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ARITHMETIC OPERATIONS ON ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* We characterize addition and multiplication of ordinal
numbers. We assume familiarity with the basic properties of ordinal
arithmetic (Sierpiήski [3], Chapter 14). Although our discussion is in-
formal, it could be formalized within Gδdel-Bernays set theory, e.g., within
the axiom system consisting of groups A, B, C, and D of Godel [ l ] .

Greek letters, sometimes with subscripts, will denote ordinals; " O n "
will denote the class of all ordinals. As usual, "+"• and "•" stand for
ordinal addition and multiplication, respectively. Braces will designate
proper classes as well as sets.

2 Addition Let + be any binary operation on On that is such that for all
ordinals a, β, and y,

1) a + 0 = a;
2) if β ^ γ, then a + β ^ a + y;
3) if β ^ γ, then there is a unique δ such that β + δ = y.

In Proposition 2.1 and its corollary, we assume that + is a binary
operation on On that satisfies 1), 2), and 3).

Proposition 2.1 Let a, β, and γ be ordinals. If β < y, then a + β < a + y.

Proof: ot = a + 0 ^ a + y, by 1) and 2). Thus, if a + β = a + y, then by 3),
β = y. By 2), a + β ^ a + y; therefore, we must have a + β < a + y.

Corollary For all ordinals a, β, and y, β < γ if and only if a + β < a + y.

Define +l9 +2, and +3 on On as follows:

For a, 0eOn,

ot +i β = β;

a +2 0 = α,
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and for β > 0,

β,Ua* β,

a +2 β =
0, if a = β;

a +3 β = a.

Then +! satisfies 2) and 3), but not 1); +2 satisfies 1) and 3), but not 2); +3

satisfies 1) and 2), but not 3), as does the Hessenberg natural sum
(Hessenberg [2]). It is well-known that + satisfies 1), 2), and 3); we now
show that + is the only binary operation on On which does so.

Theorem 2.1 Let + be any binary operation on On that satisfies 1), 2), and
3). Then for all ordinals a and β,

a + β = a + β.

Thus + = +.

Proof: We utilize the Principle of Transfinite Induction. Let

A = {β: for all a, a + β = a + β}.

Then, by 1), OeA. Suppose βeA; let a be an arbitrary ordinal. Surely
a < a + β+; let δ be the unique ordinal that satisfies a + δ = a + β+. Then

a + β = a + β<a + β + = a + δ.

By the Corollary of Proposition 2. 1, β < δ. Thus β+ ^ δ and

a + β = a + β < a + β + ^ a + δ = a + β + = ( a + β ) + .

It follows that a + β+ = a + β+. Suppose γ Q A, where γ is a limit ordinal.
Fix of. Then

(1) a + γ is the smallest ordinal, δ, such that a + β < δ for every β < γ.

Since a + β < en + γ for every β < γ, it follows that a + γ ^ a + y. Let δ be
the unique ordinal that satisfies a + δ = a + γ. Then y ̂  δ, by (1). There-
fore,

a+γ^a+δ = a + γ.

Hence a + γ = of + γ.

Corollary 2.1 If + is a binary operation on On that satisfies 1), 2), and 3),
then + zs associative.

Corollary 2.2 No commutative binary operation on On satisfies 1), 2),
αrcd 3).

Let % be any binary operation on On that satisfies the following: for all
ordinals a, β, and γ,

4) if β < r , thenαjfβ<α#y;
5) β ̂  γ if and only if there is some δ such that β % δ = γ.
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In Propositions 2.2 and 2.3, we assume that % is a binary operation on
On that satisfies 4) and 5).

Proposition 2.2 For all ordinals β and y, if β < y, then there is a unique 5
such that β % δ = y.

Proposition 2.3 For every ordinal α, a % 0 = α.

Proof: a ^ a % 0, by 5). Suppose a < a % 0. Let δ be the unique ordinal that
satisfies a % δ = a. If δ Φ 0, then 0 < δ and, by 4),

This contradiction establishes that a % 0 = α.

Observe that +λ satisfies 4) but not 5). Define +4 on On by

a +4 β = mαχ{α, β}, for all a, β e On.

Then +4 satisfies 5) but not 4). Clearly, + satisfies both 4) and 5).

Theorem 2.2 Let % be any binary operation on On that satisfies 4) and 5).
Then for all ordinals a and β,

a% β = a + β.

Thus % = +.

Proof: % satisfies 1), 2), and 3); the result follows from Theorem 2.1.

Corollary 2.3 Let \ • be any binary operation on On that satisfies the
following:

2) if β ^ γ, then o? fcj β ^ a \\ y;
5f) β ̂  γ implies there is a unique δ such that β i| δ = γ, and β > γ implies
there is no δ such that β ij δ = y.

Then for all ordinals a and β, a tj β = a + β.

Proof: It suffices to show that fc| satisfies 4) and 5). Clearly 5f) implies
that fc| satisfies 5). Let a be an arbitrary ordinal and let β < y. Then 5')
implies that a t| β Φ a \ γ. This together with 2) indicates that a\ β < a t| y.

Observe that +x satisfies 2) but not 5'). Moreover, define +5 on On as
follows:

0+ 5 /3= β, for all β;

β+, if β < ω ,

l + 5 β =

β, if ω ^ β;

for a ^ 2, let

0, if a > β,
a + 5 β =

β, if a ^ β.

Then +5 also satisfies 2) but not 5 f). Furthermore,
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5") ]3 < γ if and only if there is a unique δ such that β +5 δ = y.

Define +6 on On as follows:

l , i f α=j3 = O;

a +6 β = 0, if a = 0 and β = 1;
a + β, otherwise.

Then +6 satisfies 5') but not 2).

3 Multiplication Let x be a binary operation on On that is such that for all
ordinals a, β, and y,

1) if γ < a x β, then there are ordinals aλ and & that satisfy aλ < a, βx< β,
and γ = a x βλ + aλ;
2) if β < γ, then α x β + α ^ α x y .

It is well-known that satisfies 1) and 2). Define Xi and x2 as follows:
For all ordinals a and β,

α x x β = 0;
a x 2 β = a β+.

Then Xi satisfies 1) but not 2), and x2 satisfies 2) but not 1).

Theorem 3.1 Let x be a binary operation on On that satisfies 1) £md 2).
Then for all ordinals a and β, a x β = a β. Thus x = .

Proof: Let

A - {0: for all a, a x 0 = a β}.

OeA because otherwise, 0 < a x 0 would require that there be an ordinal

0i < °> b y !)• Suppose j3+ c A but /3+/A. Then for some a, a x β+ Φ a /3"\

Then, by 2),

It follows that a β+ < a x /3+. Thus α > 0; by 1), there are βι ^ β and αL < a

for which

Q! β + = of x βx + «! = a: 3i + o?i 1 < oί * βi + a 1 = a βt ^ a β+.

This inequality is false; hence β+eA. Let y be a limit ordinal for which
γ Q A. If of is an arbitrary ordinal and if β < γ, then

a ' β + = a - β + a = a x β + a ^ a x γ .

Since a γ is the smallest ordinal for which a β+ < α y for every β < y,
it follows that a γ ^ ax γ. lϊ a - γ < ax γ, then there are aγ < a and yγ < γ
for which

a γ = a x γ1 -h aλ = a - γλ + a1 - I < α y1 + of 1 = α yί" < en y.

This contradiction establishes that a γ = ax γ.

Corollary 3.1 Let ® be a binary operation on On that satisfies
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3) for every a > 0 and for every β there is a unique (ξ, p) with 0 ^ p < a for

which β = a ® ζ + p;

4) if β ^ γ, then α^^fl^y;

5) 0 <8> β = 0.

T&erc x = .

Proof: It suffices to show that ® satisfies 1) and 2).

1): Suppose γ < a <8> β. Clearly, 5) implies that a> 0. By 3), y = α ® ζ + p,

where p < a. Finally, 4) implies that ζ < β.

2): Let β < γ. Then 0 ® β + 0 = 0 ® β ^ 0 0 y. If cu>0, it follows that

en (8) β ^ a 0 y. Thus for some unique p 0 , « ® y = of <g> β + p 0 . By 3), p 0 ^ cκ;

hence cϋΘβ + Q!<Q!(g)y.

Note that xx satisfies 4) and 5), but not 3). Define ®χ and (E)2 on On as

follows:

for all ordinals a and β:

0, if α = β = 1,

α ®x β = 1, if α = 1 and ]3 = 0,

of β, otherwise;

1, if a = 0,

α ® 2 β =

a β, otherwise.

Then ®! satisfies 3) and 5), but not 4); <8)2 satisfies 3) and 4), but not 5).

4 Remark In [4], we characterize the Hessenberg natural sum and gen-

eralizations of this operation.
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