from all residuals and semiresiduals of P. This
case is the first case in the proof of Theorem L with R; serving as P.
Standardization was not a necessary hypothesis except to obtain a standard
reduction.

Case 2. R; is a residual of P. The contraction of R; is one step of the
reduction from M;_, to N;. Hence a reduction from M;-, to M; and then to
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N, = N; involves at most a rearrangement of the order of contraction of
residuals and semiresiduals of P.

Case 3. R; is a part of a residual of P.

Case 3a. The combinator r; is contained within an argument of Pin
some residual of P. Since the reduction (1) was standard, this means that
the particular residual of P which involves r; was frozen at some point in
the reduction (1) before the stage M; was reached. There will be zero or
more residuals of R; in N;; but each of these residuals will have exactly the
same form as R; itself. Reducing each of these residuals of R; occurring
in N; gives the same result as if R; were reduced first and then the resid-
uals and semiresiduals of P were reduced. Thus we get M; >— N, and
N; >— N,.

Case 3b. r; is the head of a residual of P, but R; is a subcomponent of
this residual. R; is necessarily a Type II redex. If we apply a Type I step
to the contractum of R; in M; before any other steps are performed, we
have an expression identical to M;_,. In M; the residual of P headed by
r; has no residual, but after the Type III step a redex is reconstructed
which is identical to the destroying residual of P. This redex is what we
call a semiresidual of P. In the reduction from M; to N; we treat this redex
as if it were a residual of P and likewise in all subsequent stages of the in-
duction process. Reducing all the residuals and semiresiduals of P after
the Type III step is essentially the same as reducing the residuals and
semiresiduals of P beginning with M;_, and hence we get N;'= N;. Any Type
IIT step other than the one introduced in this step will be handled as in the
reduction from M;-, to Nj.

Case 3c. R; does not overlap a residual of P, but a residual of R; is
contained in a semiresidual of P constructed in the reduction from M;_; to
Nj. This can happen in one of two ways.

The residual of R; may be part of an argument of a semiresidual which
was not included in the redex which served as the R; in the particular
application of Case 3b which originally gave rise to the semiresidual of P
involved. In this situation the present R; may be handled by Case 3a after
the Type III step constructing the semiresidual has been performed.

The R; of the present case may be a redex contained within or formed
from the contractum of an R; of Case 3b. Since the R; of Case 3b is a Type
II redex its contractum is a Type III redex and hence is identifiable
throughout this part of the reduction, until Type III steps are applied. Since
the present R; is a Type I or II redex, a contraction of its residual in N; as
in Case 3a will give Nj.

Case 4. Certain residuals of P are parts of R;. One or more residuals
then occur within arguments of r;. The most that can happen here is a
change of multiplicity of one of the residuals of P. Reducing these resid-
uals and the semiresiduals of P beginning with M; gives us N;. Clearly this
is the same as if the residuals of R; in N; were reduced, so that we have
N; >— N, as required.
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Case 5. R; is a Type III redex. This is part I of the theorem.

Two Lemmas. We now prove two simple lemmas which allow certain
modifications in a reduction. These are used in the proof of the standardi-
zation theorem.

Lemma 4. If x >— M in k steps of Types Iand II and if x contains no
lambda expressions, then theve is a veduction with not move than k.2* Type
I and II steps such that each Type IIlI redex in M is the unigque vesidual of
the contractum of a Type II step.

Proof: All Type III redexes must be introduced by Type II steps.
Since the only step which actually increases the multiplicity of a component
of a stage of a reduction is a step of Type Ib, this means that we can inter-
change steps of Type Ib and steps of Type II.

Suppose we have a single Type Il redex P introduced by a Type II con-
traction. This redex may be part of certain other redexes which are
subsequently contracted. There will be no increase in the multiplicity of
residuals of P as long as they are not included in a step of Type Ib and we
have no difficulty. (It cannot be a part of a Type III contraction since a
Type @I step may have no lambda expressions in its interior.) There may
also be certain reductions interior to the Type III redex. We place no
restrictions on these since they cannot affect the multiplicity of the redex
in question.

Suppose that there are i steps of the reduction interior to P before the
step of Type Ib is reached. Suppose further that the Type II step introduc-
ing P'is the first step since previous steps are irrelevant to this part of the
analysis. Let M, be contracted to M; by a Type II step replacing a compo-
nent L by a component Ax.L = P. Let the first step of Type Ib which over-
laps this component in such a way as to contain P as an argument be the kth
step. Then Mj-, reduces to My by the replacement of a componentof the
form SN, N,N, by a component N,N4(N,N,). If the residual of P occurs in
either N or N, there will be no change in the multiplicity of the residuals
of P and we make no changes in the reduction.

If, however, the residual of P in M, _, is in the component N;, there are
now two residuals of P and we modify the reduction as follows. In each
stage from M, to M replace Por the unique residual of P by L. Each step
from M, to M will either be a step of the same type as the original, or the
two successive stages will be identical. Identical stages occur at M, and M,
and whenever there were reductions interior to P in the original reduction.
Delete repetitions in the reduction.

Now begin with the new M, and replace both instances of L with P and
repeat in each of these residuals exactly the same sequence of steps which
occurred interior to the residual of P in the reduction from M, to M;_, in
the original reduction. Thus for each step deleted above M, two are added
below. If a reduction had %2 steps and introduced only one Type III redex
there will be less than 2% steps in the modified reduction.

If there are other Type III redexes at stage M.4,, each can be handled
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by this same procedure. Since each application no more than doubles the
number of steps the total number of steps is less than %-2%

Lemma 5. If there is a reduction from M., = LN beginning with a
Type II step yielding M; = Ax.L')N and continuing to My = (\x.L")N' where
xx.L'>—ax.L" and N >— N' then theve is a veduction from M;_,= LM to
My =[L'/x]N" (where the notation [L'/x|N" means the substitution of L'
for x in N"") in exactly the same number of steps.

Proof: In the reduction from M;., to M the reductions in N are dis-
joint from the reductions in L. Hence these can be interchanged without
affecting the number of steps. In particular we can require all reductions
in N to be performed before any reduction in L. This gives us M;'., = LN".

Now substitute N' for x in each stage from M;r to M;. (Delete the rx
prefix when the substitution is performed.) There is no change in the num-
ber of steps. Note that the result of making this substitution in M, is M} .
We now show that the transition from M;'_, to M;» is a valid single step
reduction and the lemma will be proved. We list in tabular form the six
possible kinds of Type II steps which can occur.

Mo Original Orig. Modified Modified
-l Contractum Type Contractum Type
KN,N, (Ax.N)N, ITa N, Ia
SN,N,N, (Ax.Nx (N))N, Ib NN4(N,N,) b
A (Ax.x)N, Ilc N, Ic
KN, (Axy.x)N, Iid M.N, Ia
SN.N, Ay N.y(x9)) N, Ile ANy (N,y) b
SN, (Ayz.xz(yz))N, IIf Az, N z2(yz) Ile

The result of the modification in each case is another strong reduction
of a different type. Hence the lemma is proved.

The Standardization Theorem

Theorem 3. If there is a strong reduction from X to Y wheve neither
X nor Y contain lambda expressions, then theve is a Z such that theve is a
standard veduction from X to Z and Y reduces to Z.

Proof: The proof of this theorem is an induction, similar to the proof
of Theorem 1, beginning from the bottom of the reduction and moving up-
wards. Theorem 1 shows that any reduction involving only Type I and I
steps can be standardized. Thus we need to show that any Type III step can
be moved to a point following all Type I or II steps in the reduction, or
eliminated entirely.

We assume that the reduction has been modified as in Lemma 4 so that
each Type Il redex is the unique residual of the contractum of a Type II

step.
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Let the reduction be from M, = X to M, =Y. Assume as inductive
hypothesis that the reduction from M+, to M, is standard. This hypothesis
is verified when 2 =%-2 since a one step reduction is always standard.
Assuming the hypothesis we show that there is a standard reduction from
M to some Z such that Y >- Z. Then it will follow that for every 2 < n-1
there is a Z; such that there is a standard reduction from A to Z;, and
Zy > - Zy-y. Then Z, will be the Z of the theorem. We further assume that
the step from M, to M4, is a Type III step which overlaps subsequent Type
I or II steps. If it is Type I or II, the result follows from Theorem 1. If
there are no Type I or II steps overlapping the result is trivial.

Let R, = Ax.1l be the redex contracted in going from M, to Mp,,, and let
the contractum of R, be U =[x]l. R; is the unique residual of a Type III
redex introduced in some Mj, 0 <j <k. We treat first the case where R;
is at the head of M,; so that we have

M, = Ax.0)N,N, ... Ny,
My, =UNN, ... Ny.

We divide the proof into cases according to the outermost (algorithmic)
step in the algorithm for obtaining U fromax.l. K is important to notice
that the argument does not depend on the value of 2, but only upon the fact
that a reduction from M, on is standard.

Case 1. The step from M, to M;,, uses clause (a) of the algorithm.
Then there is a V, not containing X, such that U =V, and U= KV. The N’'s
may be absent. Any reduction involving the N’s will be disjoint from the
Type III step and causes no difficulty. In this case we have M4, = KVN,...
N, .

Case la. If the K in M4, is frozen in the subsequent reduction, we
note that all subsequent reductions overlapping the Type III step occur en-
tirely within V. But V passes from M, to Mp,; unchanged. Hence the re-
duction interior to V could have started in M, before the Type III step was
applied. In other words we can move the Type III step to the end of the
reduction.

If Type II steps are used in the subsequent reduction of V, the lambdas
introduced by them must be removed by Type II steps (which will occur
after all Type I and II steps have been made since this part of the reduction
is standard by hypothesis) before the Type III step being moved to the end
is contracted. It is to guarantee that this will always be possible that we
require Y and Z to contain no lambda expressions. Similar situations will
arise in subsequent cases, but we will not comment on them further.

Case 1b. The K introduced by the Type I step from M, to M, ., is not
frozen in the subsequent reduction and the reduction from M, to My, is
by a Type I step. There must be at least one N present since it is involved
in the subsequent standard reduction as an argument of a contracted redex.
We can thus apply the transformation of Lemma 5 to the reduction from
M;-; to M. The X of Lemma 5 is the present V. It is to guarantee that
this transformation will always be possible that we require X in this
theorem to be an H-ob. If we perform this modification we get
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L =VNz... Np = My42. In other words by this modification we can elim-
inate two steps and have a standard reduction from M} .

Case lc. The K introduced by the Type III step is not frozen and the
reduction from M p4+, to My, is by a Type II step. We have either M+, =
(Ax.V)N,... N,, or else My, ,= (Axy.X)VN,... N,,. In the first alternative
we have M= M,,,, and by eliminating two steps from the reduction, we
have a standard reduction from M, to the end of the reduction. The second
alternative is Case 1la.

Case 2. My, arises from Mg by algorithm clause (b). Here we have
My, = (Axx)N,... N, and My, = IN,... N, . If the | is frozen, then all sub-
sequent reductions are in the N’s and are disjoint from the Type III step so
that we have no problem. If the | is not frozen, then either My, , = N;... Ny
or else Mpi, = (AxX)N,... N, =M,. In the second alternative eliminating
two steps from the reduction gives us a standard reduction from M, to the
end.

In the first alternative N, is used as an argument of a redex contracted
in the subsequent standard reduction. We can thus apply the transformation
of Lemma 5 to get M}, =N,... N, = M,,,. Again elimination of two steps
gives a standard reduction from M} to the end.

Case 3. My, arises from M by an application of clause (c) of the
algorithm. Then M, is (Ax.UX)N,... N,,, and My, is UN,... N,.

Case 3a. If the subsequent reduction is such that the result is of the
form U'N',... N, where U>—U', Ny >— N',,..., N, > N}, , then we
observe that all the reductions in U could have been performed before the
Type III step was applied.

Case 3b. The subsequent reduction is not of the special form required
by the previous subcase. As in previous cases we can modify the reduction
from M;-, to M as in Lemma 5 and obtain M} = UN,... N,, = Mg4,. By
eliminating one step we have a standard reduction from M] to the end of
the reduction.

Case 4. M4, arises from M, by a step beginning with an application of
clause (f) of the algorithm. Then M is of the form (Ax.UR)N,... N, =
SUVN,... N,, and M, is S([x]u) ([x¥]B)N,... N» = SUVN,... N,. This is
the most difficult case. Here for the first time we have the possibility of
having succeeding substeps involving additional applications of the al-
gorithm. These do not cause difficulty since the expressions [x¥]U = U and
[¥]8 = V are treated as whole units at the stage M, of the subsequent re-
duction. The structure of U and V can enter in only at later stages of the
reduction which is already assumed to be standard. Thus we consider only
what happens to the particular instance of § introduced by the initial appli-
cation of clause (f) of the algorithm.

Case 4a. The S is frozen in the reduction following stage M;.;. Since
any reduction involving the N’s will be disjoint from the Type LI step we
will assume for convenience in this subcase that they are not present. Thus
the end of the reduction is of the form SU'V' where U >—U' and V >—1TV".
We will show that there is a standard sequence of steps beginning with M,
and ending with an ob to which SU'V' will reduce.
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Lemma 1 shows that ax.SUVx reduces to ax.U8 (= M) using one or
more Type I steps only. Since we can takeAx.Ux(Vx) as the result of the
first of these steps, we have also that Ax.Ux(Vx) reduces to Ax. U3 using
only Type I steps. We now perform a secondary induction on the number %
of steps in the reduction from Ax.Ux(Vx) to x.18. By this means we con-
struct the desired standard reduction from M, to the ob Ax.3 where SU'V! =
M,>— Ax.8 >— Zand Z is the ob called for by the theorem. If the number
of steps in the secondary induction is zero, the auxiliary reduction from
Ax.Ux(Vx) to Ax.U'x(V'x) is the desired reduction. This is the basic step of
the induction.

The induction step is provided by Part II of Theorem 2. This says that
if M, >— M, in a standard reduction and M, >— N by a single step of Type I,
then there is an L such that M, >— Land N >— L is a standard reduction.
In application to the present situation M, is the i-th stage of the reduction
from Ax.Ux(Vx) to Ax.U8. N is the following stage of the same reduction.
M, is a certain expression to which Ax.U'x(V'x) reduces, the exact form de-
pending upon i. When ¢ = 0, M, is Ax.U'x(V'x); and when =k, M, is 3.

Since the reduction Ax.Ux(Vx) >— Ax.U% contains only Type I steps, the
result of the secondary induction shows that the reduction from Ax.U'Q
(EM}) to Ax.3 can be standardized. Further Theorem 2 also guarantees
that Ax.U'x(V'x) reduces to Ax.8. Since SU'V' (= M, of the present theorem)
reduces to Ax.U'x(V'x) by a single Type II step, we have M, >— z.3. At the
end of the induction we can apply Type III steps to get Z.

Case 4b. The S introduced in the initial application of clause (f) of the
algorithm is not frozen and the reduction from M4, to M, is by a Type I
step. There must be at least one N. We modify the reduction as in Lemma
6. In this way we arrive at M} = ([N/x]JUu8)N;...N,. By Lemma 1 M, =
SUVN;... N, reduces to My using only Type I steps. By a secondary in-
duction on the number of steps in this reduction we show that there is an
ob Z to which both M} and M,reduce and that the reduction from M} to Z
is standard. The details are similar to the previous case.

Case 4c. The S is not frozen and the step from M,,, to M., is a Type
II step. My, is either Ax.Ux(Vx)N,... N, or else it is (Ayx.Ux(yx))VN,...
N, . The third alternative for a Type II step is the frozen case already
considered. We cover the first alternative in this subcase.

We can show that M;,, = Ax.Ux(Vx)N,... N, reduces to M; using only
Type I steps by applying Lemma 1 to Ux = ([x]1l)x. If we perform a secon-
dary induction on the number of steps in this reduction from M., to M, we
get the desired results. Part II of Theorem 2 is again used as the induction
step in the secondary induction. The details are as in the previous sub-
cases.

Case 4d. If S is not frozen, we still need to consider the alternative
Mpi+z2 = (A yx.Ux(yx))VN;... N,,. Here the procedure is more complicated.
We may assume for convenience that the N’s are all absent. Any reduction
involving them will be disjoint from the Type III step from M to M, so
this will cause no difficulty.

Since the reduction below M,,, is standard, M,,, = (A yxUx(yx))V
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reduces to (Ayx.L)V by Type I and II steps only and this in turn reduces to
(Ayx.L)V'. There may be Type III steps at the end of the reduction from V
to V'. If we then apply Type III steps to this result we can get ([yx]L)V".
By Lemma 5 this last expression reduces to [V'/y]x]L using Type I steps
only. Since V' does not contain x, we have also that this is the same as
[x]V'/y]L. Now in each stage, from My, to the stage which looks like
(Ayx.L)V, make the substitution [V/y]. Since V contains no lambda expres-
sions (it is [¥]V, and by definition this contains no lambdas), this trans-
forms the original reduction beginning with M4, into one which begins with
x.Ux(Vx) and goes as far as Ax.[V/y]L. Next reduce each of the (disjoint)
instances of Y to Y'. Since the Type III steps in the separate instances of
the reduction of Yto Y' are disjoint, we may leave them until all the Type I
and II steps have been completed. If we now apply Type III steps to the re-
sult, we get [x][V'/y]L. If there are any other Type III steps than the last
one specified involved in this reduction, they are either at the end of the
reduction of ¥ to Y' or else follow all reductions of that form, since the
original reduction was standard by hypothesis. This means that the reduc-
tion from Ax.Ux(Vx) to Ax.[V'/y]L and then to [x][V'/y]L is standardizable
by Theorem 1. As we have also seen M, reduces to [x][V'/v]L. Thus we
can now apply Case 4c to this resulting reduction to get the desired result.

This proves the theorem on the hypothesis that R; is at the head of M.
It remains to consider what happens if that is not the case. Let Rp4, be the
contractum of Rp. Then it may happen that there are several replicas of
R, which are recognizable as traces of Rp with respect to I-II contrac-
tions with a head lying to the left. This introduces complications which
have to be considered.

Let A be the given reduction, which is standard from M., on. With A
before us we can recognize those traces of R; such that no contraction
whose head lies in or to the right of the trace has yet occurred. Let us call
these R, traces; they are all exact replicas of R,;,. Let us say further that
an R trace is activated at a given step of A if the redex contracted at that
step has its head in or to the right of the trace, or is of Type III. Given an
R; trace, a contraction of a I-II redex whose head is to the left of it we shall
call a preparatory contraction for that trace. Then a preparatory contrac-
tion may cause multiple descendents of that trace in the next stage, or it
may cancel the trace altogether.

Let My, be the first stage in A such that either all R, traces have been
cancelled by preparatory contractions or the first R, trace is to be
activated in the next step. We have noted that M;_, differs from M, , only
in that R;., replaces R;4,. If we make the same preparatory reductions
starting with M;_,, Rg+, being replaced throughout by R;-;, we arrive at an
M'j'_l which is obtained from M., by the same replacements. If M., con-
tains no R, trace, then it is identical with M 'j'_,, and the preparatory re-
duction, together with the standard reduction from M, , on, will give the
standard reduction from M; -;. On the other hand if M., contains only one
Ry trace, then the effect from M.+, is the same as if R, were at the head of
My, i.e., we can use the argument given above to standardize the reduction
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from M'/_, to M,. In fact the argument did not depend on %; and the only
contractions which can contain the trace (or its descendants) as a proper
part will be Type III steps at the end. Since the preparatory contractions
are of Type I or II we can apply Theorem 1 to obtain a standard reduction
from M;_,.

If M+, contains more than one R; trace, we continue the modification
of A, In MY., let us reduce to Ry, only that replica of R;_, which corre-
sponds to the trace about to be activated; we take this M, as a new M;_,
and so continue. Then we can use the argument for the case where Ry, is at
the head of M, to move to the end the Type III step for the R, trace last
activated; then that for the one next to the last, and so on. In the end we
shall have a standard reduction starting at M; -,.

This completes the proof of Theorem 3.

Remark:. It is necessary that x of the theorem not contain lambda
expressions as the following counterexample shows. Start with (x.x)
(v.y). This reduces to Il and then to |. If the theorem were true in this
case it would say that there would be a reduction with Type III steps last
such that the lambda expressions and | reduce to the same Z. In the con-
text of strong reduction only Type III steps are applicable to the lambda
expressions giving Il. No further reductions can be made without using
Type I or I steps. | does not reduce to Il.

Corollaries to Theorem 3

Corollary A. If theve is a strong reduction from L to M then there is a
Z such that theve is a veduction consisting of zevo ov move Type III steps
from L to X and a standard veduction from X to Z with M >— Z.

Proof: If X contains no lambda expressions Theorem 3 gives the re-
sult. If X contains lambda expressions, remove them by Type III steps.
Now use Lemma 1 to reintroduce each indeterminate eliminated by the
Type III steps. This will be done by a sequence of Type II steps and the re-
sult of this then reduces to X by Type I steps only. Thus we have a reduc-
tion from X to X' by Type I steps. X' reduces to X by Type I and II steps.
Prefix this to the original reduction and apply Theorem 3 from the reduc-
tion from X' on.

If Y contains lambdas simply apply additional Type III steps to get Y’
before applying the above results. This proves the corollary.

By cutting off the part of the reduction above X' in the above we get the
following:

Corollary B. If there is a strong veduction from L to M then there is
an X >— L and a Z such that M >— Z and theve is a standavd veduction
Jrom X to Z.,
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