Notre Dame Journal of Formal Logic Volume XVI, Number 1, January 1975 NDJFAM

A SOLE SUFFICIENT OPERATOR

T. C. WESSELKAMPER

Generations of students have been asked to prove (as an exercise) that the Sheffer stroke operator is a sole sufficient operator to define all of the monadic and dyadic operators in a two-valued space. A two-place functionally complete operator has come to be called a Sheffer operator [1]. We define a three-place operator S suggested by the work of A. A. Markov [2] in the theory of algorithms and prove that this operator is functionally complete over any finite-valued space. The proof is constructive.

Let X(n) be the space of values T = 1, 2, ..., n = F. Over X(n) define:

(1)
$$Sxyz = \begin{cases} z, \text{ if } x = y; \\ x, \text{ if } x \neq y. \end{cases}$$

Consider, as an example, the two-valued case, T = 1, 2 = F. Negation, implication, conjunction, alternation, and the Sheffer stroke are defined by:

(2)
$$Nx = STxF$$
; $Cxy = STxy$; $Kxy = SxTy$; $Axy = SxFy$; $Dxy = x/y = STSxTyF$.

From this it is clear that S is a sole sufficient operator in the two-valued case.

In the general case we define *n* operators V_j , $1 \le j \le n$, such that $V_j x$ has the value 1 if x = j, and $V_j x$ has the value *n* if $x \ne j$.

(3)
$$V_j x = \begin{cases} S1S1xnn, \text{ if } j = 1;\\ SSjx1jn, \text{ if } 2 \leq j \leq n. \end{cases}$$

If x = j = 1, $V_1 1 = S1S11nn = S1nn = 1$. If $x \neq j = 1$, $V_1 x = S1S1xnn = S11n = n$. If $x = j \neq 1$, $V_j x = SSjj1jn = S1jn = 1$. If $x \neq j \neq 1$, $V_j x = SSjx1jn = Sjjn = n$.

Hence definition (3) has the desired property. Define:

$$(4) \quad Kxy = Sx1y.$$

Note that K11 = 1 and that K1n = Kn1 = Knn = n.

Received August 31, 1972

Now suppose that x_1, x_2, \ldots, x_k are k variables with values in the space X(n), and suppose that, among all of the n^k possible states of these variables, Q is the state defined by $x_1 = t_1, x_2 = t_2, \ldots, x_k = t_k$, where for each *i* such that $1 \le i \le k, t_i \in X(n)$. Define:

(5)
$$\chi_Q(\lambda) = KV_{t_1}x_1KV_{t_2}x_2K \dots KV_{t_{k-1}}x_{k-1}V_{t_k}x_k;$$

where λ varies over the space of all possible states of the k variables x_1, \ldots, x_k . Substitution of (3) and (4) into (5) produces an expression in which S is the sole operator. Each of the arguments $V_{t_j} x_j$ takes on only the values 1 or n. By the remark following definition (4), $\chi_Q(\lambda)$ takes on the values 1 if and only if $V_{t_1} x_1 = \ldots = V_{t_k} x_k = 1$; that is, if and only if, $x_1 = t_1, x_2 = t_2, \ldots, x_k = t_k$; that is, if and only if, $\lambda = Q$. In every other one of the possible states $\chi_Q(\lambda) = n$.

Next suppose that f is a k-adic operator and suppose that f operating on the k variables x_1, \ldots, x_k in the state Q produces some result different from $r \in X(n)$. Suppose that we wish to define a k-adic operator f' which has the same effect as f in each of the n^k - 1 states other than Q and which produces the result r in the state Q. Define:

(6)
$$f'(\lambda) = \begin{cases} SS1 \ \chi_Q(\lambda)n1f(\lambda), \text{ if } r = n; \\ SS \ \chi_Q(\lambda)1rnf(\lambda), \text{ if } r \neq n. \end{cases}$$

If $\lambda = Q$ and r = n, $f'(\lambda) = SS11n1f(\lambda) = Sn1f(\lambda) = n$. If $\lambda = Q$ and $r \neq n$, $f'(\lambda) = SS11rnf(\lambda) = Srnf(\lambda) = r$. If $\lambda \neq Q$ and r = n, $f'(\lambda) = SS1nn1f(\lambda) = S11f(\lambda) = f(\lambda)$. If $\lambda \neq Q$ and $r \neq n$, $f'(\lambda) = SSn1rnf(\lambda) = Snnf(\lambda) = f(\lambda)$.

If f is defined in terms of S alone, then f' is defined in terms of S alone.

Theorem If f is a k-adic operator over X(n) then f can be defined by an expression involving S as the sole operator.

Proof: Let f_0 be an arbitrary k-adic operator over X(n) defined by an expression with S as the sole operator. If $f_0 = f$ for each of the n^k possible states, then there is nothing to prove. If f_0 and f differ for some finite number of states (say h), then let Q_1 be one of these states and suppose that $f(Q_1) = r \neq f_0(Q_1)$. By (6) define a new operator f_1 such that in the states Q_1 , f_1 produces the result r and in every other state f_1 produces the same result as f_0 . This new operator f_1 differs from f in h - 1 states. Application of the process h times produces an operator f_h which has the same effect as f in each of the n^k possible states.

For example, consider the following definition of equivalence proposed by Łukasiewicz [3] for a three-valued logic:

E	1	2	3
1	1	2	3
2	2	1	2
3	3	2	1

We wish to express this in terms of S alone. A reasonable "first guess" is obtained from the definitions of (2), namely:

$$E_0xy = KCxyCyx = SSTxyTSTyx = SS1xy1S1yx.$$

This has the truth table:

E_0	1	2	3
1	1	2	3
2	2	1	1
3	3	1	1

 E_0 differs from E in the two states:

 Q_1 : x = 2, y = 3; and Q_2 : x = 3, y = 2.

From (3), $V_2 x = SS2x123$; $V_3 x = SS3x133 = S3x1$. From (4) and (5), $X_{Q_1}(\lambda) = KV_2 xV_3 y = SSS2x1231S3y1$.

We wish E_1 to differ from E_0 in the state Q_1 by taking on the value 2 in that state. Then,

 $E_1(\lambda) = SS \ \chi_{O_1}(\lambda) 123 E_0(\lambda) = SSSSS2x 123 1S3y 1123 SS1xy 1S1yx.$

This differs from E only in the state Q_2 .

 $\chi_{O_2}(\lambda) = KV_3 x V_2 y = SS3x11SS2y123.$

We wish E_2 to differ from E_1 in the state Q_2 by taking on the value 2 in that state. Then,

$$\begin{split} E_2(\lambda) &= SSX_{Q_2}(\lambda) 123 E_1(\lambda) \\ &= SSSS3x 11SS2y 123 123SSSSS2x 123 1S3y 1123SS1xy 1S1yx. \end{split}$$

Finally, $Exy = E_2 xy$.

The author is grateful to Mr. Eric Nixon of the University of London Institute of Computer Science who conjectured this result.

REFERENCES

- Martin, Norman M., "The Sheffer function of 3-valued logic," The Journal of Symbolic Logic, vol. 19 (1954), pp. 45-50.
- [2] Markov, A. A., *Theory of Mathematical Algorithms*, Israel Program for Scientific Translations, Jerusalem (1962), pp. 192-222.
- [3] Łukasiewicz, Jan, "On Three-valued Logic," in Selected Works, edited by L. Borkowski, North Holland Publishing Company, Amsterdam (1970), pp. 87-88.

University of Dayton Dayton, Ohio