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MODIFIED STRONG REDUCTION IN
COMBINATORY LOGIC

KENNETH LOEWEN

Introduction. This paper introduces a modified definition of strong re-
duction in combinatory logic. A number of simple properties of reductions
are developed. Then the modified definition is shown to be equivalent to the
original definition in the sense that any modified reduction from an ohX to
an ob F can be replaced by a reduction in the original sense from the same
X to the same F.

A Modified Definition of Strong Reduction in Combinatory Logic.
Strong Reduction in Combinatory Logic was introduced in Curry and Feys
Combinatory Logic [1], Prior to this time they used only the weak reduc-
tion rules

(I) \X>X;

(K) KXY > X;

(S) SXYZ>XZ(YZ);

together with rules of combinators which can be defined in terms of these.
Here X, F, and Z are arbitrary combinations of elements of the system. To
obtain a closer analog with some of the related systems of lambda conver-
sion [2] Curry and Feys introduced strong reduction. In this definition of
strong reduction bound variables are introduced. Expressions containing
these bound variables are called lambda expressions since a lambda is
used to indicate the variables which are bound.

In the definition of strong reduction (given in detail below) lambda ex-
pressions were not allowed in the interior of a reduction except for steps
which removed them. The purpose of this paper is to show that these
restrictions can be relaxed to a great extent. In this we get an answer to a
problem listed as unsolved in Curry and Feys [la]. The modification was
suggested by steps used in proving a standardization theorem in the
writer's doctoral dissertation [3]. This modification allows essential
simplifications in that proof.

Strong reduction is formulated in Curry and Feys as a formal system
whose entities are called obs. Actually several different systems are used.
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In the first formulation—the system /^—there are no lambda expressions.
Its obs are called /^-obs. In a modified system (calledβ) lambda expres-
sions are introduced and in this system we have/-~obs.

A reduction consists of a replacement of a component (called a redex)
of an ob of the system under consideration by another component called the
contractum of the redex. The replacements which are allowed are given by
the rules of the system.

The use of parentheses in what follows is simplified by assuming
associativity to the left and the use of dots as parentheses in connection
with lambda expressions. The symbol >— is used as a binary infix to
denote a strong reduction.

Curry and Feys define strong reduction as a sequence 01 steps of the
following three types:

Type I. Replacement according to one of the following three rules
where X, F, and Z represent arbitrary 3 -̂obs (i.e. obs without any lambda
expressions inside them):

Redex Contractum

(I) IX X.

(K) KXY X.

(S) SXYZ XZ(YZ).

Type II. Replacement of a component U which is an % -̂ob by λx.Ux,
where x is a variable which does not occur in ί/L _ _

Type III. Replacement of a component λx. 53 by X= [x]93, where 93 is an
3̂ -ob and [#]$8 is defined by the algorithm:

(a) [x]X= KX if i is Zand Xdoes not contain*.

(b) [x]x = I if δ is x.

(c) [ΛΓ]DS Ξ S([ΛΓ]F)([#]Z) if 5 is g)3 and none of the previous cases
apply.

The relation generated by these steps is reflexive, transitive and both
right and left monotonic [lb].

In the expressions U and V there may be indeterminates but x may not
appear. In practice Type Π steps are modified so as to include one or more
Type II steps as given in the definition followed immediately by a Type I
step to eliminate the initial combinator. If this were not done, the Type II
step could be postponed.

Modified Definition. The following modification of strong reduction is
proposed here: In steps of Type I and Π drop the requirement that the
arguments of the combinators be /^-obs and allow them to be j^-obs. In
other words, we will allow lambda expressions within U,X, Fand Z. This
same modification cannot be extended to Type IΠ steps.

We can summarize the definition of this modified strong reduction in
tabular form. In the listings for Type II steps the steps actually consist of



MODIFIED STRONG REDUCTION 267

one or more Type II steps followed by one Type I step to eliminate the
initial combinator.

Type Redex Contractum

la KXY X;

Ib SXYZ XY(YZ);

Ic \X X;

Πa KU λx.U;

lib SUV λx. Ux(Vx);

Πc I λx.x;

Πd K λχy.x;

He SU λxy.Uy(xy);

Ilf S λxyz.xz(yz);

III λx.V [x]V.

Here £/, X, Y and Z may contain lambda expressions, but V may not.
From these definitions we can make several observations about re-

dexes. A particular redex ceases to be a redex when it is contracted. In a
few instances we will refer to the contractum of a given redex as its trace.
This is done only when the contractum is identifiable as an entity.

A Type III redex also ceases to be a redex when a Type II step takes
place in its interior. This comes from the requirement that all components
of Type III redexes be /^-obs. When this happens, it will be convenient to
call the resulting expression in quasi-redex. Thus a quasi-redex is an ex-
pression satisfying the requirements for a Type III redex except that it may
have lambda expressions in its interior. Since there is no restriction on
the form of V in a Type ΠI redex other than that it be an /^-ob, a quasi-
redex can be converted into a redex by appropriate Type III steps.

Type II and III steps can be reversed under certain conditions as given
in the following two lemmas:

Lemma 1. If X = [x ]ϊ, then λx.Xx >— λxΛ by Type I steps only. In
other words the contractum of a Type III step may be reversed to the orig-
inal redex by a single Type II step followed by Type I steps.

Proof: This is a restatement of the conclusion of the discussion of the
first part of Curry and Feys Section 6A2 [lc].

Lemma 2. The contraction of a Type II redex P may be reversed pro-
vided there are no intervening steps interior to the contractum P.

Proof: If the arguments of the initial combinator of P contain no
lambda expressions, this follows directly from the algorithm for Type III
steps.

If one or more of the arguments contain lambda expressions in their
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interior, these must be removed by Type ΠI steps. After the reversal of P,
the interior lambda expressions may be reintroduced by Lemma 1.

Note that the reversals provided by Lemmas 1 and 2 are both valid
strong reductions.

We shall call the initial combinator of a Type I or II redex the head of
that redex. In the case of a Type III redex the head will be the λx. If two
different redexes have the same occurence of a combinator as their heads
(they are necessarily Type I or II since two Type III redexes with the same
occurence of λx as their heads are identical), we will call them competing
redexes. If one of two competing redexes is contracted, the other one is no
longer a redex.

A redex can also be cancelled as a whole by an application of rule (K).
If a redex of Type I or II is interior to a Type III redex and the Type IΠ

redex is contracted, the parts of the contractum arising from the Type I or
Π redex need not form a redex.

We now introduce the concept of residual. If a given expression con-
tains two redexes P and Q, and if P is contracted, then we would like to
associate certain components in the resulting expression with the redex Q.
These associated components will be known as residuals. The definition
actually includes the case where Q is a quasi-redex of Type ΠI.

Definition. Let P be a redex and Q a (quasi-)redex in M and let the
contractum of P be L. Let the contraction of P in M reduce M to N; then
the residuals of Q are those components of N defined as follows:

Case 1. P is the same as Q. Then Q has no residual.
Case 2. P and Q do not overlap. N is obtained from M by replacing

the component P by L. Every component not overlapping P in M will have a
homologous component in N. The component in N which is homologous to Q
is the residual of Q.

Case 3. P is part of Q not including the head of Q. The component Qτ

of N arising from the (quasi-)redex Q of Mby replacing the subcomponent
P of Q by L is the residual of Q.

Case 4. Q is a part of P not including the head of P. If P is a Type I
or Π redex, and p is the initial combinator of P, then P is of the form
pXi.. ,Xm and Q is in some X{. Arguments are not changed except for
multiplicity in a contraction. Hence components congruent to Q and arising
from Q in Mwill appear in JV with a possible change in multiplicity. These
components occurring in N congruent to Q and arising from Q in M are the
residuals of Q.

If P is a Type ΠI redex, we consider two possibilities. If Q does not
contain x and appears as a subcomponent in a component of M of the form
Mxx or simply Mx where Mx does not contain #, then AT will contain an in-
stance of the component Mλ and hence its subcomponent Q which is then the
residual of Q in M If Q does not enter into M in the way described, then N
will contain [x]Q and this will be the residual of Q. [x]Q need not be a redex
of the same type as Q.

Case 5. P and Q have the same head, but are not the same redex.
Here Q has no residual.
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This completes the definition of a residual of a (quasi-) redex after a
single contraction. In a sequence of contractions we need only add that any
residual of a residual is again a residual.

Note that if P is a Type I or II redex and Q is a (quasi-) redex, then if
Q has more than one residual after the contraction of P, the several
residual redexes will be disjoint. The only case in which there can be an
increase in multiplicity is case 4 with P a redex of Type Ib. In none of the
other cases is there an increase in the multiplicity of argument places ex-
cept for those filled by indeterminates. Arguments are not changed in a
reduction except for possible changes in multiplicity. In this case P is of
the form $XYZ which reduces to XZ(YZ). If Q occurs once in Z before P is
contracted, then there will be a residual of Q in each occurence of Z after
the contraction. Clearly these must be disjoint (although another redex
could contain both instances of Z and hence Q). If Z contains several
residuals of Q before contraction these must have come from earlier steps
of this type and hence will be disjoint. If X or Y contain residuals of Q,
these must also be disjoint from any which occur in Z before the reduction
and hence will be disjoint after the reduction since X and Fare not changed
by the reduction.

In order to prove the equivalence of strong reduction and modified
strong reduction we observe first of all that any strong reduction is also a
modified strong reduction. Hence we need only show that any modified
strong reduction can be replaced by a valid strong reduction. The definition
of Type III steps is the same for both reductions so we need consider only
Type I and Π reductions.

If we have a modified strong reduction from MtoiVwe proceed to con-
struct a strong reduction from M to N. This proceeds by an induction on
the structure of the reduction. Let the z-th step in the reduction be the con-
traction of a redex P taking Mimtl into Mi% If P is a Type IΠ redex the step
in the new reduction is the same as the old reduction. If P is a Type I or II
reduction and P does not contain any lambda expressions the new step is
again the same as the old one.

Finally suppose P i s a Type I or II redex containing a Type IΠ (quasi-)
redex Q1# Q can be reduced by Type III steps to QJ which contains no
lambdas. Similarly for any other Type IΠ redex Qi contained in P. Then P
can be reduced as a strong reduction. Each Qjf will then have one or more
residuals in the resulting expression.

By Lemma 1 if X does not contain x, then [x]Xx reduces to X by Type I
steps only. Hence if we apply one Type II step to each residual of each Q/
and then follow these by appropriate Type I steps we will obtain an expres-
sion which has a redex congruent to Qi as a residual of Qi, but this is just
Mi. Since all of these steps are valid strong reduction steps we have con-
structed a strong reduction from M{_x to Λζ . The number of steps following
M has not been affected and we can complete the induction.

A counter example to show that the restriction of ^-obs cannot be re-
laxed in the case of Type ΠI steps is as follows:

λχy.x = MLV]AJ = λχKx= K.
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If the other order were allowed we would get

λχy.x = [x](λy.χ) = λy\ = [y]\ = Kl.

But K and Kl do not have the same effect as is shown by

KXY>X;

K\XY>\ Y >K
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