86

Notre Dame Journal of Formal Logic
Volume XVI, Number 1, January 1975
NDJFAM

A SOLE SUFFICIENT OPERATOR

T. C. WESSELKAMPER

Generations of students have been asked to prove (as an exercise) that the Sheffer stroke operator is a sole sufficient operator to define all of the monadic and dyadic operators in a two-valued space. A two-place functionally complete operator has come to be called a Sheffer operator [1]. We define a three-place operator S suggested by the work of A. A. Markov [2] in the theory of algorithms and prove that this operator is functionally complete over any finite-valued space. The proof is constructive.

Let $X(n)$ be the space of values $\mathbf{T}=1,2, \ldots, n=\mathrm{F}$. Over $X(n)$ define:

$$
S x y z=\left\{\begin{array}{l}
z, \text { if } x=y ; \tag{1}\\
x, \text { if } x \neq y .
\end{array}\right.
$$

Consider, as an example, the two-valued case, $T=1,2=F$. Negation, implication, conjunction, alternation, and the Sheffer stroke are defined by:
(2) $N x=S \mathbf{T} x \mathbf{F} ; C x y=S \mathbf{T} x y ; K x y=S x \mathbf{T} y ; A x y=S x \mathbf{F} y ; D x y=x / y=S \mathbf{T} S x \mathbf{T} y \mathbf{F}$.

From this it is clear that S is a sole sufficient operator in the two-valued case.

In the general case we define n operators $V_{j}, 1 \leqslant j \leqslant n$, such that $V_{j} x$ has the value 1 if $x=j$, and $V_{j} x$ has the value n if $x \neq j$.

$$
V_{j} x=\left\{\begin{array}{l}
S 1 S 1 x n n, \text { if } j=1 ; \tag{3}\\
S S j x 1 j n, \text { if } 2 \leqslant j \leqslant n .
\end{array}\right.
$$

If $x=j=1, V_{1} 1=S 1 S 11 n n=S 1 n n=1$.
If $x \neq j=1, V_{1} x=S 1 S 1 x n n=S 11 n=n$.
If $x=j \neq 1, V_{j} x=S S j j 1 j n=S 1 j n=1$.
If $x \neq j \neq 1, V_{j} x=\operatorname{SSj} x 1 j n=\operatorname{Sjjn}=n$.
Hence definition (3) has the desired property. Define:
(4) $K x y=S x 1 y$.

Note that $K 11=1$ and that $K 1 n=K n 1=K n n=n$.

Now suppose that $x_{1}, x_{2}, \ldots, x_{k}$ are k variables with values in the space $X(n)$, and suppose that, among all of the n^{k} possible states of these variables, Q is the state defined by $x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{k}=t_{k}$, where for each i such that $1 \leqslant i \leqslant k, t_{i} \in X(n)$. Define:
(5) $\chi_{Q}(\lambda)=K V_{t_{1}} x_{1} K V_{t_{2}} x_{2} K \ldots K V_{t_{k-1}} x_{k-1} V_{t_{k}} x_{k}$;
where λ varies over the space of all possible states of the k variables x_{1}, \ldots, x_{k}. Substitution of (3) and (4) into (5) produces an expression in which S is the sole operator. Each of the arguments $V_{t_{j}} x_{j}$ takes on only the values 1 or n. By the remark following definition (4), $\chi_{Q}(\lambda)$ takes on the values 1 if and only if $V_{t_{1}} x_{1}=\ldots=V_{t_{k}} x_{k}=1$; that is, if and only if, $x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{k}=t_{k}$; that is, if and only if, $\lambda=Q$. In every other one of the possible states $\chi_{Q}(\lambda)=n$.

Next suppose that f is a k-adic operator and suppose that f operating on the k variables x_{1}, \ldots, x_{k} in the state Q produces some result different from $r \in X(n)$. Suppose that we wish to define a k-adic operator f^{\prime} which has the same effect as f in each of the $n^{k}-1$ states other than Q and which produces the result r in the state Q. Define:

$$
f^{\prime}(\lambda)=\left\{\begin{array}{l}
S S 1 \chi_{Q}(\lambda) n 1 f(\lambda), \text { if } r=n ; \tag{6}\\
S S \chi_{Q}(\lambda) 1 r n f(\lambda), \text { if } r \neq n .
\end{array}\right.
$$

If $\lambda=Q$ and $r=n, f^{\prime}(\lambda)=\operatorname{SS} 11 n 1 f(\lambda)=\operatorname{Sn} 1 f(\lambda)=n$.
If $\lambda=Q$ and $r \neq n, f^{\prime}(\lambda)=\operatorname{SS11rnf}(\lambda)=\operatorname{Srnf}(\lambda)=r$.
If $\lambda \neq Q$ and $r=n, f^{\prime}(\lambda)=\operatorname{SS} 1 n n 1 f(\lambda)=\operatorname{S11} f(\lambda)=f(\lambda)$.
If $\lambda \neq Q$ and $r \neq n, f^{\prime}(\lambda)=\operatorname{SSn} 1 r n f(\lambda)=\operatorname{Snnf}(\lambda)=f(\lambda)$.
If f is defined in terms of S alone, then f^{\prime} is defined in terms of S alone.

Theorem If f is a k-adic operator over $X(n)$ then f can be defined by an expression involving S as the sole operator.

Proof: Let f_{0} be an arbitrary k-adic operator over $X(n)$ defined by an expression with S as the sole operator. If $f_{0}=f$ for each of the n^{k} possible states, then there is nothing to prove. If f_{0} and f differ for some finite number of states (say h), then let Q_{1} be one of these states and suppose that $f\left(Q_{1}\right)=r \neq f_{0}\left(Q_{1}\right)$. By (6) define a new operator f_{1} such that in the states Q_{1}, f_{1} produces the result r and in every other state f_{1} produces the same result as f_{0}. This new operator f_{1} differs from f in $h-1$ states. Application of the process h times produces an operator f_{h} which has the same effect as f in each of the n^{k} possible states.

For example, consider the following definition of equivalence proposed by Łukasiewicz [3] for a three-valued logic:

E	1	2	3
1	1	2	3
2	2	1	2
3	3	2	1

We wish to express this in terms of S alone. A reasonable "first guess"' is obtained from the definitions of (2), namely:

$$
E_{0} x y=K C x y C y x=S S T x y \mathrm{~T} S \mathrm{~T} y x=S S 1 x y 1 S 1 y x .
$$

This has the truth table:

E_{0}	1	2	3
1	1	2	3
2	2	1	1
3	3	1	1

E_{0} differs from E in the two states:

$$
Q_{1}: x=2, y=3 ; \text { and } Q_{2}: x=3, y=2 .
$$

From (3), $V_{2} x=S S 2 \times 123 ; V_{3} x=S S 3 \times 133=S 3 \times 1$.
From (4) and (5), $\chi_{Q_{1}}(\lambda)=K V_{2} x V_{3} y=S S S 2 x 1231 S 3 y 1$.
We wish E_{1} to differ from E_{0} in the state Q_{1} by taking on the value 2 in that state. Then,

$$
E_{1}(\lambda)=S S \chi_{Q_{1}}(\lambda) 123 E_{0}(\lambda)=\operatorname{SSSSS} 2 x 1231 S 3 y 1123 S S 1 x y 1 S 1 y x .
$$

This differs from E only in the state Q_{2}.

$$
\chi_{Q_{2}}(\lambda)=K V_{3} x V_{2} y=S S 3 x 11 S S 2 y 123 .
$$

We wish E_{2} to differ from E_{1} in the state Q_{2} by taking on the value 2 in that state. Then,

$$
\begin{aligned}
E_{2}(\lambda) & =\operatorname{SSX}_{Q_{2}}(\lambda) 123 E_{1}(\lambda) \\
& =\operatorname{SSSS} 3 x 11 S S 2 y 123123 S S S S S 2 x 1231 S 3 y 1123 S S 1 x y 1 S 1 y x .
\end{aligned}
$$

Finally, $E x y=E_{2} x y$.
The author is grateful to Mr. Eric Nixon of the University of London Institute of Computer Science who conjectured this result.

REFERENCES

[1] Martin, Norman M., "The Sheffer function of 3-valued logic," The Journal of Symbolic Logic, vol. 19 (1954), pp. 45-50.
[2] Markov, A. A., Theory of Mathematical Algorithms, Israel Program for Scientific Translations, Jerusalem (1962), pp. 192-222.
[3] Łukasiewicz, Jan, "On Three-valued Logic," in Selected Works, edited by L. Borkowski, North Holland Publishing Company, Amsterdam (1970), pp. 87-88.

University of Dayton
Dayton, Ohio

