ARITHMETIC OPERATIONS ON ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* We characterize addition and multiplication of ordinal numbers. We assume familiarity with the basic properties of ordinal arithmetic (Sierpinski [3], Chapter 14). Although our discussion is informal, it could be formalized within Gödel-Bernays set theory, e.g., within the axiom system consisting of groups A, B, C, and D of Gödel [1].

Greek letters, sometimes with subscripts, will denote ordinals; "On" will denote the class of all ordinals. As usual, " + " and "." stand for ordinal addition and multiplication, respectively. Braces will designate proper classes as well as sets.

2 Addition Let + be any binary operation on On that is such that for all ordinals α, β, and γ,

1) $\alpha+0=\alpha$;
2) if $\beta \leqslant \gamma$, then $\alpha+\beta \leqslant \alpha+\gamma$;
3) if $\beta \leqslant \gamma$, then there is a unique δ such that $\beta+\delta=\gamma$.

In Proposition 2.1 and its corollary, we assume that + is a binary operation on On that satisfies 1), 2), and 3).

Proposition 2.1 Let α, β, and γ be ordinals. If $\beta<\gamma$, then $\alpha+\beta<\alpha+\gamma$.
Proof: $\alpha=\alpha+0 \leqslant \alpha+\gamma$, by 1) and 2). Thus, if $\alpha+\beta=\alpha+\gamma$, then by 3), $\beta=\gamma$. By 2), $\alpha+\beta \leqslant \alpha+\gamma$; therefore, we must have $\alpha+\beta<\alpha+\gamma$.
Corollary For all ordinals α, β, and $\gamma, \beta<\gamma$ if and only if $\alpha+\beta<\alpha+\gamma$.
Define $+_{1},+_{2}$, and $+_{3}$ on On as follows:
For $\alpha, \beta \in O_{n}$,

$$
\begin{aligned}
& \alpha+1 \beta=\beta ; \\
& \alpha+{ }_{2} 0=\alpha,
\end{aligned}
$$

[^0]and for $\beta>0$,
\[

$$
\begin{aligned}
& \alpha+_{2} \beta=\left\{\begin{array}{l}
\beta, \text { if } \alpha \neq \beta, \\
0, \text { if } \alpha=\beta
\end{array}\right. \\
& \alpha+_{3} \beta=\alpha .
\end{aligned}
$$
\]

Then $+_{1}$ satisfies 2) and 3), but not 1); $+_{2}$ satisfies 1) and 3), but not 2); $+_{3}$ satisfies 1) and 2), but not 3), as does the Hessenberg natural sum (Hessenberg [2]). It is well-known that + satisfies 1), 2), and 3); we now show that + is the only binary operation on On which does so.

Theorem 2.1 Let + be any binary operation on On that satisfies 1), 2), and 3). Then for all ordinals α and β,

$$
\alpha+\beta=\alpha+\beta
$$

Thus $+=+$.
Proof: We utilize the Principle of Transfinite Induction. Let

$$
A=\{\beta: \text { for all } \alpha, \alpha+\beta=\alpha+\beta\} .
$$

Then, by 1), $0 \in A$. Suppose $\beta \in A$; let α be an arbitrary ordinal. Surely $\alpha<\alpha+\beta^{+}$; let δ be the unique ordinal that satisfies $\alpha+\delta=\alpha+\beta^{+}$. Then

$$
\alpha+\beta=\alpha+\beta<\alpha+\beta^{+}=\alpha+\delta .
$$

By the Corollary of Proposition 2. 1, $\beta<\delta$. Thus $\beta^{+} \leqslant \delta$ and

$$
\alpha+\beta=\alpha+\beta<\alpha+\beta^{+} \leqslant \alpha+\delta=\alpha+\beta^{+}=(\alpha+\beta)^{+} .
$$

It follows that $\alpha+\beta^{+}=\alpha+\beta^{+}$. Suppose $\gamma \subseteq A$, where γ is a limit ordinal. Fix α. Then
(1) $\alpha+\gamma$ is the smallest ordinal, δ, such that $\alpha+\beta<\delta$ for every $\beta<\gamma$.

Since $\alpha+\beta<\alpha+\gamma$ for every $\beta<\gamma$, it follows that $\alpha+\gamma \leqslant \alpha+\gamma$. Let δ be the unique ordinal that satisfies $\alpha+\delta=\alpha+\gamma$. Then $\gamma \leqslant \delta$, by (1). Therefore,

$$
\alpha+\gamma \leqslant \alpha+\delta=\alpha+\gamma .
$$

Hence $\alpha+\gamma=\alpha+\gamma$.
Corollary 2.1 If + is a binary operation on On that satisfies 1), 2), and 3), then + is associative.

Corollary 2.2 No commutative binary operation on On satisfies 1), 2), and 3).

Let $\#$ be any binary operation on On that satisfies the following: for all ordinals α, β, and γ,
4) if $\beta<\gamma$, then $\alpha \# \beta<\alpha \# \gamma$;
5) $\beta \leqslant \gamma$ if and only if there is some δ such that $\beta \# \delta=\gamma$.

In Propositions 2.2 and 2.3, we assume that $\#$ is a binary operation on On that satisfies 4) and 5).
Proposition 2.2 For all ordinals β and γ, if $\beta<\gamma$, then there is a unique δ such that $\beta \# \delta=\gamma$.
Proposition 2.3 For every ordinal $\alpha, \alpha \# 0=\alpha$.
Proof: $\alpha \leqslant \alpha \# 0$, by 5). Suppose $\alpha<\alpha \# 0$. Let δ be the unique ordinal that satisfies $\alpha \# \delta=\alpha$. If $\delta \neq 0$, then $0<\delta$ and, by 4),

$$
\alpha \# 0<\alpha \# \delta=\alpha \leqslant \alpha \# 0 .
$$

This contradiction establishes that $\alpha \# 0=\alpha$.
Observe that $+_{1}$ satisfies 4) but not 5). Define $+_{4}$ on On by

$$
\alpha+4 \beta=\max \{\alpha, \beta\}, \text { for all } \alpha, \beta \in \text { On. }
$$

Then ${ }_{4}$ satisfies 5) but not 4). Clearly, + satisfies both 4) and 5).
Theorem 2.2 Let $\#$ be any binary operation on On that satisfies 4) and 5). Then for all ordinals α and β,

$$
\alpha \# \beta=\alpha+\beta .
$$

Thus $\#=+$.
Proof: \# satisfies 1), 2), and 3); the result follows from Theorem 2.1.
Corollary 2.3 Let \ddagger.be any binary operation on On that satisfies the following:
2) if $\beta \leqslant \gamma$, then α म $\beta \leqslant \alpha$ Я γ;
$\left.5^{\prime}\right) \beta \leqslant \gamma$ implies there is a unique δ such that β দ $\delta=\gamma$, and $\beta>\gamma$ implies there is no δ such that β 曰 $\delta=\gamma$.
Then for all ordinals α and $\beta, \alpha 母 \beta=\alpha+\beta$.
Proof: It suffices to show that \emptyset satisfies 4) and 5). Clearly 5') implies that \ddagger satisfies 5). Let α be an arbitrary ordinal and let $\beta<\gamma$. Then 5') implies that $\alpha \not \square \beta \neq \alpha \nmid \gamma$. This together with 2) indicates that α ด $\beta<\alpha \nmid \gamma$.

Observe that $+_{1}$ satisfies 2) but not 5^{\prime}). Moreover, define $+_{5}$ on On as follows:

$$
\begin{aligned}
& 0+_{5} \beta=\beta, \text { for all } \beta ; \\
& 1++_{5} \beta= \begin{cases}\beta^{+}, & \text {if } \beta<\omega, \\
\beta, & \text { if } \omega \leqslant \beta ;\end{cases}
\end{aligned}
$$

for $\alpha \geqslant 2$, let

$$
\alpha+_{5} \beta=\left\{\begin{array}{l}
0, \text { if } \alpha>\beta \\
\beta, \text { if } \alpha \leqslant \beta
\end{array}\right.
$$

Then $+_{5}$ also satisfies 2) but not 5^{\prime}). Furthermore,
$\left.5^{\prime \prime}\right) \beta \leqslant \gamma$ if and only if there is a unique δ such that $\beta+5 \delta=\gamma$.
Define $+_{6}$ on On as follows:

$$
\alpha+_{6} \beta=\left\{\begin{array}{l}
1, \text { if } \alpha=\beta=0 \\
0, \text { if } \alpha=0 \text { and } \beta=1 \\
\alpha+\beta, \text { otherwise } .
\end{array}\right.
$$

Then $+_{6}$ satisfies 5^{\prime}) but not 2).
3 Multiplication Let \times be a binary operation on On that is such that for all ordinals α, β, and γ,

1) if $\gamma<\alpha \times \beta$, then there are ordinals α_{1} and β_{1} that satisfy $\alpha_{1}<\alpha, \beta_{1}<\beta$, and $\gamma=\alpha \times \beta_{1}+\alpha_{1}$;
2) if $\beta<\gamma$, then $\alpha \times \beta+\alpha \leqslant \alpha \times \gamma$.

It is well-known that • satisfies 1) and 2). Define \times_{1} and \times_{2} as follows: For all ordinals α and β,

$$
\begin{aligned}
& \alpha \times \times_{1} \beta \equiv 0 \\
& \alpha \times_{2} \beta=\alpha \cdot \beta^{+} .
\end{aligned}
$$

Then \times_{1} satisfies 1) but not 2), and \times_{2} satisfies 2) but not 1).
Theorem 3.1 Let \times be a binary operation on On that satisfies 1) and 2). Then for all ordinals α and $\beta, \alpha \times \beta=\alpha \cdot \beta$. Thus $\times=\cdot$

Proof: Let

$$
A=\{\beta: \text { for all } \alpha, \alpha \times \beta=\alpha \cdot \beta\} .
$$

$0 \in A$ because otherwise, $0<\alpha \times 0$ would require that there be an ordinal $\beta_{1}<0$, by 1). Suppose $\beta^{+} \subseteq A$ but $\beta^{+} \notin A$. Then for some $\alpha, \alpha \times \beta^{+} \neq \alpha \cdot \beta^{+}$. Then, by 2),

$$
\alpha \cdot \beta^{+}=\alpha \cdot \beta+\alpha=\alpha \times \beta+\alpha \leqslant \alpha \times \beta^{+} .
$$

It follows that $\alpha \cdot \beta^{+}<\alpha \times \beta^{+}$. Thus $\alpha>0$; by 1), there are $\beta_{1} \leqslant \beta$ and $\alpha_{1}<\alpha$ for which

$$
\alpha \cdot \beta^{+}=\alpha \times \beta_{1}+\alpha_{1}=\alpha \cdot \beta_{1}+\alpha_{1} \cdot 1<\alpha \cdot \beta_{1}+\alpha \cdot 1=\alpha \cdot \beta_{1}^{+} \leqslant \alpha \cdot \beta^{+} .
$$

This inequality is false; hence $\beta^{+} \epsilon A$. Let γ be a limit ordinal for which $\gamma \subseteq A$. If α is an arbitrary ordinal and if $\beta<\gamma$, then

$$
\alpha \cdot \beta^{+}=\alpha \cdot \beta+\alpha=\alpha \times \beta+\alpha \leqslant \alpha \times \gamma
$$

Since $\alpha \cdot \gamma$ is the smallest ordinal for which $\alpha \cdot \beta^{+}<\alpha \cdot \gamma$ for every $\beta<\gamma$, it follows that $\alpha \cdot \gamma \leqslant \alpha \times \gamma$. If $\alpha \cdot \gamma<\alpha \times \gamma$, then there are $\alpha_{1}<\alpha$ and $\gamma_{1}<\gamma$ for which

$$
\alpha \cdot \gamma=\alpha \times \gamma_{1}+\alpha_{1}=\alpha \cdot \gamma_{1}+\alpha_{1} \cdot 1<\alpha \cdot \gamma_{1}+\alpha \cdot 1=\alpha \cdot \gamma_{1}^{+}<\alpha \cdot \gamma .
$$

This contradiction establishes that $\alpha \cdot \gamma=\alpha \times \gamma$.
Corollary 3.1 Let \otimes be a binary operation on On that satisfies
3) for every $\alpha>0$ and for every β there is a unique $\langle\zeta, \rho\rangle$ with $0 \leqslant \rho<\alpha$ for which $\beta=\alpha \otimes \zeta+\rho$;
4) if $\beta \leqslant \gamma$, then $\alpha \otimes \beta \leqslant \alpha \otimes \gamma$;
5) $0 \otimes \beta=0$.

Then $\times=\cdot$.
Proof: It suffices to show that \otimes satisfies 1) and 2).
1): Suppose $\gamma<\alpha \otimes \beta$. Clearly, 5) implies that $\alpha>0$. By 3), $\gamma=\alpha \otimes \zeta+\rho$, where $\rho<\alpha$. Finally, 4) implies that $\zeta<\beta$.
2): Let $\beta<\gamma$. Then $0 \otimes \beta+0=0 \otimes \beta \leqslant 0 \otimes \gamma$. If $\alpha>0$, it follows that $\alpha \otimes \beta \leqslant \alpha \otimes \gamma$. Thus for some unique $\rho_{0}, \alpha \otimes \gamma=\alpha \otimes \beta+\rho_{0}$. By 3), $\rho_{0} \geqslant \alpha$; hence $\alpha \otimes \beta+\alpha<\alpha \otimes \gamma$.

Note that \times_{1} satisfies 4) and 5), but not 3). Define \otimes_{1} and \otimes_{2} on On as follows:
for all ordinals α and β :

$$
\begin{aligned}
& \alpha \otimes_{1} \beta=\left\{\begin{array}{l}
0, \text { if } \alpha=\beta=1 \\
1, \text { if } \alpha=1 \text { and } \beta=0 \\
\alpha \cdot \beta, \text { otherwise }
\end{array}\right. \\
& \alpha \otimes_{2} \beta=\left\{\begin{array}{l}
1, \text { if } \alpha=0 \\
\alpha \cdot \beta, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then \otimes_{1} satisfies 3) and 5), but not 4); \otimes_{2} satisfies 3) and 4), but not 5).
4 Remark In [4], we characterize the Hessenberg natural sum and generalizations of this operation.

REFERENCES

[1] Gödel, K., The Consistency of the Axiom of Choice and of the Generalized Con-tinuum-hypothesis with the Axioms of Set Theory, 6th ed., Annals of Mathematical Studies, No. 3, Princeton University Press, Princeton (1964).
[2] Hessenberg, G., Grundbegriffe der Mengenlehre, Abhandlungen der Fries'schen Schule (n.s.), 1.4, Göttingen (1906), no. 75.
[3] Sierpiński, W., Cardinal and Ordinal Numbers, 1st ed., Monografie Matematyczne, 34, Państwowe Wydawnictwo Naukowe, Warszawa (1958).
[4] Zuckerman, M., 'Natural sums of ordinals,'" Fundamenta Mathematicae, vol. 77 (1973), pp. 289-294.

[^0]: *This research was supported by a City University of New York Faculty Research Award, 1970-72.

