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DESCRIPTION THEORY:
CRITICAL DEFENSE OF A RUSSELLIAN APPROACH

JEAN CLAUDE VOLGO

1 Scope of the Present Study The present paper contains a systematic
discussion of a standard version of Russell’s theory of descriptions (this is
not another historical study on Russell or descriptions). More specifically,
we will briefly present a formal version of the theory which will be argued
to be both formally and materially adequate. In the latter respect, we will
be concerned with showing that the theory is flexible enough in applications
to ordinary discourse to accommodate alternative methods of paraphrase.

The adequacy of Russell’s theory has repeatedly been challenged at
both the formal and the applied levels. In the present account the core of
Russell’s well-known method of contextual definition for descriptions will
be retained. At the formal level, we will show that the method suffices to
justify a law of Substitutivity of Identity for descriptions; this law in turn
allows us to extend standard quantification rules to description containing
contexts in general. At the applied level, we will indicate how the adroit
use of certain special contexts of descriptions (called primary contexts)
can secure maximum flexibility in formalization.

2 The Basic Theory Quine has in effect proposed the following law
N(x)(Fx = x = y) = (1x)Fx = y)

as a fundamental condition of adequacy for any theory of descriptions.’
In addition to the above, I would like to mention also the following as
equally basic:

(»)Fy - (29)((1%)Gx = y)) D F(1x)Gx RUI
(F(1x)Gx - (39)((1%)Gx = ) D (Iy)Fy REG

As their names indicate, RUI and REG are 7estricted analogues of standard
universal instantiation and existential generalization, respectively. They
differ from the standard laws only in containing the additional clause:
‘(3y)((1x)Gx = y)’. This well-known method for formalizing claims of the
form ‘The so-and-so exists’ goes back to Russell. To see that it does
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capture nontrivially the intended import of such claims, we must bear in
mind the status of the description as a nonbindable singular term (whether
the method can adequately be extended to names generally need not concern
us here). In short, the overall rationale for RUI and REG is to allow
instantiation and generalization with respect to descriptions under the
proviso that the descriptions be 7efervential, i.e., have referents in the
domain of interpretation.

Now, in order to obtain the above laws for descriptions, we need as our
underlying logic standard quantification with identity® supplemented by the
following definitional schema:

‘GO1x)(Fx)’ =p; “(39)(Gy - (¥)(Fx = x = y))’ DS

To secure unique eliminability of ‘(1x)(Fx)’ from all contexts, we can
resort to Quine’s expedient of limiting ‘G’ to afomic replacements
(predicates that are not further analyzable into truth-functional or quan-
tificational components).® It will be shown below that this expedient not
only is formally adequate but also provides a very flexible basis for
applications.

Other provisos and explanations concerning DS are in order here.
First, the parentheses enclosing ‘Fx’ in the definiendum are required to
avoid systematic ambiguity in cases where ‘G’ is taken as a polyadic
predicate (e.g., ‘H(1x)Fxz’).* Such parentheses may of course generally be
suppressed in practice. Secondly, it is to be understood that no free ‘y’ in
‘F’ gets captured by the outlying quantifier, ‘(3y)’. And finally, we make a
provision to the effect that wherever two or more descriptions (or
occurrences of the same description) are to be eliminated from the same
atomic context, the elimination proceeds from left to right; in the reverse
process, i.e., that of introduction of the definiens, the procedure should
correspondingly be from right to left. This third proviso, however, is for
the purist (the curious reader can verify for himself that introduction or
elimination in whatever order is in this case equivalence preserving).

3 Proof of Logical Adequacy That DS satisfies the fundamental law for
descriptions may easily be verified by taking ‘G’ as ‘=z2’.° We get by
identity:

Thl () ((W¥)Fx =) = (¥)(Fx =x =)

Two consequences of Thl worth noting here are:

Th2 (Ey)((W)Fx =y) = Qy)X)(Fx =x =)

i.e., ““The so-and-so exists just in case there is a unique so-and-so’’; and:
Th3 ~EGy)((W)Fx =y) = (W)(~Fyv (3x)(Fx - x # y))

i.e., ‘““The so-and-so does not exist just in case either there is no
so-and-so or there is more than one.’”” Evidently, these basic laws are
desiderata in any theory of descriptions.

Let us now address ourselves to the problem of proving RUI and REG
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on the basis of the underlying logic supplemented by DS. But we will need
to prove first a more general principle, central to any logic of terms:

Th4 a=b D (Fa = Fb)

i.e., the Substitutivity of Identity. We will prove that Th4 holds for any
replacements of ‘a’ and ‘b’ by descriptions or variables in any context ‘F’
however complex (provided it is extensional).® Furthermore—and this is
the philosophically interesting point—it will be shown that Th4 obtains
irrespective of the semantical status of descriptions occurring therein.

As a preliminary to the proof, we will describe a systematic method
for assigning a numerical value to the degree of logical complexity of a
formula. Suppose, then, that our primitive basis consists of negation, the
conditional, universal quantification and identity, together with an un-
specified number of atomic predicates. We can recursively define the
complexity value of a formula as follows:

(1) If ‘P’ is atomic, its complexity value is 0.

(2) If ‘Fx’ has complexity value n, ‘(x)Fx’ has complexity value n + 1.

(3) If ‘P’ has complexity value #n, ‘~ P’ has complexity value 7 + 1.

(4) If ‘P’ has a complexity value of m, and ‘@’ of n, and moreover m < n,
then each of ‘P D @’ and ‘Q O P’ has a complexity value of n + 1.

We are now ready for the proof of Th4. The two major steps to be
established are that

I. Th4 obtains for all atomic contexts, ‘F’ (Base Case);
II. Th4 obtains for all atomic contexts, ‘F’, having complexity value & + 1
whenever it obtains for all contexts of complexity value, k. (Inductive Step).

If we can establish I and II, we will have shown by (weak) induction that Th4
holds for all contexts, ‘F’.

Base Case: ‘F’ depicts an atomic context.

Subcase 1: ‘@’ and ‘D’ are both variables. We get Th4 by the underlying
theory of identity.

Subcase 2: ‘a’ is a description and ‘b’ a variable. We leave it to the reader
to satisfy himself by elementary logic that the closure of

(1x)Gx =y D (F(1x)Gx = Fy)

can be derived as a theorem on the basis of DS.
Subcase 3: ‘a’ is a variable and ‘b’ a description. This case turns out to
be a mere corollary of the preceding one by virtue of the equivalence:

(Mx)Gx = v =y = (Ix)Gx

Subcase 4: ‘@’ and ‘b’ are both descriptions. Again the reader can verify
for himself that the following is provable:

(1%)Gx = (\x)Hx D (F(1x)Gx = F(1x)Hx)

Inductive Step: Let ‘F™ in general represent (stand for) a predicate of
complexity value,n. We will consider four basic ways in which
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(i) a=b>D (Fla+1a = Fk+1b)
can be derived from
(i) a=0b D (Fk, = F%)

Cases 1,2, and 3: Let ‘F**%;? stand for ‘~ F*’ or ‘F%, D P’ or ‘P D F*; (for
some formula ‘P’ of degree j, j < k). And similarly for ‘F**%,’. (i) then
follows from (ii) truth-functionally.

Case 4: Let ‘F*¥*'’ represent ‘(z)F%, (assuming ‘z’ has a free occurrence
in ‘F%). Similarly for ‘F**Y’. By elementary logic:

(1) a=0b>(Fk=TF%) Hypothesis
(2) a=0bD2(2)(Fk=F%) from (1)
(3) a=0b>((2)Fk = (2)F%) from (2)

This completes our proof of Th4. The derivations of RUI and REG on this
basis present no problem. Taking ‘@’ as ‘(1x¥)Gx’ and ‘b’ as ‘y’, we obtain
the following instance of Th4:

(1%)Gx = y D (F(1x) Gx = Fy)

Both RUI and REG can be derived from the above by elementary logical
transformations.

4 Applications to Ordinary Discourse We are now in a position to assess
the practical ramifications of the formal theory. The clue to the successful
application of the apparatus of description theory lies, as we hope to show,
in the use of the fundamental law, Thl. Thl indicates how any description
occurring in the context ‘(1x)Fx =y’ can be systematically eliminated
without the detour of DS. Because of their great usefulness in applications
to ordinary discourse, such contexts of descriptions will be given a special
name: they will be called primary contexts.

The fundamental technique of formalization using primary contexts
may roughly be described as follows”:

Stage One: Paraphrase into the idiom of quantification with all descriptions
confined to primary contexts;

Stage Two: Eliminate descriptions from primary contexts wvia Thl.
The above technique will be referred to briefly as the method of confine-
ment. A few typical examples will make abundantly clear the utmost
flexibility of the standard theory of descriptions when applied in conformity
with the method of confinement.

(1) The square circle is square.
(2) Pegasus does not fly.?
(3) Pegasus is Pegasus.

Let me insist right away that I do not intend to defend any a priori
preconceptions concerning what ‘‘must be’’ (or ‘‘cannot be’’) the truth-
value of any of the above examples. My concern rather is to indicate how
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the formal theory of descriptions is neutral with regards to alternative and
at the same time mutually compatible construals of each of (1)-(3).

Let us proceed straight to the first example. A standard reading
suggests the following formalization (in line with the method of confine-
ment):

(@) E((Wx)(Cx -Sx) =y -Sy)

Now, it may be rashly concluded on the basis of (a) that (1) must be false.
But this conclusion cannot be justified unless we are also prepared to
regard (a) as the correct (the only possible) formalization of (1). Such a
view of the situation springs from too rigid an attitude concerning the
interrelationships between grammatical and logical form.® A reader with a
preconception to the effect that (to put it lamely) ‘(1) is true because if
there were any square circle it would be square,’’ can also accommodate
his intuitions (without resorting to a dubious counterfactual in his for-
malized sentence!). Moreover, he can do so without contradicting (a),
through the following version:

(b) (MN((X)(Cx-Sx) = y > Sy)

(b) happens to be logically true and carries no commitment to the existence
of any square circles.’® What is more, it is logically compatible with (a).
Again, however, it is futile to argue which is the correct formalization of
(1). The point is that the English sentence lends itself to either interpreta-
tion (and perhaps other interpretations as well).

Consider now example (2). Readers familiar with Quine’s well-known
textbook'' will recall how the author handles this very same example.
Having in effect analyzed

(4) Pegasus flies.
as

(c) (E)N(x)Px =y -Fy)

he then interprets (2) as the negation of (c) and consequently true (given
the nonexistence of Pegasus). Here again we witness too close an
adherence to ordinary grammar. Of course nothing prevents us from
construing ‘Pegasus does not fly’ as the (logical) negation of ‘Pegasus
flies.” But neither are we constrained to interpret the pair as contra-
dictories. We could just as well have formalized (2) by:

(d CE»((1x)Px=y-~Fy)

which makes ‘Pegasus does not fly’ come out no less false than ‘Pegasus
flies!’*?

But that is not all. It is also instructive to note that we could have so
formalized (2) and (4) as to make them come out equally true. Using the
same method as in the analysis of (1):

(e) M((Ax)Px =y D ~Fy)
() M%) Px=y>DFy)
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These vacuous truths are as innocuous as conditionals with false ante-
cedents generally.

Our final example, (3), is probably the one which has raised the most
dust.”® On the face of it, (3) looks as patently true as ‘Socrates is
Socrates.” But if we are anxious to save the appearances here, we will
beware of translating (3) by:

(g (W) Px=(1x)Px

which, given DS, is patently false. But there are alternative ways of
handling (3) which succeed in analyzing it as a fruism. Indeed the alert
reader will probably have already guessed what alternative I had in mind:

(h) (%) Px =y D (1x)Px = y)

and notice that (h) works for any description—irrespective of semantical
status.

5 Conclusion I have tried to show not that Russell’s theory of descriptions
is ‘‘the right one’’ but that it is logically adequate and furthermore can
successfully cope with certain moot problems of application. What more
can be demanded of a theory?

NOTES

1. For Quine’s perceptive discussion of descriptions, see [3], pp. 181-190; and [4],
pPp. 227-234.

2. Any system of standard (referential) quantification will serve equally well. Also
it is irrelevant to our purposes whether the underlying logic countenances
primitive names, not reducible to descriptions.

3. See [4], pp. 231-233. Note that atomicity is relative to a particular formali-
zation.

4. This was brought to my attention by Prof. R. Barrett.

5. In formal languages where identity occurs as a defined predicate (hence, not
atomic) the derivation of Thl will obviously be more devious.

6. The proof may suitably be adjusted to accommodate primitive names.

7. For axiomatic treatments of description theory based directly on primary con-
texts, see [2] and [5]. But the idea behind the technique of application comes
essentially from [3], pp. 181-190.

8. Note for the captious reader: in this and subsequent contexts, ‘Pegasus’ is
being used as an abbreviation for a description (‘The winged-horse captured by
Bellerophon’, if you like).

9. For more on this theme, see especially [1], section 6.

10. The reader may have noticed that the method exemplified in (b) is reminiscent
of a standard practice in traditional logic of construing singular statements as
‘‘ A propositions’’. Notice also that (b) is an ‘‘A proposition’’ without existential
pre-suppositions.
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(31

[4]

[5]
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[4], ibid.

Recall how Russell would handle (2) with his distinction between ‘‘primary’’ and
‘‘secondary’’ occurrences of descriptions. (d) in effect analyzes ‘Pegasus’ as
having ‘“‘primary occurrence’’ in (2). (This use of ‘primary’ must of course not
be confused with what we are calling ‘primary contexts’.)

For a critical discussion, see [1], 7bid.

REFERENCES

Goe, G., ‘‘Reconstructing formal logic: Further developments and considera-
tions,’’ Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 37-75.

Hintikka, K. J. J., ‘“Towards a theory of definite descriptions,” Analysis, vol.
19 (1959), pp. 79-85.

Quine, W. V., Word and Object, The M.I.T. Press, Cambridge, Massachusetts
(1960).

Quine, W. V., Methods of Logic, Third Edition, Holt, Rinehart and Winston, Inc.,
New York (1972).

Van Fraassen, B. C., ‘““The completeness of free logic,’’ Zeitschvift filr mathe-
matische Logik und Grundlagen dev Mathematik, vol. 12 (1966), pp. 219-234.

Washington University
St. Louis, Missouvri





